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Abstract

i-Vector based recognition is a well-established technique in state-of-the-art speaker and language recognition but its use in dialect and
accent classification has received less attention. In this work, we extensively experiment with the spectral feature based i-vector system on
Finnish foreign accent recognition task. Parameters of the system are initially tuned with the CallFriend corpus. Then the optimized
system is applied to the Finnish national foreign language certificate (FSD) corpus. The availability of suitable Finnish language corpora
to estimate the hyper-parameters is necessarily limited in comparison to major languages such as English. In addition, it is not imme-
diately clear which factors affect the foreign accent detection performance most. To this end, we assess the effect of three different com-
ponents of the foreign accent recognition: (1) recognition system parameters, (2) data used for estimating hyper-parameters and (3)
language aspects. We find out that training the hyper-parameters from non-matched dataset yields poor detection error rates in compar-
ison to training from application-specific dataset. We also observed that, the mother tongue of speakers with higher proficiency in Finn-
ish are more difficult to detect than of those speakers with lower proficiency. Analysis on age factor suggests that mother tongue
detection in older speaker groups is easier than in younger speaker groups. This suggests that mother tongue traits might be more pre-
served in older speakers when speaking the second language in comparison to younger speakers.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Foreign spoken accents are caused by the influence of
one’s first language on the second language (Flege et al.,
2003). For example, an English–Finnish bilingual speaker
may have an English accent in his/her spoken Finnish
because of learning Finnish later in life. Non-native
speakers induce variations in different word pronunciation
and grammatical structures into the second language
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(Grosjean, 2010). Interestingly, these variations are not
random across speakers of a given language, because the
original mother tongue is the source of these variations
(Witteman, 2013). Nevertheless, between-speaker differ-
ences, gender, age and anatomical differences in vocal tract
generate within-language variation (Witteman, 2013).
These variations are nuisance factors that adversely affect
detection of the mother tongue.

Foreign accent recognition is a topic of great interest in
the areas of intelligence and security including immigration
and border control sites. It may help officials to detect trav-
elers with a fake passport by recognizing the immigrant’s
actual country and region of spoken foreign accent
(GAO, 2007). It has also a wide range of commercial
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applications including services based on user-agent voice
commands and targeted advertisement.

Similar to spoken language recognition (Li et al., 2013),
various techniques including phonotactic (Kumpf and
King, 1997; Wu et al., 2010) and acoustic approaches
(Bahari et al., 2013; Scharenborg et al., 2012; Behravan
et al., 2013) have been proposed to solve the foreign accent
detection task. The former uses phonemes and phone distri-
butions to discriminate different accents; in practice, it uses
multiple phone recognizer outputs followed by language
modeling (Zissman, 1996). The acoustic approach in turn
uses information taken directly from the spectral character-
istics of the audio signals in the form of mel-frequency ceps-

tral coefficient (MFCC) or shifted delta cepstra (SDC)
features derived from MFCCs (Kohler and Kennedy,
2002). The spectral features are then modeled by a “bag-
of-frames” approach such as universal background model

(UBM) with adaptation (Torres-Carrasquillo et al., 2004)
and joint factor analysis (JFA) (Kenny, 2005). For an excel-
lent recent review of the current trends and computational
aspects involved in general language recognition tasks
including foreign accent recognition, we point the interested
reader to (Li et al., 2013).

Among the acoustic systems, total variability model or i-

vector approach originally used for speaker recognition
(Dehak et al., 2011a), has been successfully applied to lan-
guage recognition tasks (González et al., 2011; Dehak
et al., 2011b). It consists of mapping speaker and channel
variabilities to a low-dimensional space called total vari-

ability space. To compensate intersession effects, this tech-
nique is usually combined with linear discriminant analysis

(LDA) (Fukunaga, 1990) and within-class covariance

normalization (WCCN) (Kanagasundaram et al., 2011).
The i-vector approach has received less attention in dia-

lect and accent recognition systems. Caused by more subtle
linguistic variations, dialect and accent recognition are gen-
erally more difficult than language recognition (Chen et al.,
2010). Thus, it is not obvious how well i-vectors will
perform on these tasks. However, more fundamentally,
the i-vector system has many data-driven components for
which training data needs to be selected. It would be tempt-
ing to train some of the hyper-parameters on a completely
different out-of-set-data (even different language), and
leave only the final parts – training and testing a certain
dialect or accent – to the trainable parts. This is also moti-
vated by the fact that there is a lack of linguistic resources
available for languages like Finnish, comparing to English
for which corpora from NIST1 and LDC2 exist.

The i-vector based dialect and accent recognition has
previously been addressed in (DeMarco and Cox, 2012;
Bahari et al., 2013). DeMarco and Cox (2012) addressed
a British dialect classification task with fourteen dialects,
resulting in 68% overall classification rate while (Bahari
1 http://www.itl.nist.gov/iad/mig/tests/spk/.
2 http://www.ldc.upenn.edu/.
et al., 2013) compared three accent modeling approaches
in classifying English utterances produced by speakers of
seven different native languages. The accuracy of the
i-vector system was found comparable as compared to
the other two existing methods. These studies indicate that
the i-vector approach is promising for dialect and foreign
accent recognition tasks. However, it can be partly
attributed to availability of massive development corpora
including thousands of hours of spoken English utterances
to train all the system hyper-parameters. The present study
presents a case when such resources are not available.

Comparing with the prior studies including our own
preliminary analysis (Behravan et al., 2013), the new
contribution of this study is a detailed account into factors
affecting the i-vector based foreign accent detection. We
study this from three different perspectives: parameters,
development data, and language aspects. Firstly, we study
how the various i-vector extractor parameters, such as the
UBM size and i-vector dimensionality, affect accent detec-
tion accuracy. This classifier optimization step is carried
out using the speech data from the CallFriend corpus
(Canavan and Zipperle, 1996). As a minor methodological
novelty, we study applicability of heteroscedastic linear dis-

criminant analysis (HLDA) for supervised dimensionality
reduction of i-vectors. Secondly, we study data-related
questions on our accented Finnish language corpus. We
explore how the choices of the development data for
UBM, i-vector extractor and HLDA matrices affect accu-
racy; we study whether these could be trained using a dif-
ferent language (English). if the answer turn out positive,
the i-vector approach would be easy to adopt to other lan-
guages without recourse to the computationally demanding
steps of UBM and i-vector extractor training. Finally, we
study language aspects. This includes three analyses:
ranking of the original accents in terms of their detection
difficulty, study of confusion patterns across different
accents and finally, relating recognition accuracy with four
affecting factors such as Finnish language proficiency, age
of entry, level of education and where the second language
is spoken.

Our hypothesis for the Finnish language proficiency is
that recognition accuracy would be adversely affected by
proficiency in Finnish. In other words, we expect higher
accent detection errors for speakers who speak fluent
Finnish. For the age of entry factor, we expect that the
younger a speaker enters a foreign country, the higher
the probability of fluency in the second language. Thus,
we hypothesize that it is more difficult to detect the speak-
er’s mother tongue in younger age groups than in older
ones. This hypothesis is reasonable also because older peo-
ple tend to keep their mother tongue traits more often than
younger people (Munoz, 2010). Regarding the education
factor, we hypothesize that mother tongue detection is
more difficult in higher educated speakers than in lower
educated ones. Finally, We also hypothesize that mother
tongue detection is more difficult for the person who con-
sistently use their second languages for social interaction

http://www.itl.nist.gov/iad/mig/tests/spk/
http://www.ldc.upenn.edu/
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as compared to the speakers who do not use their second
language in regular basis for social interaction.
2. System components

Fig. 1 shows the block diagram of the method used in
this work. The i-vector system consists of two main part:
front-end and back-end. The former consists of cepstral
feature extraction and UBM training, whereas the latter
includes sufficient statistics computation, training of the
T-matrix, i-vector extraction, dimensionality reduction
and scoring.
2.1. i-vector system

i-Vector modeling (Dehak et al., 2011a) is inspired by
the success of joint factor analysis (JFA) (Kenny et al.,
2008) in speaker verification. In JFA, speaker and channel
effects are independently modeled using eigenvoice (speaker
subspace) and eigenchannel (channel subspace) models:

M ¼ mþ VyþUx; ð1Þ

where M is the speaker supervector, m is a speaker and
channel independent supervector created by concatenating
the centers of UBM and low-rank matrices V and U repre-
sent, respectively, linear subspaces for speaker and channel
variability in the original mean supervector space. The
latent variables x and y are assumed to be independent
of each other and have a standard normal distributions,
i.e. x � Nð0; IÞ and y � Nð0; IÞ. Dehak et al. (2011a)
found that these subspaces are not completely independent,
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therefore a combined total variability modeling was
introduced.

In the i-vector approach, the GMM supervector (M) of
each accent utterance is decomposed as (Dehak et al.,
2011a),

M ¼ mþ Tw; ð2Þ

where m is again the UBM supervector, T is a low-rank
rectangular matrix, representing between-utterance vari-
ability in the supervector space, and w is the i-vector, a
standard normally distributed latent variable drawn from
Nð0; IÞ. The T matrix is trained using a similar technique
which is used train V in JFA, except that each training
utterance of a speaker model is treated as belonging to dif-
ferent speakers. Therefore, in contrast to JFA, the T matrix
training does not need speaker or dialect labels. To this
end, i-vector approach is an unsupervised learning method.
The i-vector w is estimated from its posterior distribution
conditioned on the Baum–Welch statistics extracted from
the utterance using the UBM (Dehak et al., 2011a).

The i-vector extraction can be seen as a mapping from a
high-dimensional GMM supervector space to a low-
dimensional i-vector that preserves most of the variability.
In this work, we use 1000-dimensional that are further
length normalized and whitened (Garcia-Romero and
Espy-Wilson, 2011).

Cosine scoring is commonly used for measuring
similarity of two i-vectors (Dehak et al., 2011a). The cosine
score t of the test i-vector, wtest, and the i-vectors of target
accent a; wa

target, is defined as their inner product
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t ¼
ŵT

test ŵa
target

kŵtestk kŵa
targetk

; ð3Þ

where ŵtest is,

ŵtest ¼ ATwtest; ð4Þ

and A is the HLDA projection matrix (Loog and Duin,
2004) to be detailed below in Section 2.2. Further, ŵa

target

is the average i-vector over all the training utterances in
accent a, i.e.

ŵa
target ¼

1

N a

XNa

i¼1

ŵa
i ; ð5Þ

where N a is the number of training utterances in accent a

and ŵa
i is the projected i-vector of training utterance i from

accent a, computed the same way as (4).
Obtaining the scores fta; a ¼ 1; . . . ; Lg for a particular

test utterance compared with all the L target accent models
of accent a, those scores are further post-processed as
(Brümmer and van Leeuwen, 2006):

t0ðaÞ ¼ log
expðtaÞ

1
L�1

P
k–a expðtkÞ

; ð6Þ

where t0ðaÞ is the detection log-likelihood ratio or final
score used in the detection task.

2.2. Reducing the i-vector dimensionality

As the extracted i-vectors contain both intra- and
between-accent variations, the aim of dimensionality
reduction is to project the i-vectors onto a space where
between-accent variability is maximized and intra-accent
variability is minimized. Traditionally, LDA is used to per-
form dimensionality reduction where, for R-class classifica-
tion problem, the maximum projected dimension is R� 1.

As (Loog and Duin, 2004) argue, these R� 1 dimensions
do not necessarily contain all the discriminant information
for the classification task. Moreover, LDA separates only
the class means and it does not take into account the dis-
criminatory information in the class covariances. In recent
years, an extension of LDA, heteroscedastic linear discrim-
inant analysis (HLDA), has gained popularity in speech
research community. HLDA, unlike LDA, deals with dis-
criminant information presented both in the means and
covariance matrices of classes (Loog and Duin, 2004).

HLDA was originally introduced in (Kumar, 1997) for
auditory feature extraction, and later applied to speaker
(Burget et al., 2007) and language (Rouvier et al., 2010)
recognition with the purpose of reducing dimensionality
of GMM supervectors and acoustic features, respectively.
In this work, we also use it to reduce the dimensionality
of extracted i-vectors. For completeness, we briefly summa-
rize the HLDA technique below.

In the HLDA technique, the i-vectors of dimension n are
projected into first p < n rows, dj¼1...p, of n� n HLDA
transformation matrix denoted by A. The matrix A is esti-
mated by an efficient row-by-row iteration method (Gales,
1999), whereby each row is iteratively estimated as,

d̂k ¼ ckGk�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

ckGk�1cT
k

s
: ð7Þ

Here, ck is the kth row vector of the co-factor matrix
C ¼j A j A�1 for the current estimate of A and

Gk ¼

PJ
j¼1

Nj

dkbRðjÞdT
k

bRðjÞ k 6 p;

N

dkbRdT
k

bR k > p;

8><>: ð8Þ

where bR and bRðjÞ are estimates of the class-independent
covariance matrix and the covariance matrix of the jth
model, Nj is the number of training utterances of the jth
model and N is the total number of training utterances.
To avoid near-to-singular covariance matrices in HLDA
training process, principal component analysis (PCA) is
first applied (Loog and Duin, 2004; Rao and Mak, 2012)
and the PCA-projected features are used as the inputs to
HLDA. The dimension of PCA is selected in such a man-
ner that most of the principal components are retained
and within-models scatter matrix becomes non-singular
(Loog and Duin, 2004).

2.3. Within-class covariance normalization

To compensate for unwanted intra-class variations in
the total variability space, within-class covariance normal-
ization (WCCN) (Hatch et al., 2006) is applied to the
extracted i-vectors. To this end, a within-class covariance
matrix, K, is first computed using,

K ¼ 1

L

XL

a¼1

1

Na

XN a

i¼1

ðwa
i � waÞðwa

i � waÞT; ð9Þ

where wa is the mean i-vector for each accent a; L is the
number of target accents and Na is the number of training
utterances for the accent a. The inverse of K is then used to
normalize the direction of the projected i-vectors in the
cosine kernel. This is equivalent to projecting the i-vector
subspace by the matrix B obtained by Cholesky decompo-
sition of K�1 ¼ BBT.

3. Experimental setup

3.1. Corpus

We use Finnish national foreign language certificate

(FSD) corpus (University of Jyväskylä, 2000) to perform
foreign accent classification task. The corpus consists of
official language proficiency tests for foreigners interested
in Finnish language proficiency certificate for the purpose
of applying for a job or citizenship. All the data has been
recorded by language experts. Generally, the test is
intended for evaluating test-takers’ proficiency in listening



Table 1
Grades within different levels in the FSD corpus.

Levels Grades

Basic 0 1 2
Intermediate 3 4
Advanced 5 6

Table 2
Train and test files distributions in each target accent in the FSD corpus.

Accent No. of train files No. of test files No. of speakers

Spanish 47 25 15
Albanian 56 29 19
Kurdish 61 32 21
Turkish 66 34 22
English 70 36 23
Estonian 122 62 38
Arabic 128 66 42
Russian 556 211 235

Total 1149 495 415
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comprehension, reading comprehension, speaking, and
writing. This test can be taken at basic, intermediate and
advanced levels. The test-takers choose the proficiency level
at which they wish to participate. The difference between
the levels is the extent and variety of expression required.
At the basic level, it is important that test-takers convey
their message in a basic form, while in the intermediate
level, richer expression is required. More effective and nat-
ural expressions should be presented in the advanced level.
However, communication purposes, i.e. functions and
questions, are more or less the same at all levels. Table 1
shows the grading scale at each level of the tests in this
corpus.3

For our purposes, we selected Finnish responses corre-
sponding to 18 foreign accents. Unfortunately, as the num-
ber of utterances in some accents was not large enough, a
limited number of eight accents – Russian, Albanian, Ara-
bic, English, Estonian, Kurdish, Spanish, and Turkish –
with enough data were chosen for the experiments. How-
ever, the unused accents were utilized in training the
hyper-parameters of the i-vector system, the UBM and
the T-matrix.

To perform the recognition task, each accent set is ran-
domly partitioned into a training and a test subset. To
avoid speaker and session bias, the same speaker was not
placed into the test and train subsets. The test subset corre-
sponds to (approximately) 40% of the utterances, while the
training set corresponds to the remaining 60%. The original
audio files, stored in MPEG-2 Audio Layer III (mp3) com-
pressed format, were decompressed, resampled to 8 kHz
and partitioned into 30-s chunks. Table 2 shows the distri-
bution of train and test files in each target accent.

The NIST SRE 20044 corpus was chosen as the out-of-
set-data for hyper-parameter training. For our purposes,
1000 gender-balanced utterances were randomly selected
from this corpus to train the UBM and T-matrix. We note
that this is an American English corpus of telephone-qual-
ity speech.

Unlike UBM and T-matrix, training the HLDA projec-
tion matrix requires labeled data. Since accent labels are
not represented in the NIST corpus, we use the CallFriend

corpus (Canavan and Zipperle, 1996) to train HLDA. This
corpus is a collection of unscripted conversations of 12 lan-
guages recorded over telephone lines. It includes two dia-
lects for each target language available. All utterances are
3 The FSD corpus is available by request from http://yki-korpus.jyu.fi/.
Filelists used in this study are available by request from the first author.

4 http://catalog.ldc.upenn.edu/LDC2006S44.
organized into training, development and evaluation sub-
sets. For our purposes, we selected all the training utter-
ances from dialects of English, Mandarin and Spanish
languages and partitioned them into 30-s chunks, resulting
in approximately 4000 splits per each subset. All audio files
have 8 kHz sampling rate.
3.2. Front-end configuration

The front-end consists of concatenation of MFCC and
SDC coefficients (Kohler and Kennedy, 2002). To this
end, speech signals framed with 20 ms Hamming window
with 50% overlap are filtered by 27 mel-scale filters over
0–4000 Hz frequency range. RASTA filtering (Hermansky
and Morgan, 1994) is applied to log-filterbank energies.
Seven first cepstral coefficients (c0–c6) are computed using
discrete cosine transform. The cepstral coefficients are fur-
ther processed using utterance-level cepstral mean and var-
iance normalization (CMVN) and vocal tract length
normalization (VTLN) (Lee and Rose, 1996), and con-
verted into 49-dimensional shifted delta cepstra (SDC) fea-
ture vectors with 7-1-3-7 configuration parameters (Kohler
and Kennedy, 2002). These four parameters correspond to,
respectively, the number of cepstral coefficients, time delay
for delta computation, time shift between consecutive
blocks, and number of blocks for delta coefficient concate-
nation. Removing non-speech frames, the 7 first MFCC
coefficients (including c0) are further concatenated to
SDCs to obtain 56-dimensional feature vectors.

In a preliminary experiment on our evaluation corpus
FSD (Behravan, 2012), the combined feature set is shown
to give a relative decrease in EER of more than 30% as
compared to the only SDC feature based technique.
3.3. Objective evaluation metrics

System performance is reported in terms of both average
equal error rate (EERavg) and average detection cost (Cavg)
(Li et al., 2013). EER indicates the operating point on
detection error trade-off (DET) curve (Martin et al.,
1997) at which false alarm and miss rates are equal. EER
per target accent is computed in a manner that other
accents serve as non-target trials. Average equal error rate

http://yki-korpus.jyu.fi/
http://catalog.ldc.upenn.edu/LDC2006S44
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(EERavg) is computed by taking the average over all the L

target accent EERs.
Cavg, in turn, is defined as follows (Li et al., 2013),

Cavg ¼
1

L

XL

a¼1

CDETðLaÞ; ð10Þ

where CDETðLaÞ is the detection cost for subset of test seg-
ments trials for which the target accent is La:

CDETðLaÞ ¼ CmissP tarP missðLaÞ þ Cfað1� P tarÞ

� 1

L� 1

X
m–a

P faðLa; LmÞ: ð11Þ

P miss denotes the miss probability (or false rejection rate),
i.e. a test segment of accent La is rejected as not being in
that accent. P faðLa; LmÞ is the probability when a test seg-
ment of accent Lm is detected as accent La. It is computed
for each target/non-target accent pairs. Cmiss and Cfa are
costs of making errors and are set to 1. P tar is the prior
probability of a target accent and is set to 0.5.
4. Results

We first optimize the i-vector parameters in the context
of dialect and accent recognition tasks. For this purpose,
we utilize the CallFriend corpus. The results are summa-
rized in Table 3.

In Fig. 2, we show EER as a function of HLDA output
dimension. We find that the optimal dimension of the
HLDA projected i-vectors is 180 and too aggressive reduc-
tion in dimension decreases accuracy. We also find that
accuracy improves with the increase of i-vector dimension-
ality as Table 4 shows. Furthermore, our results showed
that the UBM with smaller size outperforms larger UBM
as Table 5 shows. Based on these previous findings,
UBM size, i-vector size and output dimensionality are set
to 512, 1000 and 180, respectively.
Table 4
4.1. Effect of development data on i-vector hyper-parameters

estimation

Table 6 shows the results on the FSD corpus when the
hyper-parameters are trained from different datasets. Here,
WCCN and score normalization are not applied. By con-
sidering the first row with matched language as a baseline
(13.37% EERavg), we observe the impact of each of the
hyper-parameter training configurations as follows:
Table 3
The i-vector system’s optimum parameters as reported in (Behravan et al.,
2013).

i-vector parameters Search range and optima

UBM size 256, 512, 1024, 2048, 4096
i-vector dimensionality 200, 400, 600, 800, 1000

HLDA dimensionality 50, 100, 150, 180, 220, 300, 350, 400
� Effect of HLDA (row 1 vs row 2): EERavg increases to
18.28% (relative increase of 37%).
� Effect of T-matrix (row 1 vs 3): EERavg increases to

20.98% (relative increase of 57%).
� Effect of UBM (row 1 vs 4): EERavg increases to 23.85%

(relative increase of 78%).
� Effect of UBM and T-matrix (row 1 vs 5): EERavg

increases to 26.76% (relative increase of 101%).

In the light of these findings, it seems clear that the
‘early’ system hyper-parameters (UBM and T-matrix) have
a much larger role and they should be trained from as clo-
sely matched data as possible; we see that when all the
hyper-parameters are trained from the FSD corpus, the
highest accuracy is achieved. The most severe degradation
(101%) is attributed to the joint effect of UBM and T-
matrix and the least severe (37%) to HLDA, T-matrix
(57%) and UBM (78%) falling in between. It is instructive
to recall the order of computations: sufficient statistics
from UBM ! i-vector extractor training ! HLDA train-
ing. Since all the remaining steps depend on the “bottle-
neck” components, i.e. UBM and T-matrix, it is not
surprising that they have the largest relative effect.

The generally large degradation relative to the baseline
set-up with matched data is reasonably explained by the
Performance of the i-vector system in the CallFriend corpus for selected i-
vector dimensions (EER in %, form). UBM has 1024 Gaussians as
reported in (Behravan et al., 2013).

i-vector dim. English Mandarin Spanish

200 23.20 20.49 20.87
400 22.60 19.11 20.21
600 21.30 18.45 19.63
800 19.83 16.31 18.63

1000 18.01 14.91 16.01



Table 5
Performance of the i-vector system in the CallFriend corpus for five
selected UBM sizes (EER in %, form). i-vectors are of dimension 600 as
reported in (Behravan et al., 2013).

UBM size English Mandarin Spanish

256 21.12 17.93 19.00

512 21.61 17.91 19.15
1024 21.30 18.45 19.63
2048 23.81 21.15 22.01
4096 23.89 21.57 22.66

Table 6
EERavg and Cavg � 100 performance for effect of changing datasets in
training the i-vector hyper-parameters. (WCCN and score normalization
turned off.)

UBM T matrix HLDA EERavg% Cavg � l00 Iderror%

Database used for training

FSD FSD FSD 13.37 7.04 33.65

FSD FSD CallFriend 18.28 7.49 38.29
FSD NIST FSD 20.98 7.83 40.30
NIST FSD FSD 23.85 8.15 42.91
NIST NIST FSD 26.76 8.41 44.67

Table 7
Effect of score normalization on the recognition performance. (HLDA and
WCCN turned on and off, respectively.)

Score normalization EERavg% Cavg � 100 Iderror%

No 13.37 7.04 33.65
Yes 13.01 6.94 32.85

5 Refers to those utterances in which the spoken foreign accent is not
clear.
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large differences between type of data of evaluation corpus
(FSD) and hyper-parameter estimation corpora (NIST
SRE and CallFriend). FSD consists of Finnish language
data recorded with close-talking microphones in a
classroom environment. Even though speech is very clear,
background babble noise from the other students is evident
in all the recordings. This is contrast to the NIST SRE and
CallFriend corpora where most of the speech files are
recorded over telephone line and babble noise is less
common.

The results of Table 6 were computed with WCCN and
score normalization turned off. Let us now turn our atten-
tion to these additional system components. Firstly, Table 7
shows the effect of score normalization when all the hyper-
parameters are trained from the FSD corpus (i.e., row 1 of
Table 6). EERavg decreases from 13.37% to 13.01%, which
indicates a slightly increased recognition accuracy when the
scores are normalized in the backend.

Secondly, Table 8 shows the joint effect of WCCN and
HLDA on the recognition performance when all the
hyper-parameters are trained from the FSD corpus (i.e.,
row 1 of Table 6). In addition to that, score normalization
is also applied. EERavg decreases from 17.10% to 12.60%
when both HLDA and WCCN are applied. The worst case
is when HLDA is turned off and WCCN is turned on. This
is because turning off HLDA leads to inaccurate estimation
of covariance matrix in higher dimensional i-vector space.
4.2. Comparing i-vector and GMM-UBM systems

In order to have a baseline comparison between the i-
vector approach and the classical accent recognition sys-
tems, we used conventional GMM-UBM system with
MAP adaptation similar to the work presented in
(Torres-Carrasquillo et al., 2004). GMM-UBM system is
simpler and computationally more efficient in comparison
to the i-vector systems. Map adaptation consists of single
iteration for adapting the UBM to each dialect model using
SDC + MFCC features. It requires updating only centers
of UBM. The testing is a fast scoring process described
in (Reynolds et al., 2000) to score the input utterance to
each adapted foreign accent models by selecting top five
Gaussians per speech frame.

Table 9 shows the result of GMM-UBM system with
four different UBM sizes. Increasing the number of Gaus-
sians results in higher recognition accuracy. Table 10 fur-
ther compares the best recognition accuracies achieved by
both recognizers. In the i-vector system, the best recogni-
tion accuracy, i.e. EERavg of 12.60%, is achieved with all
the hyper-parameters trained from the FSD corpus and
HLDA, WCCN and score normalization being turned
on. On the other hand, the best GMM-UBM recognition
accuracy, EERavg of 17.00%, is achieved with UBM order
2048 when score normalization is applied. The results indi-
cate that the i-vector system outperforms the conventional
GMM-UBM system with 25% relative improvements in
terms of EERavg at the cost of higher computational time
and additional development data.
4.3. Detection performance per target language

In the previous section, we analyzed the overall average
recognition accuracy. Now, here we focus on performance
for each individual foreign accent. In order to compensate
the lack of sufficient development data in reporting these
results, we used the previously unused accents in the FSD
corpus to train UBM, T-matrix and HLDA. These unused
accents are Chinese, Dari, Finnish, French, Italian, Somali,
Swedish and Misc5 corresponding to 210 speakers and
1110 utterances in total. Further, to increase the number
of test trials in the classification stage, we report the results
using a leave-one-speaker-out (LOSO) protocol. As dem-
onstrated in the pseudo code below, for every accent, each
speaker’s utterances are held out one at a time and the
remaining utterances are used in modeling the ŵtarget as in
Eq. (5). The held-out utterances are used as the evaluation
utterances.



Table 8
The joint effect of WCCN and HLDA on the recognition accuracy. (Score
normalization turned on.)

HLDA WCCN EERavg% Cavg � 100 Iderror%

No No 17.70 7.04 39.58
Yes No 13.01 6.94 32.85
No Yes 19.00 7.31 41.55
Yes Yes 12.60 6.85 30.85

Table 10
Comparison between the best recognition accuracy in the GMM-UBM
and i-vector system. (Score normalization turned on for the both cases.)

Recognition system EERavg% Cavg � 100 Iderror%

GMM-UBM 17.00 9.46 43.65
i-vector 12.60 6.85 30.85
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Algorithm 1. Leave-one-speaker-out (LOSO)
Table 11
Per language results in terms of EER% and CDET�100 for the i-vector
Let A ¼ fa1; a2; . . . ; aLg be the set of L target accents
Let SðaiÞ be the set of speakers in target accent ai

ŵa
target defines the i-vectors of target accent a after HLDA
and WCCN.

for ai 2 A do

for sj 2 SðaiÞ {Held-out test speaker} do

Let S0 ¼ SðaiÞ � sj {Remove the speaker being
tested}

Form ŵa
target using the i-vectors in set S0, Eq. (5)

Compute cosine scores hwsj
test;w

a
targeti {w

sj
test are the test i-

vectors of speaker sj}
end for

end for

Normalize scores per each target accent, Eq. (6)

Table 11 shows the language wise results. The results
suggest that certain languages which do not belong to the
same sub-family as Finnish are easier to detect. Turkish
achieves the highest recognition accuracy, whereas English
shows highest error rate. The recognition accuracy is con-
sistent among Albanian, Arabic, Kurdish and Russian lan-
guages. Cavg is bigger than the results already given in
Table 10. Note that in Table 11, the unused accents are
used to train UBM, T-matrix and HLDA. This induces
mismatch between model training data and the hyper-
parameter training data. Which is not the case in Table 10.

Fig. 3 further exemplifies the distribution of scores for
three selected languages of varying detection difficulties.
The histograms are plotted with the same number of bins,
50. For visualization purposes, the width of bins in the
non-target score histogram was set smaller than in the tar-
get score histogram. The score distribution explains the dif-
ferences between EERs. For example, in case of Turkish as
the easiest and English as the most difficult detected accent,
Table 9
Recognition performance of GMM-UBM system with different UBM
sizes.

UBM size EERavg% Cavg � 100

256 19.94 11.02
512 19.03 10.56

1024 18.20 10.12
2048 17.00 9.46
the overlap between the target and the non-target scores is
higher in the latter.

Here, the problem is treated as foreign accent identifica-
tion task. Table 12 displays the confusion matrix corre-
sponding to Table 11. In all the cases, majority of the
detected cases corresponds to the correct class (i.e., the
entries in the diagonal). Taking Turkish as the language
with the highest recognition accuracy, out of the 11 mis-
classified Turkish test segments, 7 were misclassified as
Arabic. This might be because Turkey is bordered by two
Arabic countries, Syria and Iraq, and Turkish shares com-
mon features with Arabic. Regarding Spanish, out of the
27 misclassified test segments, 9 were detected as Arabic.
It is possibly due to the major influence of Arabic on Span-
ish. In particular, numerous words of Arabic origin are
adopted in the Spanish language.

To analyze further reasons why some languages are
harder to detect, we first compute the average target lan-
guage score on a speaker-by-speaker basis. To measure
the degree of speaker variation, we show the standard devi-
ation of these average scores in Table 13, along with the
corresponding EER and CDET values. The results indicate
that languages with more diverse speaker populations, hav-
ing speaker-dependent biases in the detection scores, are
more difficult to handle. It does not yet explain why certain
languages, such as Russian, have a larger degree of speaker
variation, but suggests that there will be space for further
research in speaker normalization techniques.
4.4. Factors affect foreign accent recognition

We are interested to find out what factors affect the for-
eign accent recognition accuracies. The rich metadata
available in the FSD corpus includes language proficiency,
speaker’s age, education and the place where the second
language is spoken. In the following analysis, we used the
system.

Accents EER% CDET � 100

Turkish 11.90 6.35
Spanish 16.49 6.92
Albanian 18.76 7.00
Arabic 18.98 7.17
Kurdish 19.37 7.19
Russian 19.68 7.21
Estonian 20.05 7.52
English 23.60 8.00



Fig. 3. Distribution of scores for Turkish, Russian and English accents.

Table 12
Confusion matrix of the results corresponding to Table 11.

Predicted label

Turk. Span. Alba. Ar

True label

Turk. 50 0 1
Span. 1 58 1 1
Alba. 1 0 61
Arab. 4 2 14 11
Kurd. 5 1 1
Russ. 51 21 51 2
Esto. 5 5 7 1
Engl. 7 3 3
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whole set of scores from the LOSO experiment and
grouped them to different categories according to each
metadata variable at a time.

Language proficiency

To find out the impact of language proficiency, we take
the sum of spoken and written Finnish grades in the FSD
corpus as a proxy of the speaker’s Finnish language profi-
ciency. The objective was to find out how speakers’ lan-
guage proficiency and their detected foreign accent are
related. Fig. 4 shows Cavg for each grade group. As hypoth-
esized, the lowest Cavg is attributed to speakers with the
lower grade (5) and the highest accuracy to speakers with
the higher grade (8). This indicates that detecting the for-
eign accents from speakers with higher proficiency in Finn-
ish is considerably more difficult than speakers with lower
proficiency.

In addition, we looked at language proficiency across
different target languages. We study the average language
proficiency grade across the speakers in different languages
(Table 14). For the three most difficult languages to detect,
Russian, Estonian and English, the average language pro-
ficiency grades are higher than the rest of languages, sup-
porting the preceding analysis.

Age of entry
Age is one of the most important effective factors in

learning a second language (Krishna, 2008). The common
notion is that younger adults learn the second language
more easily than older adults. (Larsen-Freeman, 1986)
argues that during the period of time between birth and
the age when a children enters puberty, learning a second
language is quick and efficient. In the second language
acquisition process, one of the affecting factors relates to
the experience of immigrants, such as the age of entry
and the length of residence (Krishna, 2008). We analyze
the relationship between the age of entry and the foreign
accent recognition results. To analyze the effect of age to
foreign accent detection, we categorized the detection
scores into six age groups with 10 years age interval
(Fig. 5). Our hypothesis was that mother tongue detection
is easier in older people than younger ones. The results sup-
port this hypothesis. Cavg decreases from 5.30 (a relative
ab. Kurd. Russ. Esto. Engl.

7 0 1 0 2
1 2 3 7 2
9 1 5 11 1
0 7 7 12 4
5 50 6 3 6
6 2 369 13 28
5 1 6 117 15
6 3 7 9 59



Table 13
The standard deviation of the average target language score on a speaker-
by-speaker basis along with the corresponding EER and CDET results.

Accents Standard deviation EER% CDET � 100

Turkish 0.1205 11.90 6.35
Spanish 0.1369 16.49 6.92
Albanian 0.1380 18.76 7.00
Arabic 0.1505 18.98 7.17
Kurdish 0.1392 19.37 7.19
Russian 0.1402 19.68 7.21
Estonian 0.1621 20.05 7.52
English 0.1667 23.60 8.00

5 (164) 6 (799) 7 (165) 8 (136)
0

2

4

6

8

Grade (# utterances)

C
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g *
 1

00

Fig. 4. Cavg � 100 for different grade groups in the language proficiency
measurement.

Table 14
The average language proficiency grade across the speakers in different
languages along with the corresponding EER and CDET results.

Accents Grade EER% CDET � 100

Turkish 6.09 11.90 6.35
Spanish 6.20 16.49 6.92
Albanian 5.78 18.76 7.00
Arabic 5.73 18.98 7.17
Kurdish 5.71 19.37 7.19
Russian 6.30 19.68 7.21
Estonian 7.02 20.05 7.52
English 6.34 23.60 8.00

[11-20] [21-30] [31-40] [41-50] [51-60] [61-70]
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Fig. 5. Cavg � 100 for different age groups. Age refers to age of entry to
foreign country. Number of utterances for the age group [11–20],
[21,30], . . . , [61–70] is 46, 342, 535, 239, 100, 12, respectively.
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Fig. 6. Cavg � 100 for different level of education groups.
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Fig. 7. Cavg � 100 for different places where the second language is
spoken.
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decrease of 16%) to 4.45 from the age group [11–20] to [61–
70]. This indicates that the mother tongue detection in
older age groups could be easier than in the younger age
groups.

Level of education

According to Gardner’s socio-educational model
(Gardner, 2010), intrinsic motivation to learn a second lan-
guage is strongly correlated to educational achievements.
The objective was to find out how speakers’ level of educa-
tion and their detected foreign accent might be related. To
analyze the effect of education, we categorized the detec-
tion scores into different levels of education groups. We
hypothesized that people with higher level of education
speak the second language more fluently than lower edu-
cated people. As a consequence, mother tongue detection
for higher educated people is relatively difficult. But the
results in Fig. 6 in fact show the opposite; the highest Cavg

belongs to elementary school and the lowest to university
education. However, Cavg is somewhat similar for the high
school, vocational school, and polytechnic level of
education.
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Where second language is spoken

Finally, we were also interested to observe whether the
place or situation, where the second language is spoken,
affects foreign accent detection or not. To this end, we cat-
egorized the scores into four groups based on the level of
social interaction: home, hobbies, study and work. We
hypothesized that the places with more social interactions
between people, the mother tongue traits will be less in
the second spoken language, therefore making it more dif-
ficult to detect the mother tongue. Fig. 7 shows the Cavg for
different places where the second language is spoken. The
results indicate no considerable sensitivity to the situation
where the second language is spoken.

5. Conclusion

In this work, we studied how the various i-vector extrac-
tor parameters, data set selections and the speaker’s lan-
guage proficiency affects foreign accent detection accuracy.
Regarding parameters, highest accuracy was achieved using
UBMs with 512 Gaussians, i-vector dimensionality of 1000
and HLDA dimensionality of 180. These are similar to those
reported in general speaker and language recognition litera-
ture, except for the higher-than-usual i-vector dimensional-
ity of 1000.

Regarding data, we found that the choice of the UBM
training data is the most critical part, followed by T-matrix
and HLDA. This is understandable since the earlier system
components affect the quality of the remaining steps. In all
cases, the error rates increased unacceptably high for mis-
matched sets of hyper-parameter training. Thus, our answer
to the question whether hyper-parameters could be reason-
ably trained from mismatched language and channel is neg-
ative. The practical implication of this is that the i-vector
approach, even though producing reasonable accuracy,
requires careful data selection for hyper-parameter training
– and this is not always feasible.

Applying within-class covariance normalization fol-
lowed by score normalization technique further increased
the i-vector system performance by 6% relative improve-
ments in terms of Cavg. We also showed that the i-vector
system outperforms the conventional GMM-UBM system
by 28% relative decrease in terms of Cavg.

In our view, the most interesting contribution of this
work is the analysis of language aspects. The results, bro-
ken down by the accents, clearly suggested that certain lan-
guages which do not belong to the same sub-family as
Finnish are easier to detect. Turkish was the easiest (CDET

of 6.35) while for instance Estonian, a language similar to
Finnish, yielded CDET of 7.52. The most difficult language
was English with CDET of 8.00. In general, confusion
matrix revealed that phonetically similar languages are
more often confused.

Our analysis on affecting factors suggested that language
proficiency and age of entry affect detection performance.
Specifically, accents produced by fluent speakers of Finnish
are more difficult to detect. Speaker group with the lowest
language grade 5 yielded Cavg of 4.75 while the group with
grade 8 yielded Cavg of 6.76. Analysis of the age of entry, in
turn, indicated that mother tongue detection in older
speakers is easier than younger speakers. The age group
[61–70] years yielded Cavg of 4.45 while the group with
age interval [11–20] years old yielded Cavg of 5.31.

After optimizing all the parameters, the overall EERavg

and Cavg were 12.60% and 6.85, respectively. These are
roughly an order of magnitude higher compared to state-
of-the-art text-independent speaker recognition with i-vec-
tors. This reflects the general difficulty of the foreign accent
detection task, leaving a lot of space for future work on
new feature extraction and modeling strategies. While these
values are unacceptably high for security applications, the
observed correlation between language proficiency and
recognition scores suggests potential applications for
automatic spoken language proficiency grading.
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