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Abstract. We present a k-means-based clustering algorithm, which op-
timizes mean square error, for given cluster sizes. A straightforward ap-
plication is balanced clustering, where the sizes of each cluster are equal.
In k-means assignment phase, the algorithm solves the assignment prob-
lem by Hungarian algorithm. This is a novel approach, and makes the
assignment phase time complexity O(n3), which is faster than the previ-
ous O(k3.5n3.5) time linear programming used in constrained k-means.
This enables clustering of bigger datasets of size over 5000 points.
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1 Introduction

Euclidean sum-of-squares clustering is an NP-hard problem [1], which groups n
data points into k clusters so that intra-cluster distances are low and inter-cluster
distances are high. Each group is represented by a center point (centroid). The
most common criterion to optimize is the mean square error (MSE):

MSE =

k∑

j=1

∑

Xi∈Cj

|| Xi − Cj ||2
n

, (1)

where Xi denotes data point locations and Cj denotes centroid locations. K-
means [19] is the most commonly used clustering algorithm, which provides a
local minimum of MSE given the number of clusters as input. K-means algorithm
consists of two repeatedly executed steps:

Assignment Step: Assign the data points to clusters specified by the nearest
centroid:

P
(t)
j = {Xi : ‖Xi − C

(t)
j ‖ ≤ ‖Xi − C

(t)
j∗ ‖

∀ j∗ = 1, ..., k}
Update Step: Calculate the mean of each cluster:

C
(t+1)
j =

1

|P (t)
j |

∑

Xi∈P
(t)
j

Xi
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These steps are repeated until centroid locations do not change anymore. K-
means assignment step and update step are optimal with respect to MSE: The
partitioning step minimizes MSE for a given set of centroids; the update step
minimizes MSE for a given partitioning. The solution therefore converges to a
local optimum but without guarantee of global optimality. To get better results
than in k-means, slower agglomerative algorithms [10,13,12] or more complex
k-means variants [3,11,21,18] are sometimes used.

In balanced clustering there are an equal number of points in each cluster. Bal-
anced clustering is desirable for example in divide-and-conquermethods where the
divide step is done by clustering. Examples can be found in circuit design [14] and
in photo query systems [2], where the photos are clustered according to their con-
tent. Applications can also be used in workloadbalancing algorithms.For example,
in [20] multiple traveling salesman problem clusters the cities, so that each sales-
man operates in one cluster. It is desirable that each salesman has equal workload.
Networking utilizes balanced clustering to obtain some desirable goals [17,23].

We next review existing balanced clustering algorithms. In frequency sensitive
competitive learning (FSCL) the centroids compete of points [5]. It multiplica-
tively increases the distance of the centroids to the data point by the times the
centroid has already won points. Bigger clusters are therefore less likely to win
more points. The method in [2] uses FSCL, but with additive bias instead of
multiplicative bias. The method in [4] uses a fast (O(kNlogN)) algorithm for
balanced clustering based on three steps: sample the given data, cluster the sam-
pled data and populate the clusters with the data points that were not sampled.
The article [6] and book chapter [9] present a constrained k-means algorithm,
which is like k-means, but the assignment step is implemented as a linear pro-
gram, in which the minimum number of points τh of clusters can be set as
parameters. The constrained k-means clustering algorithm works as follows:

Given m points in R
n, minimum cluster membership values τh ≥ 0, h = 1, ..., k

and cluster centers C
(t)
1 , C

(t)
2 , ..., C

(t)
k at iteration t, compute C

(t+1)
1 , C

(t+1)
2 ,

..., C
(t+1)
k at iteration t+ 1 using the following 2 steps:

Cluster Assignment. Let T t
i,h be a solution to the following linear program

with C
(t)
h fixed:

minimizeT

m∑

i=1

k∑

h=1

Ti,h · (1
2
||Xi − C

(t)
h ||22) (2)

subject to

m∑

i=1

Ti,h ≥ τh, h = 1, ..., k (3)

k∑

h=1

Ti,h = 1, i = 1, ...,m (4)

Ti,h ≥ 0, i = 1, ...,m, h = 1, ..., k. (5)
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Cluster Update. Update C
(t+1)
h as follows:

C
(t+1)
h =

⎧
⎨

⎩

∑m
i=1 T

(t)
i,hXi

∑
m
i=1 T

(t)
i,h

if
∑m

i=1 T
(t)
i,h > 0,

C
(t)
h otherwise.

These steps are repeated until C
(t+1)
h = C

(t)
h , ∀h = 1, ..., k.

A cut-based method Ratio cut [14] includes cluster sizes in its cost function

RatioCut(P1, ..., Pk) =

k∑

i=1

cut(Pi, P̄i)

|Pi| .

Here Pi:s are the partitions. Size regularized cut SRCut [8] is defined as the sum
of the inter-cluster similarity and a regularization term measuring the relative
size of two clusters. In [16] there is a balancing aiming term in cost function
and [24] tries to find a partition close to the given partition, but so that cluster
size constraints are fulfilled. There are also application-based solutions in net-
working [17], which aim at network load balancing, where clustering is done by
self-organization without central control. In [23], energy-balanced routing be-
tween sensors is aimed so that most suitable balanced amount of nodes will be
the members of the clusters.

Balanced clustering, in general, is a 2-objective optimization problem, in which
two aims contradict each other: to minimize MSE and to balance cluster sizes.
Traditional clustering aims at minimizing MSE without considering cluster size
balance. Balancing, on the other hand, would be trivial if we did not care about
MSE; simply by dividing points to equal size clusters randomly. For optimizing
both, there are two alternative approaches: Balance-constrained and balance-
driven clustering.

In balance-constrained clustering, cluster size balance is a mandatory require-
ment that must be met, and minimizing MSE is a secondary criterion. In balance-
driven clustering, balance is an aim but not mandatory. It is a compromize be-
tween these two goals, namely the balance and the MSE. The solution can be
a weighted compromize between MSE and the balance, or a heuristic that aims
at minimizing MSE but indirectly creates a more balanced result than standard
k-means. Existing algorithms are grouped into these two classes in Table 1.

In this paper, we formulate balanced k-means, so that it belongs to the first
category. It is otherwise the same as standard k-means but it guarantees balanced
cluster sizes. It is also a special case of constrained k-means, where cluster sizes
are set equal. However, instead of using linear programming in the assignment
phase, we formulate the partitioning as a pairing problem [7], which can be
solved optimally by Hungarian algorithm in O(n3) time.
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Table 1. Classification of some balanced clustering algorithms

Balance-constrained

Balanced k-means (proposed)
Constrained k-means [6]
Size constrained [24]

Balance-driven

FSCL [5]
FSCL with additive bias [2]
Cluster sampled data [4]
Ratio cut [14]
SRcut [8]
Submodular fractional programming [16]

2 Balanced k-Means

To describe balanced k-means, we need to define what is an assignment problem.
The formal definition of assignment problem (or linear assignment problem)
is as follows. Given two sets (A and S), of equal size, and a weight function
W : A × S → R. The goal is to find a bijection f : A → S so that the cost
function is minimized:

Cost =
∑

a∈A

W (a, f(a)).

In the context of the proposed algorithm, sets A and S correspond respectively
to cluster slots and to data points, see Figure 1.

In balanced k-means, we proceed as in k-means, but the assignment phase is
different: Instead of selecting the nearest centroids we have n pre-allocated slots
(n/k slots per cluster), and datapoints can be assigned only to these slots, see
Figure 1. This will force all clusters to be of same size assuming that �n/k� =
	n/k
 = n/k. Otherwise there will be (n mod k) clusters of size �n/k�, and
k − (n mod k) clusters of size 	n/k
.

To find assignment that minimizes MSE, we solve an assignment problem
using Hungarian algorithm [7]. First we construct a bipartite graph consisting n
datapoints and n cluster slots, see Figure 2. We then partition the cluster slots
in clusters of as even number of slots as possible.

We give centroid locations to partitioned cluster slots, one centroid to each
cluster. The initial centroid locations can be drawn randomly from all data
points. The edge weight is the squared distance from the point to the cluster
centroid it is assigned to. Contrary to standard assignment problem with fixed
weights, here the weights dynamically change after each k-means iteration ac-
cording to the newly calculated centroids. After this, we perform the Hungarian
algorithm to get the minimal weight pairing. The squared distances are stored
in a n× n matrix, for the sake of the Hungarian algorithm. The update step is
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Fig. 1. Assigning points to centroids via cluster slots

Fig. 2. Minimum MSE calculation with balanced clusters. Modeling with bipartite
graph.

similar to that of k-means, where the new centroids are calculated as the means
of the data points assigned to each cluster:

C
(t+1)
i =

1

ni
·

∑

Xj∈C
(t)
i

Xj . (6)

The weights of the edges are updated immediately after the update step. The
pseudocode of the algorithm is in Algorithm 1. In calculation of edge weights,
the number of cluster slot is denoted by a and mod is used in calculation of
cluster where a cluster slot belongs to. The edge weights are calculated by

W (a, i) = dist(Xi, C
t
(a mod k)+1)

2 ∀a ∈ [1, n] ∀i ∈ [1, n]. (7)
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Algorithm 1. Balanced k-means
Input: dataset X , number of clusters k
Output: partitioning of dataset.

Initialize centroid locations C0.
t← 0
repeat

Assignment step:
Calculate edge weights.
Solve an Assignment problem.

Update step:
Calculate new centroid locations Ct+1

t← t+ 1
until centroid locations do not change.
Output partitioning.

After convergence of the algorithm the partition of points Xi, i ∈ [1, n], is

Xf(a) ∈ P(a mod k)+1. (8)

There is a convergence result in [6] (Proposition 2.3) for constrained k-means.
The result says that the algorithm terminates in a finite number of iterations at
a partitioning that is locally optimal. At each iteration, the cluster assignment
step cannot increase the objective function of constrained k-means (3) in [6].
The cluster update step will either strictly decrease the value of the objective
function or the algorithm will terminate. Since there are a finite number of
ways to assign m points to k clusters so that cluster h has at least τh points,
since constrained k-means algorithm does not permit repeated assignments, and
since the objective of constrained k-means (3) in [6] is strictly nonincreasing and
bounded below by zero, the algorithm must terminate at some cluster assignment
that is locally optimal. The same convergence result applies to balanced k-means
as well. The assignment step is optimal with respect to MSE because of pairing
and the update step is optimal, because MSE is clusterwise minimized as is in
k-means.

3 Time Complexity

Time complexity of the assignment step in k-means is O(k · n). Constrained k-
means involves linear programming. It takes O(v3.5) time, where v is the number
of variables, by Karmarkars projective algorithm [15,22], which is the fastest in-
terior point algorithm known to the authors. Since v = k ·n, the time complexity
is O(k3.5n3.5). The assignment step of the proposed balanced k-means algorithm
can be solved in O(n3) time with the Hungarian algorithm. This makes it much
faster than in the constrained k-means, and allows therefore significantly bigger
datasets to be clustered.
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Fig. 3. Sample clustering result. Most significant differences between balanced cluster-
ing and standard k-means (non-balanced) clustering are marked and pointed out by
arrows.

Table 2. MSE, standard deviation of MSE and time/run of 100 runs

Dataset Size Clusters Algorithm Best Mean St.dev. Time

s2 5000 15 Balanced k-means 2.86 (one run) (one run) 1h 40min
Constrained k-means - - - -

s1 1000 15 Balanced k-means 2.89 (one run) (one run) 47s
subset Constrained k-means 2.61 (one run) (one run) 26min

s1 500 15 Balanced k-means 3.48 3.73 0.21 8s
subset Constrained k-means 3.34 3.36 0.16 30s

K-means 2.54 4.21 1.19 0.01s

s1 500 7 Balanced k-means 14.2 15.7 1.7 10s
subset Constrained k-means 14.1 15.6 1.6 8s

s2 500 15 Balanced k-means 3.60 3.77 0.12 8s
subset Constrained k-means 3.42 3.43 0.08 29s

s3 500 15 Balanced k-means 3.60 3.69 0.17 9s
subset Constrained k-means 3.55 3.57 0.12 35s

s4 500 15 Balanced k-means 3.46 3.61 1.68 12s
subset Constrained k-means 3.42 3.53 0.20 45s

thyroid 215 2 Balanced k-means 4.00 4.00 0.001 2.5s
Constrained k-means 4.00 4.00 0.001 0.25s

wine 178 3 Balanced k-means 3.31 3.33 0.031 0.36s
Constrained k-means 3.31 3.31 0.000 0.12s

iris 150 3 Balanced k-means 9.35 3.39 0.43 0.34s
Constrained k-means 9.35 3.35 0.001 0.14s
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Fig. 4. Running time with different-sized subsets of s1 dataset

4 Experiments

In the experiments we use artificial datasets s1-s4, which have Gaussian clus-
ters with increasing overlap and real-world datasets thyroid, wine and iris. The
source of the datasets is http://cs.uef.fi/sipu/datasets/. As a platform,
Intel Core i5-3470 3.20GHz processor was used. We have been able to cluster
datasets of size 5000 points. One example partitioning can be seen in Figure 3, for
which the running time was 1h40min. Comparison of MSE values of constrained
k-means and balanced k-means is shown in Table 2, running times in Figure 4.
The results indicate that constrained k-means gives slightly better MSE in many
cases, but that balanced k-means is significantly faster when the size of dataset
increases. For dataset of size 5000 constrained k-means could no longer provide
result within one day. The difference in MSE is most likely due to the fact that
balanced k-means strictly forces balance within ±1 points, but constrained k-
means does not. It may happen, that constrained k-means has many clusters of
size 	n/k
, but some smaller amount of clusters of size bigger than �n/k�.

5 Conclusions

We have presented balanced k-means clustering algorithm which guarantees
equal-sized clusters. The algorithm is a special case of constrained k-means,
where cluster sizes are equal, but much faster. The experimental results show
that the balanced k-means gives slightly higher MSE-values to that of the con-
strained k-means, but about 3 times faster already for small datasets. Balanced
k-means is able to cluster bigger datasets than constrained k-means. However,
even the proposed method may still be too slow for practical application and
therefore, our future work will focus on finding some faster sub-optimal algorithm
for the assignment step.
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