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Centroid Ratio for a Pairwise Random Swap
Clustering Algorithm

Qinpei Zhao and Pasi Franti, Senior Member, IEEE

Abstract—Clustering algorithm and cluster validity are two highly correlated parts in cluster analysis. In this paper, a novel idea for
cluster validity and a clustering algorithm based on the validity index are introduced. A Centroid Ratio is firstly introduced to compare
two clustering results. This centroid ratio is then used in prototype-based clustering by introducing a Pairwise Random Swap
clustering algorithm to avoid the local optimum problem of k-means. The swap strategy in the algorithm alternates between simple
perturbation to the solution and convergence toward the nearest optimum by k-means. The centroid ratio is shown to be highly
correlated to the mean square error (MSE) and other external indices. Moreover, it is fast and simple to calculate. An empirical study
of several different datasets indicates that the proposed algorithm works more efficiently than Random Swap, Deterministic Random
Swap, Repeated k-means or k-means++. The algorithm is successfully applied to document clustering and color image quantization

as well.

Index Terms—Data clustering, random /deterministic swap, clustering evaluation, k-means

1 INTRODUCTION

ROTOTYPE-BASED clustering is a typical clustering

method for finding a sequence of prototypes that
best fit data with unknown structure. For example, a sin-
gle prototype (centroid) is used to represent a cluster
in k-means [1], which has been widely applied for data
grouping in real applications not only because it has low
computational and memory space requirements but it also
achieves good results in most cases. However, it is known
to be sensitive to its initialization.

A common way to address the initialization problem is
to run k-means multiple times with a different set of ran-
domly chosen initial parameters [2] and to choose the best
solution as a result. We call this variant repeated k-means
(RKM). For different data sets, the proper number of repe-
titions for RKM is an empirical choice. Swap-based clustering
algorithm [3] is a local search heuristic to find optimal
centroids based on the convergence property of k-means.
In each iteration, a swap strategy is employed to look
for a pair of centroids, of which one is to be removed,
and the other inserted, to arrive at an improved solu-
tion. If better prototypes are found, the swap is made.
This procedure is repeatedly performed after a fine-tuning
step by k-means. This swap-based clustering is simple to
implement and obtains good quality results independently
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of its initialization. This swap strategy could be either
random or deterministic.

Several other methods have been developed, which are
based on stochastic global optimization such as simulated
annealing [4] and genetic algorithms [5]. These methods have
not gained wide acceptance because of their great time com-
plexity. A global k-means algorithm (GKM) [6] is an incre-
mental approach that dynamically adds one cluster center
at a time through a deterministic global search procedure.
The search procedure consists of N (data size) executions of
the k-means algorithm from suitable initial positions. The
k-means++ algorithm [7] chooses initial values (seeds) for
k-means, and improves both the speed and accuracy of
k-means. It is © (log M)-competitive with the optimal clus-
tering [7], i.e., E[¢] < 8(logM + 2)¢popr where ¢ indicates
the cost function and M represents the number of clusters.

People have identified some data characteristics that can
greatly affect the k-means clustering analysis. These data
characteristics include: high-dimensionality, the size of the
data, the sparseness of the data, noise, outliers, types of
attributes and data sets, and scales of attributes [8]. The con-
ventional k-means uses the Euclidean distance to calculate
the distance between data points, which puts restrictions
on high-dimensional data. In a high dimensional space, the
data becomes sparse, and traditional indexing and algo-
rithmic techniques fail to be efficient and/or effective [9].
Therefore, many clustering algorithms based on conventional
k-means do not work well for high-dimensional data. The
k-means algorithm with cosine distance, which is known
as spherical k-means [10], is a popular method for clustering
high-dimensional data, for example in document clustering.

The clustering algorithm and the validity of the clus-
tering are two essential parts of cluster analysis. In
general, cluster validity can be categorized into two classes:
external [11] and internal validity [12]. Partitions at the
point level are often used for evaluating clusterings by
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external indices [11] such as the Rand index and the Jaccard
coefficient. Since these evaluation measures are at the point
level, they provide high accuracy but their time complexity
is related to both O(M) and O(N), typically O(MN), where
N is the data size. Centroids are representatives for clusters
in prototype-based clusterings. However, there has been
very little work done on clustering evaluation based only
on centroids. In [33], a cluster-level measure to estimate the
similarity of two clustering solutions is firstly proposed.
Centroids represent a global structure of prototypes, and
utilizing only centroids in the evaluation reduces the time
complexity to O(M?).

In this paper, we propose a cluster validity index called
the centroid ratio, which can be used to compare two cluster-
ings and find unstable and incorrectly located centroids in
them. As the centroid ratio can find incorrectly located cen-
troids in two clusterings, we use this property and propose
a novel clustering algorithm called the Pairwise Random
Swap (PRS) clustering algorithm. The incorrectly located
centroids detected by the centroid ratio are selected as the
clusters to be swapped in PRS. Meanwhile, the similarity
value for comparing two clusterings from the centroid ratio
can be used as a stopping criterion in the algorithm.

In Section 4, we demonstrate that the proposed centroid
ratio has a high correlation with other evaluation mea-
sures. The proposed algorithm is then compared to other
algorithms such as random swap clustering (RS), deter-
ministic random swap clustering (DRS), repeated k-means
(RKM), and k-means++ (KM++), on a variety of data sets.
The experimental results indicate that the proposed algo-
rithm requires 26% to 96% less processing time than the
second fastest algorithm (RS) and avoids the local opti-
mality problem better than the other swap strategies. To
investigate the feasibility of the centroid ratio and PRS in a
high-dimensional space, we modify the distance definition
in the centroid ratio and PRS from the Euclidean distance to
the cosine distance, and study them in document clustering.

2 RELATED WORK

2.1 k-means

Given X = {x1,x2,...,xn}, a set of N points in a
d-dimensional Euclidean space to be clustered, we define
C and P as a specific partition of these points into M clus-
ters, where C = {c1, ¢, ..., cm) presents the centroids and
P = {p1.p2.....pn} the point level partitions. A cost func-
tion is used to evaluate the quality of the clustering. There
is no universal function for all clustering problems, and
the choice of the function depends on the application. We
consider the clustering as an optimization problem, and the
mean squared error (MSE) is the most common cost function,
calculated as

J N M
f= N Z Z [ — cj||21(xi is closest to c;). 1)
i=1 j=1

where I is an indicator function. The k-means
(Algorithm 1) is the most famous clustering algorithm,
which aims at partitioning N objects into M clusters so
that each object belongs to the cluster with the minimum
Euclidean distance to the cluster centroid.
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Algorithm 1: k-means algorithm

Input: X, M
Output: C, P, MSE
1 ¢; = a3/t =random(1,N), 0 < j < M ;
2 while ! convergence do
p; < argmin ||z; — cj||2, Vi e [1,N];
1<j<M
& (5 1)/ (S 1) 5
MSE = f (see Eq. 1) ;
end
return C, P, MSE ;

w»
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It is known that k-means has issue with initialization.
With different initial solutions, k-means converges to dif-
ferent local minima, which makes the final result unstable.
Previous work on improving the clustering results based
on standard k-means has employed different strategies [2]-
[7], [13], of which the swap-based approach is simple but
effective.

2.2 Swap-based clustering

In swap-based clustering, the centroids are perturbed by a
certain strategy in order to not get stuck in a local minima.
A swap is accepted if it improves the clustering quality.
This trial-and-error approach is simple to implement and
very effective in practice.

The Random Swap algorithm (RS), originally called
Randomized Local Search [3], is based on randomization:
a randomly selected centroid is swapped to another ran-
domly selected location. After that, a local repartition is
performed and the clustering is fine-tuned by two k-means
iterations. Pseudocode of the random swap algorithm is
described in Algorithm 2.

To ensure a good clustering quality, the number of iter-
ations for random swap should be set large enough to
find successful swaps. For a more accurate analysis, the
algorithm has a linear dependency on the number of data
vectors, quadratic on the number of clusters, and an inverse
dependency on the dimensionality [14].

Deterministic swap aims at finding good swaps by
a systematic analysis rather than by trial-and-error. In

Algorithm 2: Pseudocode of Random Swap

Input: X, M

Output: C, P, MSE

C <+ InitializeCentroids(X) ;

P + Optimal Partition(X,C) ;

for T times do
" < RandomSwap(C);
P « Local Repartition(P, C™") ;
KmeansIteration(P™", C™") ;
if f(pPmew,C™v) < f(P,C) then

‘ (P, C) — Pnew,cnew ;

end

end

MSE = f (see Eq. 1) ;

return C, P, MSE ;
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general, the clustering can be found in a few swaps only if
the algorithm knows the centroid that should be swapped
and the location where it should be relocated.

Several heuristic criteria have been considered for the
selection of the centroids to be swapped, but simple criteria
such as selecting the clusters with the smallest size or vari-
ance do not work very well in practice. Other approaches
remove one cluster [15], or merge two existing clusters as in
agglomerative clustering [16]. Deterministic removal takes
N distance calculations for each of the M clusters. Thus, the
overall time complexity of the deterministic removal step
becomes O(MN).

The replacement location of the swapped centroid can
be chosen by considering the locations of all possible data
points: this, however, would be very inefficient. In order to
find the correct location, the task can be divided into two
parts: select an existing cluster and select a location within
this cluster. One heuristic selection is to choose the clus-
ter that has the largest distortion (Eq. 1). The exact location
within the cluster can be chosen considering the follow-
ing heuristics: 1) current centroid of the cluster with small
movement; 2) furthest data point; 3) middle point of the
current centroid and furthest data point; 4) random.

With the random and deterministic swap strategies, an
analysis combining the deterministic heuristic with random
swap was conducted in [17].

3 METHODOLOGY

3.1 Centroid Ratio

The design of the internal indices is based on three ele-
ments: the data set, the point level partitions, and centroids.
Mean square error (MSE) is a conventional criterion for
evaluating clustering, which is calculated by these three ele-
ments. External indices [11], however, use only partitions
by comparing the given clustering against the ground truth.
The ground truth is usually built by using human asses-
sors or the output of another clustering algorithm. External
indices count the pairs of points of agreement or disagree-
ment of the two partitions. These evaluation measures have
been well studied in the literature [11], [12], [18].

A criterion such as MSE uses quantities and fea-
tures inherent in the dataset, which gives a global level
of evaluation. Since it relates to points and clusters,
its time complexity is at least O(MN). The partition-
based criteria are based on pointwise evaluation of
two partitions, which usually gives a time complexity
of O(N?). The time complexity of point-pair measures
can be reduced to O(N + M?) [19] by a contingency
matrix.

There has been little research on cluster level evaluation
measure based on centroids only. As an important struc-
ture of the clustering, the centroid reveals the allocation
of the clusters. Two clusterings {X, P1, C1} and {X, Py, Cy}
from k-means are shown in Fig. 1, where the centroids and
the partitions are highly correlated with each other. The
partition shows little difference (left) at the border of the
clusters, while the centroids also display little difference
on the location. For incorrectly located centroids (right), the
partitions differ greatly. The evaluation of the clustering can
be performed on either the partition P or the centroids C.
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Fig. 1. Clusterings from k-means, showing the connection between
centroids and partitions.

Motivated by this, we introduce a cluster level criterion in
this section.

Let C] = {Cll, C12, ..., ClM} and C2 = {Cz], C22, ..., CQM}
be the centroids of two clusterings C; and C; respectively
and |Cq] = |Ca].

A pairing problem between two sets of centroids can be
represented by a bipartite graph in which the vertex classes
are the centroids in C1 and C; separately, and centroids in
C; are joined by edges to centroids in Cj.

Definition 1. The Nearest Pairing of two sets of centroids
(C1 and Cp) is exactly the same as the minimum matching of
a given bipartite graph in graph theory, where the nodes cor-
respond to the centroids, the edges connect the centroids from
different clusterings, and the edge cost stands for the centroid
distance.

The minimum matching in the nearest pairing (see
Fig. 2) is solved here by a greedy algorithm. For each i,
where 1 <i <M, 1<j<M, we consider them to be paired

if ¢ is the closest centroid to c¢y; out of {ca1, c22, ..., cam}-
We thus iterate M times the operations
.. . 2
{i,j} = argmin |lci; — o
Cl,'GC],Cz]'ECZ
Ci < C:\lcrs @)
1 < Ci\{eyi}

Co < Co\{egjh

For paired centroids cj; € C; and Coj € C,, we define the
distances

. . 2
D1(i) = min [c1; — ¢l
Clsecl

. . 2
D (i) = min leaj — 2] 3)
Di2(i) = |e1i — C2j||2~

Nearest Pairing. -

3

-

oo
o0

Fig. 2. Nearest pairing of two clusterings Cy and Co.
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Pair Ratio
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Fig. 3. Calculate the Pair Ratio for one pair of centroids.

The value of Dq3 is the distance of the matched centroids in
two clustering results C; and C,. Here, the “distance” need
not be the Euclidean distance. D1 is the nearest distance of
two centroids in the same set of centroids C;, and similarly,
D5 is the nearest distance in Cp. The centroids in two clus-
tering sets are strictly matched when D1, = 0. We say the
centroid i is stable, or correctly located, when D1y < Dq and
D12 < Ds.

Definition 2. The Pair Ratio for centroid i, denoted by PR(i),
is the degree of matching between centroid i from Cy and Cy
after nearest pairing.

We define the pair ratio for a centroid i of the clustering
C1 with respect to C, (see Fig. 3) by

D12())  D12(d)
. —. 4
D1(i))  Da() @)
A centroid 7 is said to be stable, or correctly located, when

PR(i) < 1. For unstable and incorrectly located centroids,
PR(i) > 1.

Definition 3. The similarity S between two clusterings C1 and
Cz is

PR() =

M

S(C1,C) =1-) yi/M, ®)
i=1

1 if PR(G) > 1

where y; = i
0 otherwise.

Here, the value of S is in [0, 1], where 1 indicates a complete

match of the two clusterings and O indicates a complete mis-

match. Sig is the set of incorrectly located centroids in a pair

of clusterings and Sig = {i|PR() > 1}.

Definition 4. Given T sets of clustering results, the degree of
stability of centroid i is defined as
1Yo (- yicucy
= . ©)
If the stability is 1, the centroid i is completely stable and
0 is completely unstable.

Definition 5. The Centroid Ratio is defined as the union of the
pair ratio (PR) and the similarity S, where PR finds incor-
rectly located centroids and the S value indicates the similarity
of two clusterings.

stability (i) =

There are papers [20]-[22] that have addressed the ques-
tion of finding the distance metric for clustering. One of the
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Fig. 4. Point x is located in a ball of radius R/2 centers at ¢y1. Centroids
c11 and ¢4 are two paired centroids with distance R in clustering Cq
and C» respectively.

choices is to measure the L; norm distance for some q > 1
between two optima from the clustering. For instance, the
distance for two k-means clustering solutions can be taken
to be the absolute value (L1 norm) of their MSE values.
In our paper, this provides another choice for measuring
the similarity between the centroid sets of two clusterings.
We show in the following that the two choices in k-means
clustering are highly correlated with each other.

Let (X,C,P;) be a probability space with a proba-
bility measure P, over X. We assume that the data X
lies in an Euclidean ball in R?, ie. X ¢ R? and X is
closed. Considering two sets of k-means clustering solu-
tions (C1,Cp), for any x € X, where X follows the
probability distribution Pr, we define:

M

fo, () = Z llx — c1;112 I(cy; is closest to x)
i=1
M

fo,(x) = Z |« — cszZI(czj is closest to x). 7)
=1

and the total error for all of the points X is:

fa = /fC1 (x)dPy(x)
fe, = / fo, ()dP(x). 8)

The MSE values for two solutions are fc,/N and fc,/N
respectively.

Assume that B(c11, R/2) is a ball of radius R/2 centered
at ¢17 and that the distance of |lc11 — 21> = R (see Fig. 4).
We have fc, (x) < fc,(x) for x € B(ci1, R/2). Note that o ¢
B(c11,R/2),j € 2,...,M. The L1 norm distance for the two
clustering solutions is

Ife: = fea iy e,y = / fer () = fer ] dPr )
for x € B(c11, R/2),

> / e, () — fe, ()] dPy(x)
B(c11,R/2)

= / (fc, (%) — fo, () dPy(x)
B(c11,R/2)
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—oj| - — 1| dP
/;(Cl] R/2) (Z “x CZJ” ZHX Cll” ) F(x)

2
as |lx —c11ll® = fc,(0) =

2
Z llx — cxill* 1,
i=1

= [ (- el - dx - enl?) P
B(c11,R/2)

. 2 2 2
since [|x — c21]| > [le11 — el — llx — enl
>R—R/2=R/2,

> [ (R2 hx - enl?)api
B(c11.R/2)
R/2
> aq / (R/2 — r2) =14y
0

R da+2 1 1
T
= aR™2 = g||cyg — ¢ |22, )

where a is a constant and d is the dimension of the data.
From Eq. 9, we show that the L; norm distance of two
k-means optima is highly correlated with the proposed
similarity measure on two centroid sets. This can also be
observed from Table. 3 in the experiment.

The value of the MSE reflects a global view, but there
is no way to track the detailed information of each point
through it. External indices such as the Rand index can
compare two clusterings pointwise, but they do not directly
provide information on clusters. The proposed centroid
ratio can reveal information at a cluster level, which is
able to give a global evaluation and detect unstable or
incorrectly located centroids.

3.2 The Pairwise Random Swap algorithm

We introduce a pairwise random swap algorithm
employing the centroid ratio, which efficiently ame-
liorates the local optimum problem of k-means. The
pairwise random swap algorithm (PRS) takes a given data
set X and the number of clusters M as inputs. It starts by
generating two sets of centroids (Cq, Cz) and MSE values
(MSE1, MSE>) from conventional k-means as described in
Algorithm 3.

Then, we calculate the pair ratio value PR(i) for each set
of paired centroids in (C1, C2) to get a set of incorrectly
located centroids Si; and the similarity value S(Ci, Cp)
using Eq. 5.

We perform the Swap function (Algorithm 4) to get
improved solutions for both of the clusterings, in which we
randomly swap the detected centroids cy; and ¢y; in C1 and
C2 (j € Sig) to a random location and fine-tune the result
by k-means.

The algorithm stops when the similarity of the two cen-
troid sets S is 1, which indicates that the centroids of the
two clusterings are completely matched. The final solution
of the PRS algorithm is the centroid set that has the lower
MSE value, i.e., min (MSE1, MSE»).

On occasion, the initial centroid sets C; and C, are com-
pletely matched but the partition is locally optimal, i.e.,
S5(C1, C2) = 1and Sy € ¥ at the beginning, in which case the
PRS algorithm performs a random swap on the centroids.
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Algorithm 3: Pairwise Random Swap clustering al-
gorithm

Input: X, M

Output: C, MSE

Two initializations: I, I5;

(C1, MSE;) = k-means(X, I, M);

(Co, MSE5) = k-means (X, I, M);

Calculate S;q = i|PR(i) > 1 and S(C4,C2);

while S # 1 do
(Cy,Cy, MSE,, MSE,) = Swap(X, M, Cy, Cs,
MSE,, MSEs, S;q);

7 | MSE, = MSE,; MSE, =

8 Cl—C’l, 02—02,

9 Calculate S;q = {i|PR(i) > 1} and S(C4,Cs);

10 end

11 return min (M SE;, MSE;) and corresponding C
or Cy;

o Ul R W N =

MSE;

The proposed algorithm is a type of deterministic
swap clustering (DR) since the centroids to be swapped
are chosen by the centroid ratio and the allocated posi-
tion is random. The time complexity of the removal
step is OM?), and O(1) for the addition step. Although
the swap heuristic is capable of moving out of a
local minimum, it may take a long time to move to
near a local minimum. Thus, it is profitable to use k-
means for fine-tuning after the swap heuristic [23]. A
note for the PRS algorithm is that other prototype-
based clustering algorithms can be used instead of k-
means.

3.3 Efficiency Analysis
The efficiency of a swap-based clustering algorithm
depends on two issues: how many iterations (swaps)
are needed and how much time each iteration con-
sumes. Swap-based clusterings can be categorized into four
types in terms of the swap strategy: RR, RD, DR and
DD [17].

In RR, the swap step is completely random so it
needs a large number of iterations to provide a good

Algorithm 4: Function of Swap

Input: X, m, 01, Cg, MSEl, MSEQ, Sid
Output: C,,C.yand MSE,,, MSE,,
MSE,, = MSE; + 1;

while MSE,, > MSE,; do

Cy1 + random swap S;q; on Cf;
(Ch,, MSE.,) = k-means(X, C.1, m);
end

MSE,, = MSE; + 1;

while MSE,, > MSE, do

Cro < random swap S;; on C;
(Chy, MSE.,) = k-means(X, Chy, m);
end

return C,,,C., and MSE,,, MSE.,;

© 0 NN Ul R W N =
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TABLE 1
Summary of Time Complexities on One lteration of Deterministic Swap
RD DR DD PRS
Removal o(1) O(MN) O(MN) O(M?)
Addition | O(N) o(1) O(N) 0o(1)
fine-tuning | O(sN) O(sN) O(sN) O(sN)
Total O(sN+ N) | O(sN+ MN) | O(sN + MN) | O(sN + M?)

RD represents random removal and deterministic addition; DR, deterministic removal and random addition and DD, deterministic removal and deterministic addition.

PRS is for the proposed PRS algorithm.

quality of result. It takes O(sN) (s is the number of
neighboring clusters on average) at least for each itera-
tion with a fast variant of k-means for fine-tuning [24].
The main bottleneck of random swap is that the number
of iterations T has depends quadratically on the num-
ber of clusters M [14], which increases the overall time
complexity.

The selection criterion for swapping in DR and RD is
to find clusters that involve the least increase in the cost
function (MSE) when they are swapped. In DD, the cen-
troid to be removed is chosen by calculating the removal
cost, and the addition is made within the cluster of the
highest distortion. In this case, the number of iterations is
limited because the algorithm will stop whenever there is
no improvement. However, the time required for each itera-
tion is high. It takes O(MN) to find the minimum removal
cost, O(N) for the addition cost, and O(sN) for the local
partition and fine-tuning, so the total time complexity of
one iteration in DD is O(sN + MN). The time complexi-
ties for the variants of deterministic swap are summarized
in Table 1. As shown in the table, the time complexities
of the existing deterministic strategies are either related to
O(N) or O(MN). The time complexity of the swap strate-
gies is the only difference in the total time complexity
of the variants.

In the proposed method, the algorithm needs O(M?) to
find incorrectly located centroids and O(1) for the addi-
tion. The main computation is in the repartitioning and
fine-tuning by the k-means iterations, which takes O(sN).
The total time complexity is O(ka(k1sN + M?)), where k; is
the number of iterations of k-means and k; is the repeated
times of the centroid ratio step. It is shown by experiment
that the selection of kj affects the final result very little, and

TABLE 2
Attributes of the Data Sets Used in Our Experiments

[ Name | Dimensionality | Data Size | #Clusters |
Synthetic data sets
S1-54 [15] 2 5000 15
Aggregation [25] 2 788 7
R15 [26] 2 600 15
BIRCH1-BIRCH2 [27] 2 100000 100
Real data sets
CM [28] 9 68040 NA(20)
CT [28] 16 68040 NA(20)
Documents
1e0 [29] 2886 T504 13
rel [29] 3758 1657 25
tr31 [29] 10128 927 7
wap [29] 8460 1560 20

For the data sets where the number of clusters is unknown, the model sizes used
in the experiments are shown in parenthesis.

the algorithm always stops after a relatively small number
of iterations.

To sum up, random swap needs a large number of
iterations to provide a good quality of clustering. The deter-
ministic swap needs fewer iterations, but takes more time
for each iteration. For the variants of deterministic swap,
the main computational burden comes from the local parti-
tioning, and is the same for the different variants. However,
the time complexities of the deterministic strategies differ,
and the number of iterations depends on the swap strategy.

The time complexity for global k-means is O(TM?2N?)
with incrementally adding one cluster at a time through
a deterministic global search, where T is an average
k-means iterations. The k-means++ algorithm has an addi-
tional procedure for choosing initial cluster centers, which
adds O(MN) to the time complexity of the standard
k-means.

4 EXPERIMENTS

We tested the algorithms using synthetic, real, and docu-
mental data sets from various sources as summarized in
Table 2.

The synthetic data sets are two dimensional and con-
tain a known number of clusters, which makes things easy
from the visualization point of view. The ground truth
labels are known for S1 to S41, which have gradually more
overlapping clusters: i.e., in S1 the overlap is the smallest,
whereas in S4 the overlap is the greatest. BIRCH sets [27]
are large data sets with 100 clusters among 100,000 data
points. BIRCH1 contains clusters in regular grid structures,
BIRCH2 has clusters at a Sine curve. R15 [26] is generated
as 15 similar 2-D Gaussian distributions that are posi-
tioned in rings. Data Aggregation (A7) [25] consists of seven
perceptually distinct groups of points, where there are non-
Gaussian clusters. The distributions of the two dimensional
data sets are shown in Fig. 5.

The real data sets are the color moments (CM) and co-
occurrence texture (CT) data sets from [30]. It is unknown
whether the data is clustered. We selected the number of
components of CM and CT to be 20 in the experiment,
because the number of clusters of these two data sets are
unknown and the problem of determining the number of
clusters is outside the scope of this paper.

Documents [29] re0 and rel are from the Reuters-21578
text categorization test collection, Distribution 1.0, and tr31
is from TREC. The data set wap is from the WebACE project
(WAP), where each document corresponds to a web page
listed in the subject hierarchy of Yahoo!. The ground-truth
partitions are available for all of these data sets.

1. http://cs.joensuu.fi/sipu/datasets/
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Fig. 5. Visualization of two-dimensional data sets.

4.1 Centroid Ratio Validity

We study the validity of the proposed centroid ratio in
this section. To compare with other clustering evaluation
measures, we define consistency in terms of the similarity
between their rankings on a number of clustering results.
The compared measures include the Rand index (RI), the
Adjusted Rand index (ARI), the Jaccard coefficient (Jac),
the Fowlkes and Mallows index (FM), and AMSE. The
similarity is based on Spearman’s rank correlation, which

TABLE 3
Spearman’s Rank Correlation for Different Clustering Validity

Measures

RI ARI  Jac FM -AMSE CR

RI 1 1 1 1 0.90 0.96

ARI 1 1 1 1 0.90 0.96

Jac 1 1 1 1 0.90 0.96

FM 1 1 1 1 0.90 0.96

-AMSE | 090 090 090 0.90 1 0.94

CR 096 096 096 0.96 0.94 1
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Fig. 6. Stability of each centroid, and finding unstable centroids by
centroid ratio.

is a nonparametric measure of the statistical dependence
between two variables. The clustering results are obtained
from 50 runs of standard k-means clustering on data set S2
with 15 clusters until convergence. The ground-truth labels
are known for the data set S2. The 50 clustering results are
compared with the ground-truth labels by the evaluation
measures. The Rand correlation is then calculated pairwise
between the two measures with 50 values each.

The values in Table 3 indicate that the external measures
are very highly correlated with each other. The proposed
centroid ratio has a higher correlation with the external
measures than with AMSE. From the high correlation of
the centroid ratio with the other measures, we conclude
that the centroid ratio is valid for clustering evaluation.

Using the definition for the stability degree of centroids
in Section 3.1, we tested the stability of the centroids in
the standard k-means and Global k-means (GKM) [6] sepa-
rately. We carried out T = 10 runs and calculated pairwise
the degree of stability from ten clusterings using Eq. 6. The
degree of stability for each centroid in k-means and GKM
is shown in Fig. 6, centroids 2,4,5,7,9, 10, 14 are not sta-
ble from k-means, while all centroids are stable in GKM.
The degree of the stability is reflected in each centroid,
for example, centroid 7 is the most unstable centroid in
k-means.

4.2 Validity of the Pairwise Random Swap algorithm
We compare the PRS with other variants of k-means, includ-
ing repeated k-means (RKM) and k-means++ (KM++) [7].
We also compare it with the Random Swap algorithm (RS)
and the Deterministic Random Swap algorithm (DRS). The
clustering algorithms? are implemented in C and tested
under the same environment.

Swapping iterations are needed in RS and DRS and
repetitions are needed for RKM and KM++ to guarantee
good performance. We summarize the parameter settings
for the experiments in Table 4. The number of swapping
iterations in RS comes from [14]. For RKM and KM++, the
number of repetitions was selected experimentally. All algo-
rithms employ k-means, the number of iterations of k-means
in RS and DRS is set to two, but runs until convergence in
RKM and KM++.

2. http:/ /cs.joensuu.fi/sipu/soft/
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Fig. 7. MSE values with increasing time from clustering algorithms on S-sets.

We study the relationship between the number of
k-means iterations, clustering result (MSE) and process-
ing time (seconds) in Fig. 8. We repeated PRS 50 times
on each number of iterations for k-means. The differences
of MSE values among the runs with different numbers of

TABLE 4
Parameter Settings for RS, DRS, RKM and KM++
Data RS/DRS | RKM/KM++
S1-54 130 130
R15 130 130
A7 60 60
BIRCH1 1400 300
BIRCH2 10000 300
CM 2000 300
CT 2000 300
The numbers represent the number of iterations for swaps and repetitions in the
experiments.
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k-means iterations are less than 0.0007%, which is negli-
gible. The processing time has variance on each run with
different numbers of iterations. However, a larger number
of k-means iterations does not necessarily lead to a better
result and higher processing time according to Fig. 8. Thus,
we set k-means iterations in PRS to ten.

From the experiments on several synthetic data sets, we
observe that the number of PRS iterations remains always
ko < M. We verify this observation in Fig. 9, where PRS was
run 100 times on data sets S1-54, Aggregation, and R15.

One way to compare the performance of the methods is
to plot the MSE values with increasing time. With enough
processing time, the time-distortion figure can be used to
check the estimated quality at the time axis.

We performed 50 runs of each algorithm on each data set
to study their average performance (see Fig. 11). Box plots

~10 20 30 40 50 60 70 80 90 100 110 120 130
k-means iterations

Fig. 8. MSE and time vs. the number of iterations of k-means in PRS for
data set S2.
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Fig. 9. Boxplot of the required number of PRS iterations. The probability
is 100% for ko < M, where M = 15 for S1-S4 and R15, and M = 7 for
Aggregation.
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of the MSE values and processing times reflect the perfor-
mance of the algorithms on average. Each box includes the
minimum, the median (the central red line), the 25 and
75" percentiles (the edges of the box) and the maximum
values.

The time-distortion plots on the S-sets (S1-54) are com-
pared in Fig. 7. Among the clustering algorithms (RS, DRS,
PRS, RKM, KM++), PRS performs best in terms of the
MSE and the processing time. Because of the stopping
criterion, PRS stops while the other algorithms are still
running. DRS reaches the local minimum faster than RS
because DRS stops whenever there is no improvement and
RS stops when the number of iterations has been reached.
Deterministic selection converges faster than random selec-
tion. RKM is the most inefficient algorithm, since not every
repetition helps the final result and a waste of computation
exists in RKM. For example, too many repetitions fail to
improve the result for S4 (see Fig. 7). KM++ reaches a local
minimum as fast as RS, DRS and PRS, and the setting of
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Fig. 11. Box plots of S-sets including minimum, 25th percentile, median,
75th percentile, and maximum. The central red line represents the
median value, the edges of the box are the 25th and 75th percentiles.

the repetitions for KM++ is over-set in the experiment. This
raises the question as to how many iterations are proper for
RKM and KM++ in order to obtain a good performance in
an efficient way.

As shown in the box plot for the S-sets (Fig. 11), enough
running time guarantees good performance of RKM and
KM-++. The degree of overlapping of the S-sets increases the
running time needed by RKM and KM++ and has a minor
effect on the swap-based clustering algorithms. The run-
ning time of RS is stable. The swapping candidates in the
deterministic swap depend on the selection criterion. Thus,
both DRS and PRS have high variance in their processing
times. PRS is a good choice according to its MSE values and
processing time.

CM and CT contain multi-dimensional data. When the
data has high dimensionality, the feature space is usually
sparse [31]. The standard k-means algorithm for cluster
analysis often does not work well in high dimensional
spaces. Thus, the algorithms employing k-means are

T
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Fig. 12. Box plots of data sets CM and CT.

TABLE 5
Summary of the Median Processing Times (in Seconds)
[ [ RS [ DRS [ RKM [ KM++ | PRS |
ST 023 [ 021 [ 222 0.50 0.2
s2 027 | 030 | 297 4.59 0.1
S3 0.32 | 0.35 3.80 6.78 0.1
s4 034 | 035 | 547 | 1293 0.1
A7 <01 | <01 | <01 | <01 | <01
R15 <01 | <0.1 | 0.121 | 0.117 | <0.1
BIRCH1 | 262 | 173 | 2413 | 1787 134
BIRCH2 | 315 | 413 | 535 539 126
CM 237 | 321 | 1112 | 1562 14
CT 497 | 306 | 1845 | 1261 19
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TABLE 6
Comparison of Spherical k-means (SKM) and PRS for High-Dimensional Document Clustering by

External Indices and Centroid Ratio

RIT ART Jac FM CR

SKM | PRS | SKM | PRS | SKM | PRS | SKM | PRS | SKM | PRS
re0 | 068 | 0.75 | 0.03 | 0.14 | 0.14 | 0.16 | 025 | 029 | 0.08 | 0.08
rel | 082 | 086 | 004 | 010 | 0.07 | 0.09 | 0.14 | 017 | 0.08 | 0.08
@31 | 070 | 0.75 | 0.14 | 030 | 0.19 | 030 | 033 | 046 | 0 | 0.14
wap | 0.82 | 0.88 | 0.18 | 034 | 0.16 | 026 | 029 | 041 | 010 | 0.15

The range of the values is [0, 1], where one is a complete match and zero is a complete mismatch.

TABLE 7
MSE, PNSR (dB) and Processing Time (Seconds) of Different Clusterings on Subsampled Images at Quantization Level 32
image 1 2 3 1 5 6 7 8 9 10 11 12 13 14 15
RS 173 | 118 | 80 | 256 | 68 | 492 | 100 | 38 | 101 | 174 | 162 | 82 76 | 229 | 12
FCM | 191 | 151 | 159 | 267 | 69 | 417 | 97 40 | 114 | 201 | 194 | 90 85 | 238 | 17
MSE GA 177 | 118 79 260 67 399 | 102 38 103 | 171 158 82 77 233 11
KM++ | 134 | 100 | 80 | 188 | 53 | 236 | 69 41 | 123 | 110 | 144 | 93 84 | 208 | 16
PRS | 140 | 101 | 107 | 189 | 58 | 202 | 67 43 | 137 | 114 | 129 | 93 9 | 212 | 16
RS 257 | 274 [ 291 [ 240 [ 298 | 21.2 | 281 | 324 | 281 | 257 | 26.0 | 29.0 | 29.3 | 245 | 37.5
FCM | 253 | 264 | 26.1 | 239 | 29.7 | 219 | 283 | 32.1 | 27.6 | 25.1 | 253 | 286 | 288 | 244 | 357
PSNR | GA | 257 | 274 | 29.2 | 240 | 29.8 | 221 | 28.1 | 324 | 28.0 | 258 | 262 | 29.0 | 29.3 | 245 | 37.5
KM++ | 269 | 281 | 29.1 | 254 | 30.9 | 244 | 29.7 | 320 | 27.2 | 27.7 | 26.6 | 284 | 29.0 | 24.9 | 36.1
PRS | 267 | 28.8 | 279 | 254 | 305 | 25.1 | 29.9 | 31.8 | 26.8 | 27.6 | 27.0 | 284 | 28.6 | 24.9 | 36.1
RS 152 | 133 | 78 | 150 | 125 | 139 | 129 | 203 | 112 | 117 | 105 | 89 | 131 | 162 | 42
FCM 73 47 41 66 80 52 62 74 73 58 51 108 58 58 24
time GA 642 | 712 | 407 | 833 | 889 | 789 | 785 | 4353 | 530 | 623 | 577 | 685 | 666 | 756 | 259
KM++ | 226 | 174 | 96 | 207 | 184 | 174 | 201 | 298 | 158 | 158 | 144 | 111 | 183 | 222 | 47
PRS 17 | 46 13 4 5 34 13 17 42 16 17 3 19 19 34

restricted by the performance of k-means. RKM obtains a
result a little bit better than KM++ on the dataset CM, while
KM++ works better than RKM on CT. In terms of MSE
values, RKM and KM++ work better than swap-based algo-
rithms on both CM and CT (Fig. 10). However, the running
times of RKM and KM++ are higher than those of swap-
based algorithms. For a highly separated data space, the
probability of getting a good swap is relatively low, which
explains the high variance of the MSE values for RS, DRS
and PRS. PRS performs better than RS and DRS on CM;
however, PRS is not stable on CT (Fig. 12). In terms of the
processing time, PRS is still the most efficient of the tested
algorithms.

A summary table of the processing times in Table 5
presents the numerical results of the different algorithms.
PRS requires 26% to 96% less processing time than the
others on different data sets.

4.3 Extension for High-dimensional Document
Clustering

The definition of the centroid ratio is not restricted to
the Euclidean distance. The conventional k-means can be
extended to spherical k-means by changing the Euclidean
distance to the cosine distance [29]. We therefore extend the
centroid ratio and PRS by modifying the distance function for
high-dimensional data. Documents usually involve a feature
space with thousands of dimensions. We tested the spherical
k-means (SKM) and PRS algorithms with cosine distance
on the documents listed in Table 2 using the ground-truth
partitions for each document. The larger is the index value,
the closer is the result to the ground-truth partition. We also
use the centroid ratio to compare the clustering results. The

partitions are converted to centroids by taking the mean
value for each cluster. The results in Table 6 show that the
PRS is effective in document clustering as well.

4.4 An Application to Image Color Quantization

The most straightforward application of clustering
algorithms in image processing is color quantization.
When the input data set is the color space of the images,
the clustering points in three-dimensional space are treated
as standard color quantizations. After the clusters have
been located, typically the points in each cluster are
averaged to obtain the representative color to which all
the colors in that cluster are mapped.

We compare the proposed clustering algorithm with
other popular clusterings on the images® for color quan-
tization. The images are in RGB color space with a size of
481321 pixels. In order to speed up the running time for
all of the clustering algorithms, we reduced the amount of
image data by a subsampling method [32]. The subsam-
pling method can reduce the size of the image from 14% to
42% while the running time is thus reduced by from 55%
to 94%. The difference of the MSE values for the original
images and the subsampled images is from -23% to 19%.
Based on the numbers, we conclude that the subsampling
method is applicable to color quantization.

The proposed method is compared to the algorithms
including random local search (RS), Fuzzy c-means (FCM)
and Genetic algorithm (GA), and k-means++ (KM++).
The evaluations of the clusterings by mean square
error (MSE) and peak signal-to-noise ratio (PNSR) are

3. http:/ /cs.joensuu.fi/~zhao/DATA/
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(d)

Fig. 13. Sample quantization results for image 11 at quantization level 32. The main difference is shown in the red circles.

listed in Table 7. Comparing the MSE and PNSR val-
ues, there is no clustering algorithm that works for all
images. The performance is equally distributed among the
algorithms and images. The proposed algorithm has the
best performance in its running time. A visualization of the
quantization results from the different algorithms is shown
in Fig. 13.

5 CONCLUSION

We proposed a novel evaluation criterion called the
centroid ratio, based on the centroids in prototype-based
clustering, which compares two clusterings and detects
unstable centroids and incorrectly located centroids. The
centroid ratio is highly correlated with external indices
and MSE values. Since the centroid ratio can detect incor-
rectly located clusters, it is employed as a swap crite-
rion in the Pairwise Random Swap algorithm. Meanwhile,
the similarity value obtained from the centroid ratio is
employed as a stopping criterion in the algorithm. The
algorithm has been compared with other algorithms, such
as Random Swap, Deterministic Random Swap, Repeated
k-means, and k-means++. It is the most efficient method
among these algorithms according to the experimental
results. The applications of the proposed algorithm to docu-
ment clustering and color image quantization indicate that
the algorithm is useful and is not restricted by the distance
function of k-means. For high-dimensional data, the run-
ning time of the proposed algorithm has high variance,
which can be improved in future work. The centroid ratio
as a cluster validity index will also be studied in our future
work.
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