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a b s t r a c t

In clustering algorithm, one of the main challenges is to solve the global allocation of the clusters instead
of just local tuning of the partition borders. Despite this, all external cluster validity indexes calculate
only point-level differences of two partitions without any direct information about how similar their
cluster-level structures are. In this paper, we introduce a cluster level index called centroid index.
The measure is intuitive, simple to implement, fast to compute and applicable in case of model mismatch
as well. To a certain extent, we expect it to generalize other clustering models beyond the centroid-based
k-means as well.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Quality of centroid-based clustering is usually evaluated by
internal validity indexes, most commonly by measuring intra-
cluster variance. Internal validity indexes use information intrinsic
to the data to assess the quality of a clustering. These include
measures such as Dunn's index [1], Davies–Bouldin index [2] and
Silhouette coefficient [3]. For a recent survey, see [4].

External indexes can be applied to compare the clustering
against another solution or ground truth (if available). The ground
truth can be a small representative training set given by an expert
of the application domain. However, synthetic data is often used to
test different aspects of the clustering methods, where their
ground truth is easier to obtain. The indexes can also be applied
in clustering ensemble [5,6] and used in genetic algorithms [7] to
measure genetic diversity in a population. In [8], external indexes
have been used for comparing the results of multiple runs to study
the stability of the k-means algorithm. In [9], a framework for
evaluating popular internal validity indexes was introduced by
using external indexes on ground-truth labels. To sum up, in all
these cases the main goal is to measure the similarity of two given
clusterings.

Most external indexes are based on counting howmany pairs of
data points are co-located into the same (or different) cluster in
both solutions. Examples of these are Rand index [10], adjusted
Rand index [11], Fowlkes and Mallows index [12] and Jaccard

coefficient [13]. A popular application-dependent approach is to
measure classification error, which is quite often employed in
supervised learning. Another type of external validity indexes is
based on finding matches between the clusters in two solutions.
Normalized van Dongen criterion [14,15] has a simple computation
form and it can measure data with imbalanced class distributions.
Other indexes utilize the entropy in different manners to compare
two solutions. Mutual information [16] is derived from conditional
entropy and variation of information [17] is a complement of the
mutual information. Studies of external indexes can be found in
[15,18].

For comparing clusterings, external indexes have been widely
used by counting how many pairs of data points are partitioned
consistently in the two clustering solutions. In order to be
consistent, a pair of points must be allocated in both solutions
either in the same cluster, or in a different cluster. This provides
estimation of point-level similarity but does not give any direct
information about the similarity at cluster level. For example in
Fig. 1, both examples have large point-level mismatches (marked
by yellow) but only the second example has cluster level mismatches.

In this paper, we propose a cluster level measure to estimate the
similarity of two clustering solutions. First, nearest neighbor mapping
is performed between the two sets of cluster prototypes (centroids),
and the number of zero-mappings is then calculated. Each zero count
means that there is no matching cluster in the other solution. The
total number of zero-mappings gives direct information of howmany
different cluster locations are there in the two clustering solutions in
total. In case of a perfect match, the index provides zero value
indicating that the solutions have the same cluster-level structure.
We denote the measure as centroid index (CI).
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Most similar to our method are set-based measures [14,17].
They perform matching of the clusters and then measure the
proportion of overlap across the matching clusters. Heuristic
matching by a greedy algorithm is often done [14,31] because
the optimal matching by Hungarian algorithm, for example, is not
trivial to implement and takes O(N3) time. Matching problem
assumes that the number of clusters is equal. If this is not the case,
some clusters must be left out and dealt with another manner. The
set-based methods are also restricted to measure point-level
differences.

Fig. 2 demonstrates the difference between a local point-level
index (Adjusted Rand index) and the new centroid index (CI). The
results of agglomerative clustering [19,20] and random swap
algorithms [21,22] have only point level differences but have the
same cluster level structure. The corresponding CI-value is 0. The
result of the k-means, however, has one differently allocated
centroid and the corresponding CI-values are 1. Adjusted Rand
index reflects only to point level differences (values of 0.82, 0.88
and 0.91), which have less clear interpretation in practice. The
proposed index is therefore more informative.

Cluster-level
mismatch

Cluster-level
mismatch

Fig. 1. Two different point-level clustering comparisons. Differences in the partitions are emphasized by yellow coloring. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

K-meansK-meansRandom SwapRandom Swap

Agglomerative Agglomerative 
clusteringclustering

ARI=0.88
CI=1

ARI=0.82
CI=1

ARI=0.91
CI=0

Fig. 2. Three clustering solutions and the corresponding values of Adjusted Rand index and the proposed centroid index (CI). The k-means solution has one incorrectly
allocated cluster at the bottom left corner and one cluster missing at the top right corner. Otherwise the three solutions have only point level differences.
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The main advantage of the centroid index is its clear intuitive
interpretation. Each zero-count indicates exactly one missing
cluster in the solution, either caused by different global allocation
or by different number of clusters. The other benefits are that the
centroid index is simple to implement and fast to compute.
We expect that the main idea can be generalized to other
clustering models beyond the centroid-based model (k-means).

The rest of the paper is organized as follows. We first define the
centroid index in Section 2. We also give extension to measure
point-level differences and discuss generalization to other type
clustering problems. In Section 3, the index is compared against
the existing indexes using artificial and real data. Furthermore, we
apply the index for studying highly optimized clustering solutions
and find out that it can recognize structural differences even
between near-optimal clusterings that have seemingly similar
partition. Another application of the index is to measure the
stability of clustering algorithms. Conclusions are then drawn in
Section 4.

2. Cluster level similarity

K-means clustering problem is defined as follows. Given a set of
N data points x in D-dimensional space, partition the points into K
clusters so that intra cluster variance (mean square error) is
minimized. Centroids ck represents the prototypes in k-means.
The cost function is defined as

f ¼ 1
N

∑
N

i ¼ 1
∑

xi A ck
jjxi�ckjj2 ð1Þ

2.1. Duality of centroids and partition

Partition and the set of centroids are defined as

pi’arg min
1r jrM

jjxi�cjjj2 8 iA ½1;N� ð2Þ

cj’ ∑
pi ¼ j

xi = ∑
pi ¼ j

1 8 jA ½1;K� ð3Þ

For a given partition {pi}, the optimal prototype of a cluster is its
centroid (arithmetic mean). And vice versa, for a given prototypes,
optimal partition can be solved by assigning each point to the
cluster whose prototype cj is nearest. Thus, partition and centroids
can be considered as dual structures (see also Appendix A): if one of
them is given, the other one can always be uniquely determined
using (2) and (3).

The duality is utilized in the k-means algorithm [23], which finds
the nearest local minimum for a given initial solution by repeating
these two properties in turn. The steps are called partition step and
centroid step. However, k-means is limited to make local point-level
changes only. More advanced algorithms, on the other hand,
focus on solving the cluster location globally by operating with
the prototypes, and solve the partition trivially by Eq. (2). Most
common approach is to use k-means for the point-level fine-tuning,
integrated either directly within the algorithm, or applying it as a
separate post processing step.

Incremental algorithms add new clusters step by step by
splitting an existing cluster [24,25], or by adding a new prototype
[26], which attracts points from neighbor clusters. The opposite
approach is to assign every data point into its own cluster,
and then stepwise merge two clusters [27] or remove an existing
one [28]. Fine-tuning can be done by k-means either after each
operation, or after the entire process. Most successful iterative
algorithms swap the prototypes randomly [21,22] or by determi-
nistic manner [29], whereas genetic algorithms combine two

entire clustering solutions by a crossover [30]. The success of all
these algorithms is based on making cluster level changes. It is
therefore reasonable that the similarity of solutions is measured at
cluster level also.

2.2. Centroid index

Centroid Index (CI) measures cluster-level differences of two
solutions. Since most essential cluster-level information is cap-
tured by the prototypes (cluster centroids), the calculations are
based on them. Given two sets of prototypes C¼{c1, c2, c3,…, cK1}
and C0 ¼{c01, c02, c03,…, c0K2}, we construct nearest neighbor map-
pings (C-C0) as follows:

qi’arg min
1r jrK2

Jci�c0j J
2 8 iA ½1;K1� ð4Þ

For each target prototype c0 j, we analyze how many prototypes
ci consider it as the nearest (qi¼ j). In specific, we are interested in
the ones which no prototype is mapped to

orphanðc0jÞ ¼
1 qia j 8 i
0 otherwise

�
ð5Þ

The dissimilarity of C in respect to C0 is the number of orphan
prototypes

CI1ðC;C0Þ ¼ ∑
K2

j ¼ 1
orphanðc0jÞ ð6Þ

We define that two clusterings (with same number of clusters
K1¼K2) have the same cluster-level structure if every prototype is
mapped exactly once (CI1¼0). Otherwise, every orphan indicates
that there is a cluster in C0 that is missing in C. For example, in Fig. 3
there are two sets of prototypes. Two prototypes are orphans,
which is interpreted that there are two differently allocated proto-
types with respect to the reference solution.

Note that the mapping is not symmetric (C-C0aC0-C).
Symmetric version of the index is obtained by making the
mapping in both ways

CI2ðC;C0Þ ¼ max fCI1ðC;C 0Þ;CI1ðC0;CÞg ð7Þ

The index has clear intuitive interpretation: it measures
how many clusters are differently located in the two solutions.
In specific, if there are no orphans (each prototype has been
mapped exactly once in both ways), the two clustering structures
are equal. This kind of bijective 1:1 mapping happens only if the
solutions have the same number of clusters, and the prototypes
have the same global allocation. From algorithm point of view, the
value of the index indicates how many prototype need to be
swapped in order to transform one of the clustering solution to
the other.

2.3. Generalizations

2.3.1. Different number of clusters
With the symmetric variant (CI2), the number of clusters does

not matter because the index is not limited by the pairing as other
set-based measures. Instead, it gives a value that equals to the
difference in the number of clusters (K2�K1), or higher if other
cluster-level mismatches are also detected. Intuitive interpretation
of the value is the same as in Section 2.2. If the one-way variant
(CI1) is used, it should be calculated by mapping from the solution
with fewer clusters to the solution with more clusters. Sample
values are shown in Table 1, where three clusters found by
k-means are compared to the ground truth (GT) with two clusters.
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2.3.2. Point-level differences
One limitation of the index is that it provides only very coarse

(integer) values. This is suitable to measure cluster-level differences
but not to measure more accurate point-level differences. Sample
calculations are shown in Table 1 using the four sample data sets of
Fig. 4. Here CI detects that Clustering 1 has different global allocation
than 2–3–4. Among these three, the result is 0 (2–3, 2–4) or 1 (3–4)
depending on the amount of variation of the topmost two clusters.

The centroid index, however, easily extends to measure point-
level differences by combining it with a set-matching index [15,31]
such as criterion-H [32] or van Dongen index [14]. In set-matching
measures, the clusters are first paired by maximum weighted

matching or by a greedy algorithm. The paired clusters are
analyzed how many points they share relative to the cluster size.
Our approach is simpler than that. We search for the nearest
match without the pairing constraint, and allow 1:N type of
matches. This is useful especially when the solutions have differ-
ent number of clusters. Point-level centroid similarity index (CSI)
can then be calculated as

CSI¼ S12þS21
2

where S12 ¼
∑K1

i ¼ 1Ci \ Cj

N
; S21 ¼

∑K2
j ¼ 1Cj \ Ci

N

The results of CSI as well as the two set-based measures are
shown in Table 1. We conclude that the point-level indexes

Table 1
CI, CSI, Normalized van Dongen index (NVD) and Criterion-H (CH) values between the four different k-means clustering (3 clusters) and ground truth (GT). Perfect match are
indicated by the following values: CI¼0, NVD¼0, CH¼0, CSI¼1.
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Fig. 3. Two sets of prototypes and their mappings are shown for S2 (left) and for Birch3 (right). In both examples, there are two orphans resulting to index value of CI¼2.

1 2 3 4

Fig. 4. Four different k-means solutions. Solution 1 has clearly different allocation than the others, whereas solutions 2–4 have mainly local differences.
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provide more accurate measurements than CI but lack the intuitive
interpretation of how many clusters are differently allocated.
For more thorough study of the point-level measurement and
their normalizations we refer to a follow-up paper [33], which is
currently under process.

For better understanding the capability and limitations of the
measure, on-line visualization on 2-D data sets is available for
interactive testing here: http://cs.uef.fi/sipu/clustering/animator/.

2.3.3. Other clustering models
So far we have focused on k-means clustering assuming that

the data is in (Euclidean) vector space. This restriction, however, is
not really necessary. The only requirement for the index is that we
can calculate similarity between any two clusters, and in this
way, find the nearest neighbor clusters in the other solution.
In k-means, the clusters are assumed to be spherical (e.g.
Gaussian) and have uniform variance, in which case the nearest
neighbor is trivially found by calculating the centroid distances.

In Gaussian mixture model (GMM), each cluster (called com-
ponent) is represented by the centroid and covariance matrix
(often just its diagonal) in order to model elliptical clusters. In this
case, it is possible to solve the nearest neighbor by finding the
most similar Gaussian component as in [34]. After this, the
number of orphan models can be calculated in the same way to
measure the similarity of two GMMs. Potential utilization of this
could be done in a swap-based EM algorithm [35].

Extension to density-based clustering is less straightforward
but possible. In [36], clustering is represented by their density
profiles along each attribute. Our index can be generalized using
this or any other definition of the similarity between two clusters,
and then performing the nearest neighbor mapping.

3. Experiments

We compare the centroid index against popular point-level
external validity indexes such as adjusted Rand index (ARI) [5],
normalized van Dongen (NVD) [14] and normalized mutual
information (NMI) [42].

Denote the two clustering partitions by P¼{p1, p2,…, pK1} and
S¼{s1, s2,…, sK2} whose similarity we want to measure. For every
pair of data points (xi, xj), the following counts are calculated:

a¼the number of point pairs in the same cluster in P and in S.
b¼the number of point pairs in the same cluster in P but in
different in S.
c¼the number of point pairs in the same cluster in S but in
different in P.
d¼the number of point pairs in different clusters in P and in S.

A contingency table of P and S is a matrix with nij, which is the
number of objects that are both in clusters Pi and Sj, i.e., nij¼
|Pi\Gj|. The pair counting index ARI is based on counting the pairs
of points on which the two clusterings agree or disagree. The
indexes are defined based on the contingency table as follows:

ARI¼ a�ðaþcÞðaþbÞ=d
ðaþcÞþðaþbÞ=2�ðaþcÞðaþbÞ=d ð8Þ

NVD¼
2N�∑K

i ¼ 1maxK0j ¼ 1nij�∑K0
j ¼ 1maxKi ¼ 1nij

� �
2N

ð9Þ

NMI¼ MIðP;GÞ
ðHðPÞþHðGÞÞ=2 ð10Þ

where H(P) is the entropy of clustering P. The value indicating
complete match is 0 for NVD, and 1 for ARI and NMI.

3.1. Data sets

We consider the data sets summarized in Table 2 consisting of
four generated data sets (Fig. 5), three image data sets (Fig. 6), and
Birch data sets [37] (Fig. 7). The points in the first set (Bridge) are
4�4 non-overlapping vectors taken from a gray-scale image, and
in the second set (Miss America) 4�4 difference blocks of two
subsequent frames in video sequence. The third data set (House)
consists of color values of the RGB image. Europe consists of
differential coordinates from a large vector map. The number of
clusters in these is fixed to M¼256. The data sets S1–S4 are
two-dimensional artificially generated data sets with varying
complexity in terms of spatial data distributions with M¼15
predefined clusters.

3.2. Clustering algorithms

For generating clustering, we consider the following algo-
rithms: k-means (KM), repeated k-means (RKM), k-meansþþ
[38], X-means [25], agglomerative clustering (AC) [39], global
k-means [26], random swap [21], and genetic algorithm [30]. For
more comprehensive quality comparison of different clustering
algorithms, we refer to [28].

K-meansþþ selects the prototypes randomly one by one so
that, at each selection, the data points are weighted according to
their distance to the nearest existing prototype. This simple initi-
alization strategy distributes the prototypes more evenly among the
data points. Both k-meansþþ and RKM are repeated 100 times.

X-means is a heuristic hierarchical method that tentatively
splits every cluster and applies local k-means. Splits that provide
improvement according to Bayesian information criterion are
accepted. Kd-tree structure is used to speed-up k-means.

Agglomerative clustering (AC) and Global k-means (GKM) are
both locally optimal hierarchical methods. AC generates the
clustering using a sequence of merge operations (bottom-up
approach) so that at each step, the pair of clusters is merged that
increases objective function value least.

Global k-means (GKM) uses the opposite top-down approach.
At each step, it considers every data point as a potential location for
a new cluster, applies k-means iterations (here 10 iterations) and
then selects the candidate solution that decreases the objective
function value most. The complexity of the method is very high and
it is not able to process the largest data sets in reasonable time.

Random swap (RS) finds the solution by a sequence of prototype
swaps and by fine-tuning their exact location by k-means. The
prototype and its new location are selected randomly, and the new
trial solution is accepted only if it improves the previous one. This
iterative approach is simple to implement and it finds the correct
solution if iterated long enough.

Genetic algorithm (GA) maintains a set of solutions. It gener-
ates new candidate solutions by AC-based crossover, and fine-
tuned by two iterations of k-means. We use population of 50
candidate solutions, and generate 50 generations. In total, there
are 2500 high quality candidate solutions, and the best clustering
result is produced, which is also visually verified to be the global
optimum (S1–S4, Birch1, Birch2).

3.3. Experiments with artificial data

We made visual comparison of the results of all algorithms
against the known ground truth with all 2-D data sets. Figs. 8
and 9 show selected cross-comparison samples for S1–S4, Birch1
and Birch2. For S1–S4, all algorithms provide correct cluster alloca-
tion except k-means, X-means for S2, and AC for S4. For Birch1 and
Birch2, AC, RS and GA all provide correct results, with CI¼0. In all
cases, it was visually confirmed that CI equals to the number of
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incorrectly located prototypes. Fig. 9 demonstrates the kind of
clustering mistakes that typically appear.

For Birch3, ground truth is not known. A visual comparison
between RS and GA results is therefore provided in Fig. 10 as these
algorithms provide the most similar results. Two clusters are
differently located, and the other clusters have only minor point-
level differences. At the lower part there are few point-level
differences that demonstrate how large differences are tolerated
by the CI-measure to be recognized as having the same cluster
level structure.

3.4. Comparison of clustering algorithms

We next study the numerical results of the centroid index and
the four point-level indexes. First, we report MSE values in Table 3
to give rough understanding about the clustering quality of the
generated solutions. K-means provide clearly weaker results in all
cases but it is difficult to make further conclusions about how good
or bad the results are exactly. With Bridge we get 179.76 (KM),
173.64 (KMþþ), 168.92 (AC), 167.61 (RS) and 161.47 (GA) whereas
the best reported value is 160.73 in [22]. With Birch1, we get 5.47

Spatial vectors: Spatial residual vectors: Color vectors: Differential coordinates:

Bridge (256×256)  Miss America (360×288) House (256×256) Europe (vector map)

Fig. 6. Image data sets and their two-dimensional plots.

Data set S1 Data set S2 Data set S3 Data set S4

Fig. 5. Generated data sets with varying degrees of spatial overlap.

Table 2
Summary of the data sets.

Data set Type of data set Number of data points (N) Number of clusters (M) Dimension of data (D)

Bridge Gray-scale image blocks 4096 256 16
Housea RGB image 34,112 256 3
Miss America Residual image blocks 6480 256 16
Europe Differential coordinates 169,673 256 2
Birch1–Brich3 Synthetically generated 100,000 100 2
S1–S4 Synthetically generated 5000 15 2

a Duplicate data points are combined and their frequency information is stored instead.
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S1: ARI=0.83,  
NVD=0.09, NMI=0.93 

CI2=2 
S2: ARI=0.89, NVD=0.08, 

NMI=0.90, CI2=1 
S3: ARI=0.86, NVD=0.06, 

NMI=0.94, CI2=1 

S4: ARI=0.82, 
NVD=0.10, NMI=0.90, 

CI2=1 

Fig. 8. Values of three indexes when comparing random swap (blue) against k-means (red) for S1, S3, S4, and versus X-means (purple) for S2. The partition borders are drawn
for the k-means and X-means algorithms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3hcriB2hcriB1hcriB

Fig. 7. Birch data sets.

Birch1 Birch2

Two clusters
but only one 

allocated

Three mapped 
into one

11

11

00

11

33

11

Fig. 9. K-means clustering (red points) versus reference solution (blue) – which is random swap clustering (left), and genetic algorithm (right). The values are CI2¼7 for
Birch1 and CI2¼18 for Birch2 (only small fragment of the data shown here). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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(KM), 4.88 (KMþþ), 4.73 (AC), 4.64 (RS) without any clear
evidence whether the AC and KMþþ results can be considered
essentially similar to that of RS.

Table 4 provides the corresponding values for all the point-
level indexes. Known ground truth is used as the reference
solution when available (S1–S4, Birch1, Birch2) and for the remain-
ing data sets the result of GA is used as reference.

Adjusted Rand index provides higher values for all the correct
clustering results with S1–S4, than for any of the incorrect ones.
However, the scale is highly data dependent, and there is no way
to distinct between correct and incorrect clustering based on the
value. The correct clustering results are measured by values 1.00
(S1) 0.98–0.99 (S2), 0.92–0.96 (S3) but 0.93–0.94 (S4). Europe data
set is even more problematic as the measure makes almost no
distinction among the clustering methods.

The other two indexes perform similarly to ARI. The values of
NVD are rather consistent whereas NMI provides higher variation
and have the same problems with Europe and the S1–S4 sets. The
point-level variant of the proposed index (CSI) provides 0.98–1.00
values when the clustering is correct. It somewhat suffers from the
same problem as the other point-level indexes (Birch1 for XM
providing value 0.98 despite clustering is not correct) but overall it
is much more consistent than ARI, NMI and NVD.

The CI-values are collected in Table 5. The results of S1–S4,
Birch1 and Birch2 are consistent with the visual observations: the
values indicate exactly how many clusters are incorrectly allo-
cated. In specific, the index recognizes the failures of X-means (S2)
and AC (S4).

With higher dimensional image sets the results cannot be
visually confirmed, and since the data is not expected to have
clear clusters, the interpretation is less intuitive. Nevertheless, CI
provides good estimation of the clustering quality and is useful for
comparing the algorithms. For example, we can see that agglom-
erative clustering (AC), random swap (RS) and Global k-means
(GKM) provide CI-values varying from 18 to 42, in comparison to
the values 43–75 of k-means. This gives more intuitive under-
standing how much each solution differs to that of the reference
solution.

Among the algorithms, only RS, GKM and GA are capable for
finding the correct cluster allocation (CI¼0) for the data sets for
which ground truth is known. Agglomerative clustering has one
incorrect allocation with S4. The improved k-means variants (RKM,
KMþþ and XM) fail to find the optimal cluster allocation for Birch
sets, whereas the plain k-means fails in all cases.

3.5. Comparison of highly optimized solutions

The results in Table 5 indicate that although the best algorithms
provide quite similar results in terms of minimizing the cost
function (MSE), the clusters have different global allocation. For
example, the results of GA (161.47) and GKM (164.78) have 33
clusters (13%) allocated differently. We therefore study whether
this is an inevitable phenomenon when clustering non-trivial
multi-dimensional image data.

Blue missingBlue missing

Red missingRed missing

Local variationsLocal variations

Fig. 10. Random swap (blue) versus genetic algorithm (red) with CI2¼2. There are
two places (marked by yellow) where the results have different allocation of
prototypes. In few places there are local variations of the prototypes that do not
reflect to CI. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 3
Clustering quality measured by internal index (variance).
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Next we consider only highly optimized (near-optimal) cluster-
ing results produced by three different optimization processes:

� GAIS: Genetic Algorithm with Iterative Shrinking (long variant)
[28].

� RS: Random Swap [21].
� PRS: Perturbation Random Swap (experimental algorithm).

GAIS is a variant of the genetic algorithm (GA) that uses
random initial solutions and iterative shrinking as the crossover
method. The best known algorithms are all based on this variant
one way or another. Random Swap is another powerful optimiza-
tion technique that always finds the global minimum or very close
to it – if iterated long. We consider here 1.000.000 (1 M) and
8.000.000 (8 M) iterations, and an experimental alternative (PRS)
that perturbs the attributes of every centroid by 2-5% after every
10 iterations.

We use three different starting points for the optimization, see
Table 6. First one is a random clustering optimized by RS (RS8M).
The other two are different runs produced by GAIS labeled by the
year when ran (GAIS-2002 and GAIS-2012). These two are further
optimized by various combinations of RS and PRS aiming at the
lowest possible MSE-value.

In Table 7, we compare all these high quality solutions against
each other. Although their MSE-values are very close to each other,
the results indicate that they all have different global allocation. In
specific, the RS-optimized results have 22–25 difference cluster
allocations compared to the GAIS results. However, when we
compare the results within the ‘GAIS-2002 family’, they have
exactly the same global allocation (CI¼0). This indicates that RS
is capable for optimizing the MSE further (from 160.72 to 160.43)
but only via local fine-tuning while keeping the global allocation
unchanged.

The same observation applies to the results of the ‘GAIS 2012
family’: fine-tuning by MSE is observed (from 160.68 to 160.39)
but only minor (one cluster) difference in the global allocations, at
most. Despite similar behavior when optimizing MSE, the two
GAIS families have systematic differences in the global allocation:
13–18 differently allocated clusters, in total.

From the results we conclude that, in case of multi-dimensional
image data, the index reveals existence of multiple clustering
structures providing the same level of MSE-values but with different
global cluster allocation. This indicates the existence of multiple
global optima and that the proposed index can detect this. The point-
level indexes can reveal the differences as well (into a certain extent)
but without knowing the source of the differences originating from
different global structure.

3.6. Stability of clustering

We next apply the index for measuring stability of clustering
[40]. For this purpose, we generate from each data set 10 subsets by
random sub-sampling, each of size 20% (overlap allowed). Each
subset is then clustered by all algorithms. We measure the similarity
of the results across the subsets within the same algorithm. In case
of stable clustering, we expect the global structure to be the same
expect minor changes due to the randomness in the sampling.

The results (Table 8) show that no variation is observed (0%)
when applying a good algorithm (RS, GKM and GA) for the data
sets S1–S4, Birch1 and Birch2. These all correspond to the case when
the algorithm was successful with the full data as well (see
Table 5). Results for NVD can also recognize stability for S1 and
Birch1 only but not for S2–S4 and Birch2. In general, instability can
originate from several different reasons: applying inferior

Table 4
Clustering quality measured by the point-level indexes. The cases when the
clustering was visually confirmed to be correct are emphasized by shading, and
the six incorrect clusterings with S1–S4 are emphasized by boldface.
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algorithm (k-means variants), using too small sub-sample size
relative to the number of clusters, or using wrong number of

clusters (K¼14 or K¼16 for S1–S4), or using inferior validity
measure.

An open question is whether the stability could be used for
detecting the number of clusters. Further tests would be needed as
clustering tend to be stable also when only few (K¼3) clusters are
used. Thus, an external validity index such as CI alone is not
sufficient for this task. This is left as future studies.

4. Conclusions

We have introduced a cluster level similarity measure called
centroid index (CI), which has clear intuitive interpretation by
corresponding to the number of differently allocated clusters.
Value CI¼0 indicates that the two clustering have the same global
structure, and only local point-level differences may appear.
Values CI40 are indications of how many clusters are differently
allocated. In swap-based clustering, this equals to the number of
swaps needed, and an attempt has been made in [41] for
recognizing the potential swaps.

The centroid index is trivial to implement and can be computed
fast in O(K2) time based on the cluster centroids only. Point-level
extension (CSI) was also introduced by calculating the (propor-
tional) number of same points between the matched clusters. This
provides more accurate result at the cost of losing the intuitive
interpretation of the value.

The index was demonstrated to be able to recognize structural
similarity of highly optimized clustering of 16-dimensional image
data. General belief is that nearest neighbor search (and clustering
itself) would become meaningless when dimension increases, yet
the index found out similarity of the clustering structures that was
not previously known. We also used the index to measure stability
of clustering under random sub-sampling. The results are promis-
ing in such extent that we expect the index to be applicable for
solving the number of clusters even though not in trivial manner
as such. This is a point of further studies.

The centroid index is also expected to generalize to other
clustering models such as Gaussian mixture models and density-
based clustering. All what would be needed is to define similarity
of two clusters in order to perform the nearest neighbor mapping.

Table 5
Clustering quality measured by the proposed centroid index (CI2).

Table 7
CI1-values between the highly optimized algorithms for Bridge.

Centroid index (CI1)

Main algorithm: RS8M GAIS 2002 GAIS 2012

þTuning 1 � � RS1M RS8M � RS1M RS8M PRS RS8M
þTuning 2 � � � � � � � � PRS

RS8M – 19 19 19 23 24 24 23 22
GAIS (2002) 23 – 0 0 14 15 15 14 16
þRS1M 23 0 – 0 14 15 15 14 13
þRS8M 23 0 0 – 14 15 15 14 13
GAIS (2012) 25 17 18 18 – 1 1 1 1
þRS1M 25 17 18 18 1 – 0 0 1
þRS8M 25 17 18 18 1 0 – 0 1
þPRS 25 17 18 18 1 0 0 – 1
þRS8MþPRS 24 17 18 18 1 1 1 1 –

Table 6
Highly optimized clustering results for Bridge. First three rows are reference
results from previous experiments. The numbers in the parentheses refer to the
number of random swap iterations applied.
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Appendix A. Duality property

An important property of centroid-based clustering is that the
distortion difference originates from the movement of the centroid
to any other point depends on the size of the cluster and the
distance between the centroid and the point.

Lemma 2.1. Given a subset S of points in Rd with size n, let c be the
centroid of S. Then for any zARd, there is

∑
xi AS

jjxi�zjj2� ∑
xi AS

jjxi�cjj2 ¼ njjc�zjj2 ðA1Þ

Proof. By expanding the left side, we have

∑
xi AS

jjxi�zjj2� ∑
xi AS

jjxi�cjj2

¼ ∑
xi A S

ðjjxijj2�2xizþjjzjj2Þ� ∑
xi A S

ðjjxijj2�2xicþjjcjj2Þ

¼ ∑
xi A S

2xic�2xizþjjzjj2�jjcjj2

¼ 2 ∑
xi A S

xiðc�zÞþ ∑
xi AS

jjzjj2� ∑
xi A S

jjcjj2

¼ 2ncðc�zÞþnz2�nc2 ¼ njjc�zjj2

The fourth equality follows from the fact that c¼ 1=nΣxi A S xi.

For a given partition, the optimal set of prototypes is the
centroid (arithmetic mean) of the clusters. And vice versa, for a
given set of prototypes, optimal partition can always be obtained
by assigning each point to its nearest centroid. Thus, partition and
centroids are dual structures.

Lemma 2.2. For each iteration tZ0 in k-means, we have that

f pðtÞi
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i
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According to the definition in Eq. (1),
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The second inequality follows the Lemma 2.1. Intuitively, Lemma 2.2
indicates the duality between the centroids and partitions.
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