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Abstract

In this paper we study the performance of the low-variance multi-taper Mel-frequency cepstral coefficient (MFCC) and perceptual
linear prediction (PLP) features in a state-of-the-art i-vector speaker verification system. The MFCC and PLP features are usually com-
puted from a Hamming-windowed periodogram spectrum estimate. Such a single-tapered spectrum estimate has large variance, which
can be reduced by averaging spectral estimates obtained using a set of different tapers, leading to a so-called multi-taper spectral estimate.
The multi-taper spectrum estimation method has proven to be powerful especially when the spectrum of interest has a large dynamic
range or varies rapidly. Multi-taper MFCC features were also recently studied in speaker verification with promising preliminary results.
In this study our primary goal is to validate those findings using an up-to-date i-vector classifier on the latest NIST 2010 SRE data. In
addition, we also propose to compute robust perceptual linear prediction (PLP) features using multitapers. Furthermore, we provide a
detailed comparison between different taper weight selections in the Thomson multi-taper method in the context of speaker verification.
Speaker verification results on the telephone (det5) and microphone speech (det1, det2, det3 and det4) of the latest NIST 2010 SRE cor-
pus indicate that the multi-taper methods outperform the conventional periodogram technique. Instead of simply averaging (using uni-
form weights) the individual spectral estimates in forming the multi-taper estimate, weighted averaging (using non-uniform weights)
improves performance. Compared to the MFCC and PLP baseline systems, the sine-weighted cepstrum estimator (SWCE) based multi-
taper method provides average relative reductions of 12.3% and 7.5% in equal error rate, respectively. For the multi-peak multi-taper
method, the corresponding reductions are 12.6% and 11.6%, respectively. Finally, the Thomson multi-taper method provides error reduc-
tions of 9.5% and 5.0% in EER for MFCC and PLP features, respectively. We conclude that both the MFCC and PLP features computed
via multitapers provide systematic improvements in recognition accuracy.
� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Useful information extraction from speech has been a
subject of active research for many decades. Feature
0167-6393/$ - see front matter � 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.specom.2012.08.007

⇑ Corresponding author. Address: INRS-EMT, University of Quebec,
800, de La Gauchetière West, Suite 6900, Montréal (Québec), Canada
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extraction (or front-end) is the first step in an automatic
speaker or speech recognition system. It transforms the
raw acoustic signal into a compact representation. Since
feature extraction is the first step in the chain, the quality
of the subsequent steps (modeling and classification)
strongly depends on it. The mel-frequency cepstral coeffi-

cient (MFCC) (Davis and Mermelstein, 1980) and percep-
tual linear prediction (PLP) (Hermansky, 1990) front-ends
have been dominantly used in speech and speaker recogni-
tion systems and they demonstrate good performance in
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both applications. The MFCC and PLP parameterization
techniques aim at computing the speech parameters similar
to the way how a human hears and perceives sounds (Davis
and Mermelstein, 1980). Since these features are computed
from an estimated spectrum, it is crucial that this estimate
is accurate. Usually, the spectrum is estimated using a win-
dowed periodogram (Harris, 1978) via the discrete Fourier
transformation (DFT) algorithm. Despite having low bias,
a consequence of the data tapering (windowing) is
increased estimator variance. Therefore, MFCC or PLP
features computed from this estimated spectrum have also
high variance. One elegant technique for reducing the
spectral variance is to replace a windowed period-
ogram estimate with a multi-taper spectrum estimate
(Sandberg et al., 2010; Thomson, 1982; Riedel and
Sidorenko, 1995).

In the multi-taper spectral estimation method, a set of
orthogonal tapers is applied to the short-time speech signal
and the resulting spectral estimates are averaged (possible
with nonuniform weights), which reduces the spectral var-
iance. As each taper in a multi-taper technique is pairwise
orthogonal to all the other tapers, the windowed signals
provide statistically independent estimates of the underly-
ing spectrum. The multi-taper method has been widely
used in geophysical applications and, in multiple cases, it
has been shown to outperform the windowed periodogram.
It has also been used in speech enhancement applications
(Hu and Loizou, 2004) and, recently, in speaker recogni-
tion (Kinnunen et al., 2010, in press; Sandberg et al.,
2010; Alam et al., 2011) with promising preliminary results.
The preliminary experiments of Kinnunen et al. (2010) and
Sandberg et al. (2010) were reported on the NIST 2002 and
2006 SRE corpora using a lightweight Gaussian mixture
model–universal background model (GMM–UBM) system
(Reynolds et al., 2000) and generalized linear discriminant
sequence support vector machine (GLDS-SVM) without
any session variability compensation techniques. The
recent results of Kinnunen et al. (in press), using multi-
taper MFCC features only, were reported on NIST 2002
and 2008 SRE corpora using GMM–UBM, GMM-SVM
and joint factor analysis (JFA) (Kenny et al., 2007a,
2007b) classifiers.

In this paper, our aims are, firstly, to study whether the
improvements obtained using multi-taper MFCC features
in (Kinnunen et al., 2010, in press; Sandberg et al., 2010)
translate to a state-of–the-art speaker verification task. Sec-
ondly, we propose to use multi-taper PLP features in an i-

vector speaker verification system as we have found that the
performance of PLP features (HTK version of PLP, also
denoted as revised PLP (RPLP) in (Honig, 2005)) can out-
perform MFCC accuracy in speaker verification, and
thirdly, we provide a comparison of the performance of
using uniform average versus weighted average to get the
final multi-taper spectral estimate in a Thomson multi-
taper method, in the context of speaker verification. Proper
selection of weights is an important design issue in multi-
taper spectrum estimation. Even though (Kinnunen et al.,
2010, in press; Sandberg et al., 2010; Alam et al., 2011)
extensively compare different types of taper windows, their
weight selection was not addressed. Therefore, in this work,
we provide detailed comparison between different taper
weight selections in the popular Thomson multi-taper
method. The recent i-vector model (Dehak et al., 2011;
Kenny, 2010; Senoussaoui et al., 2011) includes elegant
inter-session variability compensation, with demonstrated
significant improvements on the recent NIST speaker rec-
ognition evaluation corpora. Since i-vectors already do a
good job in compensating for variabilities in the speaker
model space, one may argue that improvements in the
front-end may not translate to the full recognition system.
This is the question which we address in this paper. In the
experiments, we use the latest NIST 2010 SRE benchmark
data with the state-of-the-art i-vector configuration. To this
end, we utilize a completely gender independent i-vector
system based on mixture probabilistic linear discriminant

analysis (PLDA) model of Senoussaoui et al. (2011). In this
paper, similar to Senoussaoui et al. (2011)), we also use a
gender independent i-vector extractor and then form a mix-
ture PLDA model by training and combining two gender
dependent models, where the gender label is treated as a
latent (or hidden) variable.
2. Multi-taper spectrum estimation

A windowed direct spectrum estimator is the most often
used power spectrum estimation method in speech
processing applications. For the mth frame and kth fre-
quency bin an estimate of the windowed periodogram
can be expressed as:

Ŝdðm; kÞ ¼
XN�1

j¼0

wðjÞsðm; jÞe�2pik
N

�����
�����
2

; ð1Þ

where k e {0, 1, ... , K � 1} denotes the frequency bin in-
dex, N is the frame length, s(m, j) is the time domain speech
signal and w(j) denotes the time domain window function,
also known as taper. The taper, such as the Hamming win-
dow, is usually symmetric and decreases towards the frame
boundaries. Eq. (1) is sometimes called single-taper, modi-

fied or windowed periodogram. If w(j) is a rectangular or
uniform taper, Eq. (1) is called a periodogram. Fig. 1 pre-
sents time- and frequency-domain plot of the Hamming
window.

Windowing reduces the bias, i.e., expected value of the
difference between the estimated spectrum and the actual
spectrum, but it does not reduce the variance of the spectral
estimate (Kay, 1988) and therefore, the variance of the
MFCC features computed from this estimated spectrum
remains large. One way to reduce the variance of the
MFCC or PLP estimator is to replace the windowed peri-
odogram estimate by a so-called multi-taper spectrum esti-
mate (Sandberg et al., 2010; Thomson, 1982; Riedel and
Sidorenko, 1995). It is given by



Fig. 1. Hamming window for N = 256, in (a) time domain and (b) frequency domain.

Fig. 2. Block diagram of multi-taper spectrum estimation method.
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ŜMT ðm; kÞ ¼
XM

p¼1

kðpÞ
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wpðjÞsðm; jÞe�
2pik

N
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where N is the frame length and wp is the pth data taper
(p = 1, 2, ... , M) used for the spectral estimate ŜMT ð�Þ, also
known as the pth eigenspectrum. Finally, M denotes the
number of tapers and kðpÞ is the weight of the pth taper.
The tapers wp(j) are typically chosen to be orthonormal
so that, for all p and q,

X
j

wpðjÞwqðjÞ ¼ dpq ¼
1; p ¼ q

0; otherwise:

�

The multi-taper spectrum estimate is therefore obtained
as the weighted average of M individual sub-spectra.
Eq. (1) can be obtained as a special case of Eq. (2) when
p = M = 1 and kðpÞ ¼ 1: Fig. 2 illustrates the multi-taper
spectrum estimation process using M = 6 tapers.

The idea behind multi-tapering is to reduce the variance
of the spectral estimates by averaging M direct spectral
estimates, each with a different data taper. If all M tapers
are pairwise orthogonal and properly designed to prevent
leakage, the resulting multi-taper estimates outperform
the windowed periodogram in terms of reduced variance,
specifically, when the spectrum of interest has high
dynamic range or rapid variations (McCoy et al., 1998).
Therefore, the variance of the MFCC and PLP features
computed via this multi-taper spectral estimate will be
low as well. The underlying detail of the multi-taper
method is similar to Welch’s modified periodogram (Kay,
1988), it, however, focuses only on one frame rather than
forming a time-averaged spectrum estimate over multiple
frames. In the multi-taper method, only the first of the data
tapering windows has the traditional shape. The spectra
from the different tapers do not produce a common central
peak for a harmonic component. Only the first taper
produces a central peak at the harmonic frequency of the
component. The other tapers produce spectral peaks that
are shifted slightly up and down in frequency. Each of
the spectra contributes to an overall spectral envelope for
each component. The so-called Slepian tapers that underlie
the Thomson multi-taper method (Thomson, 1982) are



Fig. 3. Thomson multi-tapers for N = 256, M = 6 in (a) time and (b)
frequency domains.
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illustrated in Fig. 3 for M = 6 both in time and frequency
domains.

2.1. Choice of the tapers and the taper weights

The choice of taper has a significant effect on the resul-
tant spectrum estimate. The objective of the taper is to pre-
vent energy at distant frequencies from biasing the estimate
at the frequency of interest. Based on the Slepian tapers
(also called discrete prolate spheroidal sequence, DPSS)
(Slepian and Pollak, 1960) and the sine tapers (Riedel
and Sidorenko, 1995), various multi-taper methods have
been proposed in the literature for spectrum estimation,
such as Thomson multi-taper (Thomson, 1982), SWCE
(sinusoidal weighted cepstrum estimator) multi-taper
(Hansson-Sandsten and Sandberg, 2009) and Multi-peak
multi-taper (Hansson and Salomonsson, 1997). For com-
pleteness, we briefly review each method in the following.

2.1.1. Thomson multi-taper method

In the Thomson multi-taper method of spectrum estima-
tion (Thomson, 1982), a set of M orthonormal data tapers
with good leakage properties is specified from the Slepian

sequences (Slepian and Pollak, 1960). Slepian sequences
are defined as the real, unit-energy sequences on
[0,N � 1] having the greatest energy in a bandwidth W.
Slepian tapers can be shown to be the solutions to the fol-
lowing eigenvalue problem,
Awp
j ¼ mpwp

n; ð3Þ

where 0 6 n 6 N � 1, 0 6 j 6 N � 1, A is a real symmetric
matrix, 0 < mp

6 1 is the pth eigenvalue corresponding to
the pth eigenvector wp

n known as the Slepian taper. The ele-

ments of the matrix A are given by anj ¼ sin 2pW ðn�jÞ
pðn�jÞ ; where

W is the half-frequency bandwidth (or one sided
bandwidth).

Slepian sequences (or DPSS), proposed originally in
(Slepian and Pollak, 1960), were chosen as tapers in
(Thomson, 1982) as these tapers are mutually orthonormal
and possess desirable spectral concentration properties
(i.e., they have highest concentration of energy in the
user-defined frequency interval (�W,W)). The first taper
in the set of Slepian sequences is designed to produce a
direct spectral estimator with minimum broadband bias
(bias caused by leakage via the sidelobes). The higher order
tapers ensure minimum broadband bias whilst being
orthogonal to all of the lower order tapers. The first taper,
resembling a conventional taper such as Hanning window,
gives more weight to the center of the signal than to its
ends. Tapers for larger p give increasingly more weight to
the ends of the signal. There is no loss of information at
the extremes of the signal. In the experiments of Kinnunen
et al. (2010, in press) and Sandberg et al. (2010), uniform
weights were applied to obtain the final Thomson
multi-taper estimate. That is, kðpÞ ¼ 1=M . Even though
(Kinnunen et al., 2010, in press; Sandberg et al., 2010)
reported increased speaker verification accuracy when the
standard windowed periodogram was replaced by the
Thomson multi-taper, the question of weight selection in
the Thomson method was not addressed. We hypothesize
that recognition accuracy might be further increased by
allowing non-uniform weighting in the Thomson method.
In order to compensate for the increased energy loss at
higher order tapers the uniform weights can be replaced
with the weights corresponding to either the eigenvalues
of the Slepian tapers, i.e., kðpÞ ¼ mp or, alternatively,
adaptive weights obtained as kðpÞ ¼ 1=

Pp
q¼1m

q (Thomson,

1982, 1990). The different weighting schemes used in the
Thomson multi-taper method are illustrated in Fig. 5 for
M = 6 tapers including the weights used in the multi-peak
(Hansson and Salomonsson, 1997) and the SWCE
(Hansson-Sandsten and Sandberg, 2009) methods.
2.1.2. SWCE multi-taper

The Thomson multi-taper method requires solving an
eigenvalue problem of Eq. (3) and does not have a
closed-form expression for the tapers. A simpler set of
orthonormal tapers that has such a closed-form expression
is the set of the sine tapers (see Fig. 4(c)) given by Riedel
and Sidorenko (1995):

wpðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

N þ 1

r
sin

ppðjþ 1Þ
N þ 1

� �
; j ¼ 0; 1; . . . ;N � 1:

ð4Þ



Fig. 4. (a) Six Slepian tapers in the Thomson method, (b) multi-peak tapers in the multi-peak method, and (c) sine tapers for SWCE method, for N = 256.
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The sine tapers achieve a smaller local bias (the bias due
to the smoothing by the mainlobe) than the Slepian tapers
at the expense of sidelobe suppression (Riedel and
Sidorenko, 1995; McCoy et al., 1998). The first taper in
the set of sine tapers produces a direct spectral estimator
with minimum local bias and the higher order tapers ensure
minimum local bias whilst being orthogonal to all of the
lower order tapers.

In the SWCE method (Hansson-Sandsten and Sandberg,
2009), the sine tapers are applied with optimal weighting for
cepstrum analysis. The weights used in the SWCE method
(see Fig. 5) have the following closed-form expression
(Hansson-Sandsten and Sandberg, 2009):
Fig. 5. Weights used in multi-taper spectrum estimation methods for six
tapers.
kðpÞ ¼
cos 2pðp�1Þ

M=2

� �
þ 1PM

p¼1 cos 2pðp�1Þ
M=2

� �
þ 1

� � ; p ¼ 1; 2; . . . ;M : ð5Þ
2.1.3. Multi-peak multi-taper

In (Hansson and Salomonsson, 1997), a multi-taper
method, dubbed as peak matched multiple windows

(PMMW), was proposed for peaked spectra to obtain
low bias at the frequency peak as well as low variance of
the spectral estimate. Here, similar to Kinnunen et al.
(2010)), we denote this method as the multi-peak method
and the tapers (or windows) as the multi-peak tapers.
The multi-peak tapers are obtained as the solution of the
following generalized eigenvalue problem:

RB0wj ¼ mjRZwj; j ¼ 1; 2; . . . ;N ; ð6Þ

where RB0 is the (N � N) Toeplitz covariance matrix of
the assumed spectrum model defined by Hansson and
Salomonsson (1997):

Ssðf Þ ¼ e�
2Cjf j

10log10ðeÞ jf j 6 B0=2

0 jf j > B0=2;

(

with C = 20 dB and a predetermined interval of width B0

outside of which spectral leakage is to be prevented, RZ

is the Toeplitz covariance matrix, chosen for decreasing
the leakage from the sidelobes of the tapers, of the follow-
ing frequency penalty function:

SZðf Þ ¼
G jf j > B0=2

1 jf j 6 B0=2

�
;



Fig. 6. (a) Speech signal, (b) estimated spectrum by the single taper
(Hamming) and the multi-taper methods. Sampling frequency is 16 kHz,
frame length 25 ms and number of tapers used for the multi-taper methods
is 6.
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where G = 30 dB (Hansson and Salomonsson, 1997). The
eigenvectors corresponding to the M largest eigenvalues
of (6) are used as multi-peak tapers for the multi-peak
method and the weights for the tapers can be found from
the M largest eigenvalues of (6) as:

kp ¼
mpPM
p¼1mp

; p ¼ 1; 2; . . . ;M :

Six multi-peak tapers and the weights corresponding to
these tapers are shown in Figs. 4(b) and 5, respectively.

2.2. Variance reduction by multitapering

The use of multiple orthogonal windows can have sev-
eral advantages over the use of any single window (Percival
and Walden, 1993; Walden et al., 1994; Wieczorek and
Simons, 2005, 2007; McCoy et al., 1998). In particular,
the energy of a single band-limited window always non-
uniformly covers the desired concentration region, which
results in some data being statistically over- or underrepre-
sented when forming the spectral estimate (Wieczorek and
Simons, 2005, 2007). In contrast, the cumulative energy of
the multiple orthogonal windows more uniformly covers
the concentration region. Since the spectral estimates that
result from using orthogonal tapers are uncorrelated, a
multi-taper average (or weighted average) of these pos-
sesses a smaller estimation variance than the single-tapered
spectrum estimates.

The variance of an estimator ĥ measures how much var-
iability an estimator has around its mean (i.e., expected)
value and is defined as (Kay, 1988; Djuric and Kay, 1999):

varðĥÞ ¼ E½ðĥ� E½ĥ�Þ2�;
where E[ � ] is the expectation operator. A ‘good’ estimator
is one that makes some suitable trade-off between low bias
and low variance.

A multi-taper spectrum estimator is somewhat similar to
averaging the spectra from a variety of conventional tapers
such as Hamming and Hann tapers. But in this case, there
will be strong redundancy as the different tapers are highly
correlated (all the tapers have a common time-domain
shape). Unlike conventional tapers, the M orthonormal
tapers used in a multi-taper spectrum estimator provide
M statistically independent (hence uncorrelated) estimates
of the underlying spectrum. The weighted average of the
M individual spectral estimates ŜMT ðm; kÞ then has smaller
variance than the single-tapered spectrum estimates
Ŝdðm; kÞ by a factor that approaches 1/M, i.e.,
varðŜMT ðm; kÞÞ � 1

M varðŜdðm; kÞÞ (McCoy et al., 1998).
The reduction in the variance of the spectrum ordinates

between using single taper (e.g., Hamming window) and
multi-taper methods is illustrated in Fig. 6. Spectral vari-
ance reduction using multi-taper methods has been
addressed by many researchers, including in Kay (Kay,
1988; Sandberg et al., 2010; Thomson, 1982; Riedel and
Sidorenko, 1995; Hansson-Sandsten and Sandberg, 2009;
Hansson and Salomonsson, 1997; Thomson, 1990; Percival
and Walden, 1993; Walden et al., 1994; Wieczorek and
Simons, 2005, 2007; McCoy et al., 1998). The objective
of our paper is to apply multi-taper methods to compute
MFCC and PLP features for speaker verification using i-
vectors and compare their performance with the Hamming
window-based baseline MFCC and PLP systems.

3. Multi-taper MFCC and PLP feature extraction

The two most widely used forms of speech parameter-
izations are the mel-frequency cepstral coefficients
(MFCCs) (Davis and Mermelstein, 1980) and the percep-
tual linear prediction (PLP) coefficients (Hermansky,
1990). Figs. 7 and 8 present the generalized block diagrams
of MFCC and PLP feature extraction processes, respec-
tively. MFCC extraction begins with pre-processing (DC
removal and pre-emphasis using a first-order high-pass fil-
ter with transfer function H(z) = 1 � 0.97 * z-1). Short-time
Fourier transform (STFT) analysis is then carried out using
a single taper (e.g., Hamming) or multi-taper technique,
and triangular Mel-frequency integration is performed for
auditory spectral analysis. The logarithmic nonlinearity
stage follows, and the final static features are obtained
through the use of discrete cosine transform (DCT).



Fig. 7. Generalized block diagram for the single taper and multi-taper
spectrum estimation-based MFCC feature extraction.

Fig. 8. Generalized block diagram for the single taper and multi-taper
spectrum estimation-based PLP feature extraction.
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PLP processing, which is similar to MFCC processing in
some ways, begins with STFT analysis followed by critical-
band integration using trapezoidal frequency-weighting
functions. In contrast to MFCC, pre-emphasis is
performed based on an equal-loudness curve after fre-
quency integration. The nonlinearity in PLP is based on
the power-law nonlinearity proposed by Hermansky
(1990). After this stage, inverse discrete Fourier transform
(IDFT) is used for obtaining a perceptual autocorrelation
sequence following the linear prediction (LP) analysis.
Cepstral recursion is also usually performed to obtain the
final features from the LP coefficients (Gold and Morgan,
2000). Here, for PLP feature extraction, we follow HTK-
based processing (Young et al., 2006), in which, for audi-
tory frequency analysis, a Mel filterbank is used instead
of a trapezoidal-shaped bark filterbank.

After extracting the static MFCC or PLP features, aug-
mented with the log energy of the frame, the delta and
double delta features are computed using the following
regression formula:

Dcðm; tÞ ¼
PLlag

q¼1qðcðmþ q; tÞ � cðm� q; tÞÞ
2
PLlag

q¼1q2
; ð7Þ

where m is the frame index, t is the cepstral index, Llag rep-
resents the window lag size, and c(m, t) is the tth cepstral
coefficient of the mth frame. Nonspeech frames are re-
moved using our voice activity detector (VAD) labels.
For telephone speech, the VAD labels are produced by a
Hungarian phoneme recognizer (Matejka, 2006; ABC
System) and for microphone speech, VAD labels are gener-
ated using a GMM-based VAD by training one GMM for
nonspeech and another one for speech (CRIM System).
Final features are obtained after appending the delta and
double delta features and normalizing the features using
a short-time Gaussianization (STG) method (Xiang et al.,
2002; Pelecanos and Sridharan, 2001).

There is a limit to the number of tapers that can be used
in multi-taper spectrum analysis for the computation of the
MFCC or PLP features. Specifically, spectral leakage
increases with each taper in the sequence. For a time-band-
width product tbp = 2NW from 3 to 5, a usual range for
the number of tapers M = 2tbp-1 is from 4 to 16, where N

is the taper length and W is the design interval expressed
as W = (M + 1)/2(N + 1). The optimal number of tapers
for our recognition task is found to be Mopt = 6. Since
speech recognition and speaker recognition systems share
similar front-ends, we first determined the optimum num-
ber of tapers for speech recognition by doing a series of rec-
ognition experiments by ranging M from 4 to 10 (Alam
et al., 2011) and applying the optimum value (Mopt = 6)
to the speaker verification task. Interestingly, in the recent
extensive speaker verification experiments on NIST 2002
and NIST 2008 corpora using three independently con-
structed speaker verification systems (Kinnunen et al., in
press), the optimum range for M was found to be
3 6M 6 8 with a recommended value of M = 6. There-
fore, in this study we fix M = 6 and focus on studying
the i-vector recognizer accuracy across the multiple condi-
tions available in the NIST 2010 SRE data.
4. Speaker verification using i-vector framework

Given two recordings of speech in a speaker detection
trial, each assumed to have been uttered by a single
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speaker, are both speech utterances produced by the same
speaker or by two different speakers? Speaker verification is
the implementation of this detection task. Speaker detec-
tion provides a scalar valued match score for each trial,
where a large score favors the target hypothesis (i.e., same
speaker hypothesis) and a small score favors the non-target
hypothesis (i.e., different speaker hypothesis). In the NIST
speaker recognition evaluations (SREs), non-target trials
may be male, female, or mixed but target trials, by defini-
tion, cannot have mixed gender. Real world deployment
of a gender dependent speaker recognition system is not
straightforward and typically involves making a premature
hard-decision based on a gender detector output. Recently,
in (Senoussaoui et al., 2011), an i-vector system based on
probabilistic linear discriminant analysis (PLDA) is intro-
duced, where a mixture of gender-dependent models (i.e.,
a male PLDA model and a female PLDA model) is used
to compute the likelihood ratio scores for speaker verifica-
tion. This system avoids the need for explicit gender detec-
tion. Here, we adopt this gender-independent speaker
recognition system for the speaker verification experiments.
An i-vector speaker verification system consists of three
steps, extraction of i-vectors, generative PLDA modeling
of the i-vectors and, finally, likelihood ratio computation
(or scoring). We review these shortly in the following.
4.1. Extraction of i-vectors

i-Vector extractors have become the state-of-the-art
technique in the speaker verification field. An i-vector
extractor represents entire speech segments as low-dimen-
sional feature vectors called i-vectors (Dehak et al., 2011;
Kenny, 2010; Brümmer and de Villiers, 2010). The i-vector
extractors studied in (Dehak et al., 2011; Kenny, 2010;
Brümmer and de Villiers, 2010) are – according to long tra-
ditions in speaker verification research following NIST SRE
evaluation protocol – gender-dependent and they are fol-
lowed by gender-dependent generative modeling stages. In
this paper, however, we use a gender-independent i-vector
extractor, as shown in Fig. 9, trained on both microphone
Fig. 9. Gender-independent i-vector extractor.
and telephone speech. The universal background model
(UBM) used in this i-vector extractor is also gender-
independent. The advantage of a gender-independent sys-
tem is simplified system design as separate female and male
detectors do not need to be constructed. In order to handle
telephone as well as microphone speech, the dimension of
the i-vectors is reduced from 800 to 200 using ordinary lin-
ear discriminant analysis (LDA). The purpose of applying
length normalization is to Gaussianize the distribution of
the i-vectors so that a simple Gaussian PLDA model
can be used instead of the heavy-tailed PLDA model
(Garcia-Romero and Espy-Wilson, 2011), i.e., PLDA
models with heavy-tailed prior distributions (Kenny,
2010). A heavy-tailed PLDA is 2–3 times slower than the
Gaussian PLDA.

4.2. Generative PLDA model for i-vectors

In a generative PLDA model, the i-vectors, denoted by i,
are assumed to be distributed according to (Kenny, 2010):

i ¼ Vyþmþ e; ð8Þ
where the speaker variable, y is Gaussian distributed and its
value is common to all segments of a given speaker, m is the
mean vector, V is a fixed hyper-parameter matrix and e is
the residual assumed to be Gaussian. Usually m, V and
the residual covariance matrix are taken to be gender-
dependent, which is optimal for NIST conditions. Probabil-
ity calculations with this model involve a Gaussian integral
that can be evaluated in closed form (Kenny, 2010).

4.3. Likelihood ratio computation

In a speaker verification task, given a pair of i-vectors
z = (i1, i2), the likelihood ratio is computed as:

PðzjH 1Þ
PðzjH 0Þ

¼ P ðzjH 1Þ
Pði1ÞPði2Þ

; ð9Þ

where the target hypothesis H1 indicates that both i1 and i2
share the same speaker variable y (i.e., y1 = y2) and the
non-target hypothesis indicates that the i-vectors were gen-
erated from different speaker variables y1 and y2. Because i1
and i2 can be considered independent under the non-target
hypothesis H0, P ðzjH 0Þ factorizes as P(i1)P(i2). In this
work, we use a gender-independent likelihood ratio compu-
tation framework as described in (Senoussaoui et al., 2011).

5. Experiments

5.1. Experimental Setup

We conducted experiments on the trial lists from the
extended core–core condition of the NIST 2010 speaker
recognition evaluation (SRE) corpus. To evaluate the per-
formance of our speaker recognition systems we used the
following evaluation metrics: equal error rate (EER), and
the new normalized minimum detection cost function
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(minDCFnew). EER corresponds to the operating point
with equal miss and false alarm rates whereas minDCFnew

correspond to the evaluation metrics for the NIST SRE
2010 protocols. The normalized detection cost function
DCFn, used to measure the performance of a speaker rec-
ognition system for application specific costs and priors,
is defined as:

DCF n¼
CMissP ðMissjTargetÞP TargetþCFAP ðFAjNon-targetÞð1�P TargetÞ

minfCMissP Target;CFAP Non-targetg
;

ð10Þ

where CMiss and CFA represent the costs of miss and false
alarm, respectively. Further, PTarget and PNon-target =
1 � PTarget are the prior probabilities of the target and
non-target trial, respectively. For NIST 2010 SRE, cost
values CMiss = CFA = 1 and PTarget = 0.001 are used. The
normalized minimum detection cost function (minDCFnew)
is the minimum of DCFn over the threshold that determines
P(FA) and P(Miss).

The relative improvement (RI) in performance (either
EER or minDCFnew) of the multi-taper systems over the
corresponding baseline system is calculated as:

RI ¼ Rbaseline � Rmt

Rbaseline
� 100%; ð11Þ

where Rbaseline and Rmt represent, respectively, the results of
the baseline and the multi-taper systems.

Based on the single taper (e.g., Hamming window) and
multi-taper MFCC and PLP features, we developed four
speaker verification systems as shown in Table 2. Our
baseline systems are based on the Hamming windowed
Table 2
Single-taper and multi-taper MFCC and PLP feature-based speaker
verification systems.

System Description

Hamming
(baseline)

MFCC and PLP features are computed from the
Hamming windowed spectrum estimate.

SWCE MFCC and PLP features are computed from the
sinusoidal weighted (i.e., sine tapered) spectrum estimate
(Hansson-Sandsten and Sandberg, 2009).

Multi-peak MFCC and PLP features are computed from the multi-
taper spectrum estimate using multi-peak tapering
(Hansson and Salomonsson, 1997).

Thomson MFCC and PLP features are calculated from the multi-
taper spectrum estimates with dpss tapering (Thomson,
1982) and adaptive weights.

Table 1
Evaluation conditions (extended core–core) for the NIST 2010 SRE task.

Condition Task

det1 Interview in training and test, same mic.
det2 Interview in training and test, different mic.
det3 Interview in training and normal vocal effort phone call over

tel. channel in test.
det4 Interview in training and normal vocal effort phone call over

mic channel in test.
det5 Normal vocal effort phone call in training and test, different tel.
MFCC and PLP features. For the Thomson (Thomson,
1982), Multi-peak (Hansson and Salomonsson, 1997) and
SWCE (Hansson-Sandsten and Sandberg, 2009) methods,
as mentioned in Table 2, MFCC features are computed
from the multi-taper spectrum estimates described in
Section 2. We report results on all of the principal sub-
conditions (telephone speech and microphone speech) of
the NIST 2010 SRE for the baseline and multi-taper
systems.
5.1.1. Feature Extraction

For our experiments, we use 20 static MFCC or PLP
features (including the log energy) augmented with their
delta and double delta coefficients, making 60-dimensional
MFCC (PLP) feature vectors. MFCC and PLP features are
extracted following the procedures shown in Figs. 6 and 7,
respectively, with a frame shift of 10 ms. Delta and double
features are calculated using a 5-frame window (i.e., ±2
frame lag) for the baseline and the multi-taper systems.
Nonspeech frames are then removed using pre-computed
VAD labels using algorithms mentioned in Section 3. For
feature normalization, we apply the short-time Gaussian-
ization (STG) technique (Xiang et al., 2002; Pelecanos
and Sridharan, 2001) over a 300-frame window.
5.1.2. Training the universal background model (UBM)

We train a gender-independent, full covariance universal
background model (UBM) with 2048-component Gaussian
mixture models (GMMs) by pooling all training features
together. NIST SRE 2004 and 2005 telephone data (420
female speakers and 307 male speakers in 305 hours of
speech) are used for training the UBM. Normally, to train
Fig. 10. Frequency domain plot of six (M = 6) Slepian tapers, p is the
taper index. Attenuation in the side-lobes decreases for higher order
tapers.
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a gender-independent UBM by pooling all the training
data, the pooled data should be balanced over the subpop-
ulations, i.e., male and female, telephone and microphone.
If the pooled data are not balanced then the final model
may be biased towards the dominant subpopulations
(Reynolds).

In this work, our gender-independent UBM is trained
from NIST SRE 2004 and 2005 telephone data that include
more female trials than male. Therefore, the verification
results for female trials should be better than that of the
male trials. But our obtained results (for the baseline Ham-
ming and multi-taper systems) depict that the verification
results (in terms of EER, minDCFold, and minDCFnew)
for male trials are consistently better than that for female
trials, so the trained UBM is not biased towards the female
Fig. 11. Multi-taper spectral estimates when adaptive weights are applied to th
speech signal (a).
trials. It should be mentioned here that, in this work, the
data used for training a gender-independent i-vector
extractor includes female trials 1.3 times of the male trials.

Training an UBM from a balanced set of female-male
trials or inclusion of microphone data (NIST SRE 2005
microphone and/or NIST SRE 2006 microphone data)
with the telephone data for training UBM did not help
our system to improve recognition performance but
increased the UBM training time considerably. The possi-
ble reasons why including microphone data to UBM or
training an UBM from a balanced set of female-male trials
did not help our systems could be: Firstly, we have more
telephone data (approximately 10 times of microphone
data) than the microphone data for training the i-vector
extractor and consequently more i-vectors from telephone
e individual estimates (b–g) to get the final estimate (h) of a 25 ms duration



Fig. 12. Multi-taper spectral estimates when uniform weights (1/M) are applied to the individual estimates (b–g) to get the final estimate (h) of a 25 ms
duration speech signal (a).
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data than that from microphone data for training the
PLDA models. Moreover, to handle both the microphone
and telephone speech, we use ordinary linear discriminant
analysis where the between-class scatter matrix is estimated
from all telephone training data and the within-class scatter
matrix is estimated using all telephone and microphone
training, as described in Section 5.1.3, to reduce the dimen-
sionality of the i-vectors from 800 to 200 (Senoussaoui
et al., 2010). Secondly, the ratio of female to male utter-
ances in the database is approximately 1.3:1 and therefore,
we have more i-vectors from female utterances from train-
ing the PLDA models.

Note also that, for the baseline Hamming and the multi-
taper systems, we use same data sets for training the UBM
and other components of the system.. The only difference
between the baseline and multi-taper systems is in the spec-
trum estimation method.

5.1.3. Training and extraction of i-vectors

A block diagram of the i-vector extractor used in this
paper is shown in Fig. 9. Our gender-independent i-vector
extractor is of dimension 800. After training the gender-
independent UBM, we train the i-vector extractor using
the Baum-Welch (BW) statistics extracted from the follow-
ing data: LDC release of Switchboard II – phase 2 and
phase 3, Switchboard Cellular – part 1 and part 2, Fisher
data, NIST SRE 2004 and 2005 telephone data, NIST
SRE 2005 and 2006 microphone data and NIST SRE



Table 3
Comparison of Speaker verification results (EER %) using a mixture
PLDA model for the Thomson multi-taper method when uniform weights
(UW), Eigenvalues as the weights (EVW) and adaptive weights (AW) are
used to obtain the final spectrum estimate. The results of the baseline
Hamming system are also included for comparison purposes. . For each
condition, the minimum value is highlighted with boldface. We have 60-
dimensional MFCC features, a 256-component UBM and 800-dimen-
sional i-vector extractor with dimension reduced to 150.

EER (%)

Gender Condition Thomson Baseline Hamming

UW EVW AW

Female det1 2.4 2.1 2.1 2.4
det2 4.5 4.4 4.2 4.6
det4 3.9 3.7 3.4 3.9
det3 3.1 2.9 2.9 3.6
det5 3.2 3.4 3.2 4.0

Male det1 1.6 1.6 1.0 1.5
det2 3.0 2.7 2.5 3.1
det4 2.4 2.2 1.9 2.6
det3 3.5 3.3 2.8 4.1
det5 2.7 2.5 2.4 3.2
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2008 interview development microphone data. Fisher data
used in this work are Fisher English. In order to reduce the
i-vector dimensionality, a linear discriminant analysis
(LDA) projection matrix is estimated from the BW statis-
tics by maximizing the following objective function:

BLDA ¼ arg max
B

jBT RbBj
jBT RwBj

; ð12Þ

where B is the LDA transformation matrix, Rb and Rw rep-
resent the between- and within-class scatter matrices,
respectively. The optimization problem in (8) is equivalent
to finding the eigenvectors u corresponding to the largest
eigenvalues g of the following generalized eigenvalue
problem:

Rbu ¼ gRwu; ð13Þ
For the estimation of Rb we use all telephone training data
excluding the Fisher data and Rw is estimated using all tele-
phone and microphone training data excluding the Fisher
data. We choose only speakers with more than four
utterances for the estimation of LDA transformation ma-
trix. Dimensionality reduction via LDA helps to handle
microphone speech as well as telephone speech (Senoussa-
oui et al., 2010). An optimal reduced dimension of 200 is
determined empirically.

We then extract 200-dimensional i-vectors for all train-
ing data excluding Fisher data by applying this transforma-
tion matrix on the 800-dimensional i-vectors. For the test
data, first BW statistics and then 200-dimensional i-vectors
are extracted following a similar procedure using the same
projection matrix. We also normalize the length (using 2-
norm) of the i-vectors to gaussianize the i-vectors distribu-
tion (Garcia-Romero and Espy-Wilson, 2011).

5.1.4. Training the PLDA model

We train two PLDA models, one for the males and
another for females. These models were trained using all
the telephone and microphone training i-vectors; then we
combine these PLDA models to form a mixture of PLDA
models in i-vector space as described in (Senoussaoui et al.,
2011). For both of the models, the fixed hyper-parameter V
is a full rank matrix of dimension 200. For training the
PLDA models we choose only speakers with more than
four utterances.

5.2. Results and discussion

5.2.1. Use of uniform versus non-uniform weights in multi-

tapering

Usually, in a multi-taper spectrum estimation method,
the final spectrum is obtained by averaging (using uniform
weights, 1/M) over the M tapered subspectra. In (Kinnunen
et al., 2010; Sandberg et al., 2010), for the Thomson multi-
taper method, the individual spectra were averaged to
obtain the final estimate. Only the first taper (p = 1) in the
multi-taper method produces a central peak at the har-
monic frequency of the component while the other tapers
(p > 1) produce spectral peaks that are shifted slightly up
or down in frequency. The information lost at the extremes
of the first taper is included and indeed emphasized in the
subsequent tapers. As can be seen from Fig. 10, attenuation
in the side-lobes decreases with each taper in the sequence,
i.e., spectral leakage increases for the higher-order tapers. If
uniform weights are applied to get the final spectrum esti-
mate, the energy loss at higher-order tapers will be high.
In order to compensate for this increased energy loss, a
weighted average (using non-uniform weights) is used
instead of simply averaging the individual estimates. In
(Thomson, 1982), the weights are changed adaptively to
optimize the bias/variance tradeoff of the estimator. Figs. 11
and 12 provide a comparison of the multi-taper spectral
estimates when uniform & non-uniform weights are
applied, respectively. Table 3 presents a comparison of the
use of uniform and non-uniform weights (eigenvalue as
the weight, EVW) and adaptive weight (AW) computed
from the eigenvalues) in the Thomson multi-taper method,
in the context of speaker verification. The speaker verifica-
tion results suggest that non-uniform weights, specifically,
the adaptive weights, should be preferred.
5.2.2. Performance evaluation of multi-taper MFCC and

PLP features

To evaluate and compare the performance of the sys-
tems in Table 2, we conducted experiments using both tele-
phone and microphone speech on the extended core–core
condition of the NIST SRE 2010 task. The results are
reported for five evaluation conditions corresponding to
detection (det) conditions 1–5, as shown in Table 1, as
specified in the evaluation plan (National Institute of
Standards and Technology).

Fig. 13 presents EERs for the Hamming (baseline) and
multi-taper MFCC systems both for the female and male
trials. For all the MFCC-based systems, minDCFnew is



Fig. 13. Male and female det1 to det5 speaker verification results for the baseline Hamming window system and multi-taper systems, measured by EER:
60-dimensional MFCCs with log-energy, deltas and double deltas, UBM with 2048 Gaussians, 800-dimensional i-vectors with reduced dimension of 200.

Fig. 14. Same as Fig. 13 but for minDCFnew.
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shown in Fig. 14, for the male and female trials. In terms of
both metrics, EER, and minDCFnew, multi-taper MFCC
systems outperform the baseline MFCC system. Compared
to the baseline (Hamming) MFCC system, average relative
improvements (female–male, det1–det5), as shown in
Table 3, obtained by the multi-taper systems are as follows:
Fig. 15. Male and female det1 to det5 speaker verification results for the basel
60-dimensional PLP with log-energy, deltas and double deltas, UBM with 204
Relative improvements of the SWCE MFCC system are
12.2%, and 9.7% in EER, and minDCFnew, respectively.
The multi-peak system provides relative improvements of
12.6%, and 15.4% in EER, and minDCFnew, respectively.
The corresponding improvements for the Thomson method
are 17.1%, and 11.9%.
ine Hamming window system and multi-taper systems, measured by EER:
8 Gaussians, 800-dimensional i-vectors with dimension reduced to 200.



Table 4
Average relative improvement in both female and male trials in det1 to
det5 conditions obtained by the multi-taper systems over the baseline
system. The larger the relative improvement, the more effective the
improvement due to multi-tapering. For each evaluation metric (EER or
minDCFnew) and for each front-end (MFCC or PLP) the maximum value
is highlighted with boldface.

Average relative improvement (male–female, det1–det5)

SWCE Multi-peak Thomson

MFCC PLP MFCC PLP MFCC PLP

EER 12.3 7.5 12.6 11.6 9.5 5.0
minDCFnew 9.7 14.4 11.5 16.2 11.9 10.1

Fig. 16. Same as Fig. 16 but for minDCFnew.
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Figs. 15 and 16 present EER and minDCFnew values,
respectively, for the Hamming (baseline) and multi-taper
PLP systems both for the male and female trials. In the case
of female trials, all the multi-taper PLP systems yield sys-
tematically less errors in comparison to the baseline PLP
in terms of all the evaluation measures. For male trials,
the multi-peak and SWCE PLP systems provide higher
accuracy in the first four det conditions (1, 2, 3, 4). The
results for the det5 condition for both systems are close
to the baseline. Compared to the baseline PLP, the Thom-
son PLP system also performs better except in the det3 and
det4 conditions in EER for the male trials.

Compared to the Hamming PLP system, average rela-
tive improvements (female–male, det1–det5), as shown in
Table 3, obtained by the multi-taper PLP systems are as
follows. Relative improvements of SWCE, Multi-peak
and Thomson PLP systems are 7.5%, 11.6% and 5.0% in
terms of EER, and 14.4%, 16.2% and 10.1% in terms of
minDCFnew.

Although all three multi-taper variants outperformed
the baseline Hamming method, considering the perfor-
mances of both of the front-ends (i.e., MFCC and PLP),
the SWCE and multi-peak systems are preferred.

In the multi-taper spectrum estimators, data are more
evenly weighted and they have a reduced variance com-
pared to single-tapered direct spectrum estimates. It is
straightforward to choose the weights used in constructing
the multi-taper estimate in order to minimize the estima-
tion variance.
6. Conclusion

In this paper we used multi-taper spectrum estimation
approaches for low-variance MFCC and PLP feature com-
putation and compared their performances, in the context
of i-vector speaker verification, against the conventional
single-taper (Hamming window) technique. In a Thomson
multi-taper method, instead of uniform weights, use of
non-uniform weights, specifically adaptive weights, can
bring improvement in speaker recognition. Experimental
results on the telephone and microphone portion of the
NIST 2010 SRE task indicate that multi-tapering using sine
or multi-peak or Slepian tapers outperforms the baseline
single-taper method in most cases. Among the three
multi-taper methods, the multi-peak and the SWCE
MFCC systems outperformed the Thomson method (if
uniform weights are chosen), which agrees well with the
results of Kinnunen et al. (2010, in press). However, if
non-uniform weights (e.g., eigenvalues) are used in the
Thomson method, from Table 4 it is observed that the
Thomson MFCC system can outperform the other two
multi-taper MFCC systems. The number of tapers was
set to 6 according to (Kinnunen et al., 2010, in press; Alam
et al., 2011) without additional optimizations on the i-
vector speaker verification system. The largest relative
improvements over the baseline were observed for condi-
tions involving microphone speech. Overall, the multi-
taper method of MFCC and PLP feature extraction is a
viable candidate for replacing the baseline MFCC and
PLP features.
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Brümmer, N., de Villiers, E., 2010. The speaker partitioning problem. In:
Proc. Odyssey Speaker and Language Recognition Workshop, Brno,
Czech Republic.

The CRIM System for the 2010 NIST Speaker Recognition Evaluation.
Davis, S., Mermelstein, P., 1980. Comparison of parametric representa-

tions for monosyllabic word recognition in continuously spoken
sentences. IEEE Trans. Acoust. Speech Signal Process. 28 (2), 357–366.

Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., Ouellet, P., 2011.
Front-end factor analysis for speaker verification. IEEE Trans. Audio
Speech Lang. Process. 19 (4), 788–798.

Djuric, P.M., Kay, S.M., 1999. Spectrum Estimation and Modeling.
Digital Signal Processing Handbook. CRC Press LLC.

Garcia-Romero, D., Espy-Wilson, Carol Y., 2011. Analysis of i-vector
length normalization in speaker recognition systems. In: Proc. Inter-
speech, Florence, Italy, pp. 249–252.

Gold, B.G., Morgan, N., 2000. Speech and Audio Signal Processing:
Processing and Perception of Speech and Music. John Wiley & Sons,
Inc., New York.

Hansson, M., Salomonsson, G., 1997. A multiple window method for
estimation of peaked spectra. IEEE Trans. Signal Process. 45 (3), 778–
781.

Hansson-Sandsten, M., Sandberg, J., 2009. Optimal cepstrum estimation
using multiple windows. In: Proc. ICASSP, pp. 3077–3080.

Harris, F., 1978. On the use of windows for harmonic analysis with the
discrete Fourier transform. Proc. IEEE 66 (1), 51–84.

Hermansky, H., 1990. Perceptual linear prediction (PLP) analysis of
speech. J. Acoust. Soc. Amer. 87 (4), 1738–1752.

Honig, Florian, Stemmer, George, Hacker, Christian, Brugnara, Fabio,
2005. Revising perceptual linear prediction (PLP). In: Proc. Inter-
speech, pp. 2997–3000.

Hu, Y., Loizou, P., 2004. Speech enhancement based on wavelet
thresholding the multitaper spectrum. IEEE Trans. Speech Audio
Process. 12 (1), 59–67.

Kay, S.M., 1988. Modern Spectral Estimation. Prentice-Hall, Englewood
Cliffs, NJ.

Kenny, P., 2010. Bayesian speaker verification with heavy tailed priors. In:
Proc. Odyssey Speaker and Language Recognition Workshop, Brno,
Czech Republic.

Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P., 2007a. Joint factor
analysis versus eigenchannels in speaker recognition. IEEE Trans.
Audio Speech Lang. Process. 15 (4), 1435–1447.

Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P., 2007b. Speaker and
session variability in GMM-based speaker verification. IEEE Trans.
Audio Speech Lang. Process. 15 (4), 1448–1460.

Kinnunen, T., Saeidi, R., Sandberg, J., Hansson-Sandsten, M., 2010.
What else is new than the Hamming window? Robust MFCCs for
speaker recognition via multitapering. In: Proc. Interspeech, pp. 2734–
2737.

Kinnunen, T., Saeidi, R., Sedlak, F., Lee, K.A., Sandberg, J., Hansson-
Sandsten, M., Li, H., 2012. Low-variance multitaper MFCC features:
A case study in robust speaker verification. IEEE Trans. Audio Speech
Lang. Process. 20 (7), 1990–2001.
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