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Abstract. Bayesian Information Criterion (BIC) is a promising method for 
detecting the number of clusters. It is often used in model-based clustering, in 
which a decisive first local maximum is detected as the number of clusters. In 
this paper, we re-formulate the BIC in partitioning based clustering algorithm, 
and propose a new knee point finding method based on it. Experimental results 
show that the proposed method detects the correct number of clusters more 
robustly and accurately than the original BIC, and performs well in comparison 
to several other cluster validity indices.  

1. Introduction  

Cluster analysis is to group a collection of patterns, which is usually represented as a 
vector of measurements, or a point in a multidimensional space, into clusters 
according to a clustering similarity function or a clustering validity index. The output 
of clustering over the same dataset could be very different if the input parameters for 
clustering vary. This is due to the fact that variation of clustering parameters has 
changed the behaviour and the execution of clustering substantially. An essential 
input parameter for clustering is the number of clusters that best fits a given dataset. 
Thus, a common question prior arising before clustering is how many clusters are 
present in a given set of objects. Moreover, most clustering algorithms face several 
common issues in execution of clustering: if different partitions are obtained for a 
given dataset, then amongst the resulting partitions, which one is the most suitable or 
optimal one. 

A number of measures have been well developed for this problem in literature [1-
12]. In general, they can be categorized into three types: external criteria, internal 
criteria and relative criteria. An external criterion evaluates the result of clustering 
based on a pre-specified structure. Meanwhile an internal criterion is based on 
quantities that involve the vectors of the data set themselves. The idea behind the third 
one is to evaluate a clustering structure by comparing it to other clustering results, 
obtained by the same algorithm but with different number of clusters. The basis of 
external and internal criteria is statistical testing and the hypothesis can lead to 



computationally complex procedure. The relative criterion, On the other hand, does 
not involve statistical tests, and is used more often.  

Milligan and Cooper [1] have provided a comparison of thirty validity indices for 
data sets by using only hierarchical clustering algorithms. Dimitriadou et al [2] 
presents another comparison of fifteen validity indices for binary data sets. Based on a 
typical definition of clusters, where the points within the same cluster are close to 
each other, while the clusters themselves are far from each other, several measures 
have been proposed. Calinski and Harabasz [3] proposed the F-statistic method, 
which takes advantage of within-cluster variance and between-cluster variance. 
Dunn’s index [4] considered both the diameter of each cluster and the distance 
between clusters. As the diameter will be severely affected by noise, the Dunn’s index 
may not perform very well as a cluster validity index. This issue has been addressed 
in [5]. Davies-Bouldin [6] is another well known index, which is based on the idea 
that for a good partition inter cluster separation as well as intra cluster homogeneity 
and compactness should be high.  

Because different kind of clustering algorithms often have different properties, 
different types of measures based on specific clustering algorithms have been 
proposed. For example, Xie-Beni index [7] was originally proposed to identify 
separation for fuzzy c-partitions. It depends on the data set, geometric distance 
measure, distance between cluster centroids, and more importantly on the fuzzy 
partition generated by any fuzzy algorithm. When dealing with model-based 
clustering, Banfield and Raftery used a heuristically derived approximation to twice 
the log Bayes factor [9] called the “AWE” to determine the number of clusters in 
hierarchical clustering based on the classification likelihood. When EM is used to find 
the maximum mixture likelihood, a more reliable approximation to AWE called 
Bayesian Information Criterion (BIC) [8] is applicable. A new K-means based 
algorithm incorporating model selection was proposed in [10]. This so-called X-
means algorithm uses BIC to make local decisions that maximize the posterior 
probabilities of the model under the assumption that the models are spherical 
Gaussians. Because of the effectiveness of BIC in model-based clustering, we re-
formulate BIC to determine the number of clusters in partitioning based clustering. 

Some of the indices can be easily used to determine the number of clusters by 
finding the minimal or maximal value, but several of them cannot. A criterion with 
within-group sum-of-squares objective function trace (W) was proposed by 
Krzanowski [11], in which the plot of index value against number of clusters was 
monotonically decreasing. They considered using the successive difference of the 
function to find the optimum value. Yet, in the visual “number of clusters vs. criterion 
metric” graph there often is a clear knee point (or jump point) that can be used to 
detect the number of clusters, see Fig.1. In principle, the problem of finding the knee 
point can be attacked by successive difference method. But the successive difference 
method only considers some adjacent points and local trend of the graph which may 
lead uncorrect results. We therefore propose to measure the knee point based on the 
angles of the local significant changes in the successive difference results, and 
demonstrate that by this method, the performance of the BIC method can be 
improved.  

 The rest of the paper is organized as follows. The problem formulation is given in 
Section 2.1. The BIC method in partitioning based clustering is renewed in Section 



2.2, and the angle-based method is introduced in Section 2.3. The proposed method is 
compared to several existing methods in Section 3. The results demonstrate that the 
proposed knee point finding method improves the original BIC method, which takes 
the first local minimum as the number of clusters, and outperforms most of the 
existing method on the data sets tested. Conclusions are drawn in Section 4. 

2. Proposed Method 

We proposed a knee point finding method for BIC in partitioning based clustering, 
which is called angle-based method. The next section describes the proposed method. 

2.1   Preliminary 

The problem of determining number of clusters is defined here as follows: 
Given a fixed number of clusters m�2, and a specific clustering algorithm, find the 

clustering that best fits for the data set with different parameters. The procedure of 
identifying the best clustering scheme involves the following parts:  

• Select a proper cluster validity index. 
• Repeat a clustering algorithm successively for number of clusters, m from 

a predefined minimum to a predefined maximum. 
• Plot the “number of clusters vs. criterion metric” graph and select the m at 

which the partition appears to be “best” in terms of at which the criterion 
is optimized. 

Based on this procedure, one can identify the best clustering scheme. The problem 
remains that how to select the optimal m for the validity index. Mean square error 
(MSE), for example, exhibits a decreasing with respect to m increasing. Meanwhile, 
some indexes show the maximum or minimum in the curve. No matter what kind of 
case we have, there exists the significant local change in the curve, which is so-called 
knee or jump point.  

Locating the knee point in the validity index curve is not well-studied. A 
straightforward approach is to take difference of successive index values, for 
example, calculating the difference between previous and current values of the index. 
Other method like L-method [12] is propsed to find the knee point of the curve by the 
boudary between the pair of straight lines that most closely fit the curve. For some 
indexes, the maximum or minimum value will be considered as the knee point. 
However, if there are several local maximum (minimum) values existing, the 
challenge is to decide which one is the most suitable one to indicate the information 
of the data sets. According to our study, BIC indicates a good prospect in determining 
the number of clusters in partitioning based clustering. To improve the accuracy of 
BIC, a good knee point finding method instead of taking the first local maximum is 
needed.  



2.2   Bayesian Information Criterion (BIC) 

The Bayesian Information Criterion (BIC) has been successfully applied to the 
problem of determining the number of components in model-based clustering by 
Banfield and Raftery. The problems of determining number of clusters and the 
clustering method are solved simultaneously.  

We derive the formula of BIC based on Kass and Wasserman [13]. 
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where, L(�) is the log-likelihood function according to each model, m is the 
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where ni is the size of each cluster, xj is the jth point in the cluster and Ci is the ith 
cluster. For m clusters, the sum of log-likelihood of each cluster is as follows. 
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Define pr(xi) as the probability of the ith point in data sets, and Cp(i) is the cluster 
corresponding to the partitioning. The variable d is the dimension of the data sets. 
Then, log-likelihood of the ith cluster can be derived as follows: 
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To extend the log-likelihood of each cluster to all of the clusters, we use the fact 
that the log-likelihood of the points that belong to every clusters is the sum of the log-
likelihood of the individual ones. So the total log-likelihood will be: 

1

* 1
(log log log(2 ) log ) log

2 2 2 2

m
i i i

i i i
i

n d n n m
BIC n n n m nπ

=

−
= − − − � − −�  

(5) 

We use this BIC formula globally for each number of clusters in a predefined 
range. In general, m should be as small as possible according to [8]. Their strategy for 



the number of clusters is that a decisive first local maximum indicates strong evidence 
for the model size. However, according to our experiments, a good knee point 
detection method would be better choice for deciding which local maximum has 
stronger evidence for the correct number of clusters. 

2.3   Angle-based Method 

Some existing validity indices indicate the structure of data sets very well and 
contribute a lot to the problem. However, we can not directly obtain the correct 
number of clusters from them when they decrease or increase monotonously or only 
have some significant local changes. In this case, the structure of the dataset can be 
revealed by using a good knee point detection method. One efficient way is to 
calculate the difference between previous and afterward index values. There will be 
peaks at the points with significant local changes in the difference curve. It’s also 
possible to consider more points of the curve in successive difference. 

DiffFun(m) = F(m-1) + F(m+1) – 2*F(m) (6) 

where DiffFun is the difference function, F(m) is the index value and m is the current 
number of clusters. It takes use of the previous, afterward and current values 
simultaneously. The disadvantage of the successive difference method is that it only 
considers several points instead of the whole curve, allowing the index to find only 
local changes without a global perspective. If there are several local changes, then it 
may give a wrong result.  

  

Fig. 1. Number of clusters vs. criterion metric graph of BIC (left), and its successive difference 
(right).  

In Fig.1, the calculated BIC values are plotted using four data sets with different 
degrees of cluster overlapping. There are at least two obvious jumps in each curve. 
The first decisive local maximum is usually considered to be the number of clusters in 
the original BIC. The successive difference graph also gives strong support on this 
rule. The problem is the second local change (m=15) in the BIC curve also indicates 
strong evidence on the number of clusters in a global view. To decide which one is 
the optimal number, we take use of the angle property of a curve and propose an 
angle-based method to define locate the optimal local knee (jump) in a graph of BIC.  



Given a function F(m) of BIC where m is in the range [min, max]. Calculate the 
successive difference in terms of formula (6) to get the function difference DiffFun. 
And detect n local significant changes by finding the first n minimum values in 
DiffFun. Here n � m/2-1 because at least 2 points can generate 1 trough. Sort the local 
minimum values in decreasing way. Start from the point with bigger troughs; 
calculate the angle of them by (7).  

Angle = atan(1/|F(m)-F(m-1)|)+atan(1/|F(m+1)-F(m)| (7) 

 
Angle-based Method on Knee Point Finding Problem 

  
Input:    Graph(m)  (m[min, max]) 
Output:  Number of clusters m 
Initialize:  
    Current_Value = Graph(min); 
    Previous_Value = Graph(min); 
    After_Value = Graph(min); 
Begin:    
for m = min to max 
    Current_Value = Graph(m); 
    After_Value = Graph(m+1); 
    DiffFunc = Previous_Value + After_Value - 2*Current_Value; 
    Previous_Value = Current_Value; 
end 
Find first n local minimums in DiffFunc 
LocalMin[n] = (m, Current_Value, Previous_Value, After_Value); 
for each n with decreasing order of LocalMin value, 
    angle[n] = AngleCalc(Current_Value, Previous_Value, After_Value); 
    Stop when the first maximum among the angles appears.  
end 
return m with the first maximum angle; 

Fig. 2. Pseudo-code of the angle-based method  

It will stop when the first maximum angle appears, which indicates the trend of the 
curve globally, because it takes use of both the successive difference and angle 
property. 

3. Experimental Results 

We use here four two-dimensional artificially generated data sets denoted as s1 to s4 
and one four-dimensional real data set Iris (Fig.3). The data sets s1 to s4 are generated 
with varying complexity in terms of spatial data distributions, which have 5000 
vectors scattered around 15 predefined clusters with a varying degrees of overlap. Iris 
is obtained from the UCI Machine Learning Repository. It contains 3 classes of 50 
instances each, where each class refers to a type of iris plant. The data sets can be 
found here: 



• s1-s4: cs.joensuu.fi/~isido/clustering/ 
• Iris: www.ics.uci.edu/~mlearn/MLRepository.html 

As the measures have to be tested on a certain clustering algorithm, we run K-
means and Randomize Local Search (RLS) [14] clustering with m=[2,30] in the case 
of s1-s4, and m=[2,10] in the case of Iris. To emphasize the effectiveness of the 
proposed method, we compare it with other measures:  

• Dunn's index (DI) + maximum 
• Davies-Bouldin's Index (DBI) + minimum 
• Xie-Beni (XB) + minimum 
• Bayesian Information Criterion (BIC) + first local maximum 
• Angle-based BIC (ABIC).  

Among them, DI, DBI and XB select the number of clusters either as the minimum 
or maximum value of the measure. We also report the results of the original BIC 
using the first local maximum as the number of clusters, and the proposed method 
using the angle-based method. 

Table 1. Results using RLS (with 5000 RLS iterations and 2 K-means iterations). 

Data Set  
Index s1 s2 s3 s4 Iris 

DI 15 7 16 25 2 
DBI 15 15 8 13 2 
XB 15 15 4 13 2 
BIC 15 4 4 5 3 

ABIC 15 15 15 15 3 

Table 2. Results using K-means (20 iterations) 

Data Set  
Index s1 s2 s3 s4 Iris 

DI 2 2 2 2 2 
DBI 15 15 11 16 2 
XB 15 15 4 13 2 
BIC 15 4 4 5 3 

ABIC 15 15 15 15 3 
In Table 1 and Table 2, we list the number of clusters found by the different 

measures, data sets and clustering algorithms. Fig.4 and Fig.5 visualize the results for 
other four measures with RLS and K-means respectively. In Fig.6, we shows the 
result of each step in our method with data sets s4 and Iris.  

• DI gives clear maximum for the easiest data set (s1) but fails with the more 
challenging ones. When K-means is applied with 20 iterations, it fails 
completely even with s1. 



• DBI finds the correct minimum for s1 and s2, but the results for s3 and s4 
indicate minimum somewhere around 10 and 15 and the detected minimum 
points are incorrect (8, 13 and 2).  

• XB takes the minimum as the number of clusters, which is clearly visible in 
the case of the easiest data set (s1). Correct result is also found for s2, but 
again, the index fails with the more demanding sets (s3, s4 and Iris). 

• The original BIC, which considers the first decisive local maximum as the 
number of cluster gets the correct number only for s1 and Iris.  

• The proposed ABIC provides accurate results in all cases. 
 

 

s1 s2 s3 s4 Iris 

Fig. 3. The data sets used for testing: s1-s4 and Iris. 

  

 

Fig. 4. Comparison of the other measures on s1 to s4 with RLS clustering algorithm. 

 



 

 

Fig. 5. Comparison of the other measures on s1 to s4 with K-means clustering algorithm. 

  

  



Fig. 6. Steps of the angle-based method on data sets s4 and Iris; BIC curve (left), the successive 
difference of BIC (middle) and the angles of the local significant changes (right). 

4. Conclusions 

We re-formulate BIC in partitioning based clustering, which shows good prospect 
for determining the number of clusters. The original method to decide the knee point 
of BIC is to take the first decisive local maximum, which is not accurate enough 
according to our experiments. To improve the BIC for getting more reliable results, an 
angle-based method for knee point finding of BIC is proposed in this paper. As the 
proposed method takes use of the global trend of the index curve, it’s reliable to get 
the number of clusters. Experimental results also prove its effectiveness compared 
with other measures.  
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