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Abstract 

A blockwise distortion measure is proposed for evaluating the visual quality of compressed 
images. The proposed measure calculates quantitatively how well important visual properties 
have been preserved in the distorted image. The method consists of three quality factors 
detecting contrast errors, structural errors, and quantization errors. The proposed method 
outperforms PQS for a set of test images, and is much simpler to implement. The method 
should also be applicable to color images; properties like color richness and saturation are 
captured by the quantization and contrast measures respectively. 
 
Key words: Visual quality, quality assessment, distortion measures, objective measures, 
image compression. 
 
 
 
 
1. Introduction 
 
The key issue in lossy image compression is how to measure the distortion caused by 
compression. Pixelwise measures such as mean square error (MSE) are widely used but 
unfortunately they do not coincide with the visual quality of the images very well 5, 6. 
Pixelwise measures are adequate distortion indicators for random errors but cannot detect 
reliably typical compression artifacts such as blockiness, blurring or jaggedness of edges. 
 
Several attempts have been made to analyze the spatial dependencies of pixelwise differences 
9, 11, 15. In this way it is possible to detect correlated errors 15 and blockiness 11, for 
example. The pixelwise differences, however, are insufficient for measuring distortion like 
contrast errors or quantization effect. Instead, the original pixel values should be used in the 
distortion measurement. 
 
Some of the methods in literature are tailored for JPEG artifacts 9, or try to capture only 
certain distortion types eg. blockiness in 11. Probably the most thorough attempt for 
measuring the overall distortion is known as the picture quality scale (PQS) 15, but also it 
suffers from the drawback of operating with pixelwise differences. It is also designed using 
prior knowledge of the current compression algorithms. Thus, it might perform poorly in case 
of compression artifacts that were not taken into account in the design process. 
 



Digital image archives are widely used by newspaper editorials. The images will be object of 
zooming, color adjustment and other manipulation techniques which may not even be known 
today. Therefore the distortion measure should be independent from the factors such as 
compression method used, basic image processing operations like color adjustment, and 
viewing distance. For example, if the viewing distance is assumed to be fixed in the quality 
measurement it is possible to overlook certain distortion types that would be revealed after the 
image is zoomed. 
 
In the present paper we propose a new blockwise distortion measure. The proposed measure 
is general in the sense that it measures how well important visual properties have been 
preserved in the distorted image instead of detecting predefined distortion types. The original 
motivation for designing the measure are compression artifacts. The usage of the proposed 
measure, however, should not be limited to compressed images only but in principle, it should 
be applicable to all kinds of distortion, even those whose source is not known. 
 
In the proposed measure the image is processed by a 33 sliding window so that its center 
pixel hits once each pixel in the image. In each block, the three visual properties are 
measured: contrast, number of different gray-levels, and spatial structure. The distortion in 
each quantity is quantitatively measured and their average values over the entire image are 
determined. The final distortion value is summarized into a single value which is a weighted 
sum of these three quality factors. A preliminary version of the method was reported in 7. 
 
The proposed measure should consider three different aspects: the properties of the human 
visual system (HVS), the quality factors (visual properties) that are measured, and the 
weighting of the different factors. The focus is here on the design of the quality factors. We 
should also not ignore the fact that the measure should be relatively easy to implement and 
use. Thus, the model is kept as simple as possible without too much compromising the other 
goals. 
 
 
2. Related work 
 
A survey of pixelwise measures is given in 5 and their correlation with the visual quality is 
studied in 6. It was concluded that an evaluation across different compression techniques is 
not possible by pixelwise measures. 
 
Various aspects of HVS can be utilized in the distortion measurement by calculating the 
visibility of the artifacts due to the local surrounding of the pixels 3, 11, 15, 19. Two aspects 
of HVS are usually considered: brightness and spatial frequency sensitivity. The former refers 
to the non-linear sensitivity of human eye to the background luminance level. The spatial 
frequency sensitivity means that human eye is less sensitive to artifacts in areas of high 
activity. The activity can be measured by the total energy of spatial frequencies, which can be 
calculated by the windowed Fourier transform for example 11. The use of HVS properties 
does not remove the fundamental deficiency of the pixelwise measures, but any realistic 
measure should analyze the spatial dependencies of the pixels also. 
 
Several methods operate on the pixelwise differences (error map) by analyzing their spatial 
dependencies. For example, blocking artifacts are detected in 11 by analyzing the vertical 
and horizontal structures separately in the error map. The vertical artifacts, for example, are 
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isolated by a highpass filtering along the rows followed by a lowpass filtering along the 
columns to reduce the effect of random noises. A measurement of the typical JPEG artifacts 
such as blockiness and mosquito noise is performed in 9. The mosquito noise is measured 
around the contours and blockiness in the flat areas; both by calculating the spatial differences 
in the error map and by using masking due to HVS. 
 
In 20 the pixelwise error values are classified according to the edges structures; errors on 
own edges (edges in the original image), errors on false edges (edges in the distorted image), 
and other errors. The hypothesis is that different types of artifacts appear only in certain 
classes, eg. blurring on own edges, blocking and contouring on false edges. In 13 the 
distortion in the spatial structure is calculated by measuring the pixel values relative to their 
neighboring pixels. 
 
Much of work has been put on the picture quality scale (PQS), which has recently been 
summarized in 15. PQS operates error images that are masked according to the properties of 
HVS. Five separate quality factors (F1 to F5) are measured and the overall quality of the 
image is determined by their weighted sum. The factors F1 and F2 measure random errors, 
F3 blocking effect across the block boundaries (assuming 88 block size), F4 correlated 
errors, and F5 all errors near the high contrast transitions (edges). All these factors are 
calculated on the basis of the pixelwise differences. 
 
A blockwise approach has been proposed in 10. The images (original and distorted) are 
divided by quadtree segmentation and from each block the distortion in mean value and in 
standard deviation are measured. The main drawbacks of the method are the non-overlapping 
blocks of the quadtree segmentation, and that only statistical errors are detected. The method 
also classifies the error values according to the block size. On the basis of the classification 
the distortion values are graphically illustrated but the interpretation of the so-called Hosaka 
plots is left to the observer. 
 
 
3. Blockwise distortion measure 
 
Here we assume that the important visual properties of digital images are spatial resolution, 
gray-level resolution, contrast and spatial structures. The spatial resolution is rarely changed 
in compression but it is more like a parameter of the digitization process and thus not issued 
here. The remaining three properties, however, are all subject to change in the compression 
and should therefore be measured. We do not make any claims that these properties are 
sufficient but in our experiments no other important visual property was revealed. 
 
The visual properties should be measured locally, but the questions of the size and shape of 
the block remain. In principle, the image should be decomposed into regions so that these 
regions would capture the same properties of the image as human eye pays attention to. The 
blocksize depends on the viewing distance (cycles per degree) but here we assume that the 
viewing distance is unknown. In fact, we make even a stronger hypothesis by assuming that 
the image will be viewed at all possible distances, especially at the smallest possible distance 
that the resolution allows. Thus, a sliding window of 33 pixels is chosen. 
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3.1 Construction of the measure 
 
From each block, three visual properties are measured as follows. Contrast is measured by the 
standard deviation of the block as originally proposed in 10. The spatial structure (shape) 
inside the block is described by the response of an edge detection operation adopted from 
11. Our hypothesis is that only edge structures are visually important and pixel level 
background texture can be ignored. Gray-level resolution is measured by calculating the 
number of distinct gray levels in the block; varying from 1 to 9 in the case of 33 blocks. The 
overall structure of the proposed measure is summarized in Fig. 1. 
 
The average brightness and the activity of the background both affects the visibility of the 
distortion artifacts. Thus, the distortion values should be weighted differently depending on 
the background. This is referred here as masking. To keep the model simple we approximate 
the activity masking by a contrast mask where the distortion values are normalized to 
according to the contrast of the block. The contrast masking is applied to the contrast and 
edge detection measures but not to the quantization measure. In our experiments the 
quantization effect was visible in the high contrast textured areas as well. The brightness 
masking, on the other hand, is not applied here because the model should be independent 
from basic image processing operations like brightness scaling of the histogram. 
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Figure 1: Flow diagram of the blockwise distortion measurement for a single block. 
 
 
3.2 Calculating the quality factors 
 
Denote the quality factors by d1, d2 and d3 for the contrast errors, structural errors and 
quantization errors respectively. The first factor is calculated by the square difference 
between the standard deviation values of the original (A) and the distorted (B) blocks: 
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The distortion value is normalized by the contrast value of the original block. The second 
factor is: 
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where Gx and Gy are the responses of the horizontal and vertical edge detectors adopt from 
11. In case of 33 block Gx and Gy will simplify to the filtering operations of Fig. 2. The 
third factor is: 
 

                 (3) d Q QA B3
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where QA and QB are the number of distinct gray levels in the blocks. For more details of the 
design of d1 and d3, see 7, 12. 
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Figure 2: Masks for the edge detection. 
 
 
3.3 Weighting of the factors 
 
Denote the contrast, structural and quantization errors of the entire image by D1, D2 and D3 
where the Di-values are averaged di-values over the entire image. In order to obtain only one 
distortion value instead of three, the overall distortion D is defined as a linear function of the 
three quality factors: 
 
      D w f D w f D w f D     1 1 2 2 3 3           (4) 

 
The scaling function f is defined as follows: 
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where ki’s are set to (3, 32, 32). This will scale the distortion values D1, D2, and D3 
approximately to the range 0, 1. Negative values are rounded to zero. The scaling is not 
necessary but it distributes the values relatively evenly into the full range of 0, 1 so that they 
are comparable to the subjective quality grades. The relative weights w1, w2, and w3 are set to 
(0.45, 0.30, 0.25) so that they maximize the correlation between D and the subjective quality 
for test image Lena (Fig. 3). The optimization was performed using linear programming as 
implemented by the Solver in Microsoft Excel 5.0. The same set of weights is then used for all 
test images. 
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4. Subjective quality assessment of test images 
 
The subjective quality assessments were performed for the test images of Fig. 3. Three 
different image sets (one from each original) were generated each having 14 distorted 
versions of the same image. Each image was compressed by the same set of algorithms. 
 
 
 

 Lena (512512) Airplane (512512) Bridge (256256) 
 

Figure 3: The set of test images. 
 
 
4.1 Compression methods 
 
The following compression algorithms were applied to generate compression errors: block 
truncation coding, hierarchical block truncation coding, quadtree compression, recursive 
plane decomposition, JPEG image data compression standard, and fractal compression by 
weighted finite automata. 
 
Block truncation coding (BTC) divides the image into 44 blocks and performs two-level 
quantization to the blocks 4. The quantization levels are chosen so that the average value 
and variance of the block would be preserved. Another variant of BTC, called absolute 
moment BTC (AMBTC), selects the quantization levels as the mean values of the pixels within 
the two partitions 14. Hierarchical block truncation coding (HBTC) refers here to an 
improved BTC variant 8, where the basic BTC algorithm has been augmented with quadtree 
segmentation, interpolation, and entropy coding. The idea of Quadtree compression (QT) is to 
divide the image into sufficiently homogeneous areas like in the HBTC algorithm. In QT, 
however, the blocks are quantized to one level only so that each block will be represented by 
its average value. 
 
Recursive plane decomposition (RPD) is a quadtree based compression technique 17 where 
the blocks are represented by a two-dimensional plane described by a linear model f(x, y) = 
a + bx + cy. We implemented the basic version of the RPD algorithm and avoided the other 
features (such as quantizer optimization and entropy coding) which are not vital here. In the 
baseline JPEG (Joint photographic experts group) 16, the image is segmented into 88 
blocks, which are then transformed to frequency domain by the fast discrete cosine transform 
(FDCT). The transformed coefficients are quantized and then entropy coded. Weighted finite 
automata (WFA) 2 is a quadtree based fractal compression algorithm, where the blocks are 
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described as linear combinations of the other blocks in the image. The WFA is applied here in 
spatial domain. 
 
 
4.2 Test arrangements 
 
Subjective quality assessment in normalized conditions has been defined by CCIR 1. The 
CCIR recommendations, however, were originally designed for television pictures and do not 
take into account the bivariate nature of the distortion measurement. Our intention is to 
measure the distortion between two images instead of the quality of a single image. Therefore 
we only partially follow the CCIR recommendations. Furthermore, digital images are rarely 
viewed at normalized viewing conditions but they are edited, enlarged and they will most 
likely be viewed at the smallest possible viewing distance in a sense. The test conditions 
implemented here are summarized in Table 1. 
 
Photographic samples of the test images were prepared with the dimensions of 1313 
centimeters (5.125.12 inches). Offset quality with 1500 lines per inch were used with 
halftone frequency of 150 dots per inch. In our experiments, all compression errors that were 
visible on the screen were also visible in the photographs. The advantages of using 
photographic samples are: (1) original image is accessible as a reference image, (2) the 
images can be easily compared against each other during the evaluation, (3) the viewing 
distance is not fixed but the observer may look at the images from various viewing distances, 
and/or focus only on parts of the image.  
 
Test persons (both experts and non-expert) were instructed to rank the images in a descending 
order from worst to best, and then assign the images with a grade from 0 to 10. The grades are 
essential; the ranking itself is not interesting except helping the evaluation process. Besides 
the grades, the test persons were encouraged to give verbal comments to describe the 
distortion in the images. The interpretation of the scale was similar to the MOS scale (mean 
opinion score) but an extended version of the original five-grade scale was used. 
 
Before analyzing the results, the grades given by each person in each image set were 
normalized to have zero mean and unit standard deviation. The normalized grades in each set 
were then rescaled to the range [0, 1] according to the minimum and maximum of the 
normalized values. For example, the average grades (for Lena) given by different persons 
varied from 3.00 to 7.43 before normalization. The standard deviation varied from 1.80 to 
3.55. After normalization the corresponding average values and standard deviation were 0.54 
and 0.23 for all test persons. 
 
 
Table 1: Conditions of the subjective quality assessment. 
 
 Image samples: Offset quality photographs 
 Viewing conditions: Normal office environment 
 Viewing distance: Free of choice for the observer 
 Time of evaluation: Unlimited 
 Number of observers: 15-39 
 Grading: Extended MOS scale (0-10). 
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5. Test results 
 
Error maps produced from the three quality factors are illustrated in Fig. 4. JPEG was able to 
retain the colors and the contrast of the image rather well; only casual distortion spots appear 
in the error map of d1. Most of the distortion originates from structural errors shown in d2. 
The dominating distortion type in BTC is the jaggedness of the edges which reflects to the 
error map of d2. BTC has also the effect of increasing the contrast which is shown in d1. 
Quantization errors in BTC are shown throughout the error map of d3. In QT, the blockiness 
and quantization effect appear only in the low contrast areas of the image. They are captured 
by d2 and d3, respectively. 
 
The overall performance of the proposed method is tested next by comparing its results with 
the subjective grades. Before making any comparisons the values are scaled into the range 
0, 1. PQS results are also included in the comparison. They have been calculated by the 
PQS-software available at http://info.cipic.ucdavis.edu. The original PQS values (in the range 
0, 5) have been rescaled by dividing them by 5. 
 
Overall, the proposed method correlates well to the subjective quality throughout the image 
quality range, see Fig. 5. PQS, on the other hand, gives consistently too high grades for QT, 
BTC and AMBTC compressed images, see Fig. 6. Especially the blockiness in the low contrast 
regions in QT seems to be problematic. The proposed method also tends to give slightly too 
high grades for the same images but with lesser amount. The corresponding correlation 
coefficients for each image are summarized in Fig. 7. 
 
The contribution of the three quality factors are shown in Table 2 where the correlation 
coefficients are shown for all set of combinations of the weighted quality factors. The results 
are twofold: in case of Lena and Airplane (512512) D1 and D3 contributed most to the 
measure; whereas D2 was the most important factor in case of Bridge (256256). It is also 
noted that the contrast measure alone works reasonably well giving comparable results to 
PQS even though it is unable to detect correctly structural errors and the quantization effect in 
BTC, AMBTC and QT images. 
 
We studied both the proposed measure and PQS further by optimizing their weights for each 
image separately. This is not a realistic way to design any measure but it helps us understand 
the potential advantages and problems of these measures. The optimized correlation 
coefficients were (0.995, 0.962, 0.964) for the proposed measure and (0.989, 0.916, 0.927) for 
PQS in case of (Bridge, Lena, Airplane). The correlation between the proposed measure and 
the subjective quality was relatively high, and better than that of PQS. From the five PQS 
quality factors only F4 (correlated errors) and F5 (errors nears the edges) seem to be 
important. In case of Bridge, the weights of all other factors were set to zero due to the 
optimization. The relative importance of F4 and F5 was approximately equal. In case of Lena 
and Airplane, also the factor F5 was masked out and only F4 contributed to PQS. The problem 
of the quality factor F3 seem to be its assumption of 88 block size which is not the case in 
BTC, AMBTC and QT. Quality factors F1 and F2 did not contribute to PQS at all. 
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JPEG (1.0) BTC QT 

 
   

Error maps due to d1 (contrast errors): 

 
   

Error maps due to d2 (structural errors): 

 
   

Error maps due to d3 (quantization errors): 

 
   

Figure 4: Magnifications of the compressed Lena image and the corresponding error maps. 
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Figure 5: Scattering of the quality grades of the proposed model and PQS. 
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Figure 6: Quality grades of the proposed measure and PQS. 
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Figure 7: Correlation coefficients between the objective measures and subjective quality. 
 
 
Table 2: Correlation coefficients of the different combinations of the quality factors. 
 
 Factor Bridge Lena Airplane 
 D1 0.966 0.900 0.916 
 D2 0.985 0.871 0.870 
 D3 0.464 0.290 0.787 
 D1+D2 0.982 0.908 0.910 
 D1+D3 0.964 0.960 0.952 
 D2+D3 0.892 0.627 0.947 
 D1+D2 +D3 0.985 0.962 0.943 
 
 
6. Conclusions 
 
A blockwise distortion measure was proposed for evaluating the visual quality of compressed 
images. The method outperformed PQS and is much simpler to implement. The proposed 
measure is general in the sense that it measures how well important visual properties have 
been preserved in the distorted image. It does not make any strict assumptions on the viewing 
distance or the compression methods used. The method should also be applicable to color 
images; properties like color richness and saturation are captured by the quantization and 
contrast measures respectively. In video images, however, there are aspects like temporal 
distortion 18 which cannot be measured by our model. 
 
The main emphasis has been here on the design of the quality factors. Even though the 
proposed method performed well for the set of test images, the weighting was somewhat 
problematic. The optimal weighting was found to be different for each image and it is 
unlikely that there are any globally optimal weighting for the quality factors. Thus, the 
generality of the method leaves something to be desired. A more general (but also more 
complex) measure could be designed by defining better quality factors, better weighting, and 
by taking account HVS more thoroughly. Nevertheless, the proposed method still 
outperformed both PQS and MSE. 
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