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Abstract—Data clustering is intensively used in signal processing 
in tasks such as multimedia compression, segmentation and 
pattern matching. In this work we extend the use of principal 
curves in clustering for complex multidimensional datasets. The 
use of principal curve in clustering is limited for complex data. 
Automatic parameterization of the principal curve to assure good 
results for different datasets is a difficult task. We propose to use 
the tree structure to capture the general settlement of the data. 
From this topology regions of the dataset can be extracted, 
individually clustered using the principal curve and then 
optimally combined. The experiments show the improvement of 
the new method over the principal curve based clustering and the 
good performance compared to other clustering methods. 

I. INTRODUCTION 
Clustering is a general unsupervised classification method 

that assigns the objects of a set to different classes depending on 
their characteristics. Most clustering applications are related to 
data mining, data compression and pattern matching 
applications in the fields of computer science, engineering or 
bioinformatics. Due to the general classification purpose of 
clustering analysis, the applications are not limited to the 
mentioned fields. 

The research in clustering algorithms is motivated by the 
importance of the problem in numerous applications and thus 
the necessity for good and fast algorithms. The clustering 
problem is known to be NP-complete [1].  

The K-clustering problem is a simplification of the general 
clustering problem that considers the number of clusters as a 
parameter. This work is on K-clustering problem, although for 
simplicity we will refer to it as clustering problem.  

Each cluster is represented by a code-vector, which is the 
centroid of the cluster. The set of code-vectors forms the 
codebook. The representation error for one point is defined as 
the distance from the point to the corresponding code-vector. 
We will consider the mean squared error (MSE) as the objective 
function. The total sum of squared errors defines the distortion 
of the codebook. The goal is to optimize the MSE, which is 
equivalent to minimizing the distortion. 

A. Related Work 
The clustering algorithms are very diverse; a good overview 

can be found in [2]. At the top level one can differentiate 
hierarchical and partitional approaches. Hierarchical algorithms 
produce a series of partitions, known as dendogram, while 
partitional ones produce one partition. The methods for 
dendogram generation are top-down for hierarchical divisive 
algorithms, and bottom-up in agglomerative clustering 
algorithms. The most used algorithms in cluster analysis are 
squared error algorithms, such as K-means [3]. The 
performance of K-means is highly dependent on the 
initialization, and therefore this method is usually used to fine-
tune a solution given by other algorithms. Graph theoretic 
algorithms model the data as a graph (e.g. minimum spanning 
tree), deleting the expensive edges [4]. Mixture resolving 
approaches assume that the data was generated by an unknown 
distribution and try to determine its parameters [5]. Fuzzy 
algorithms [6] and artificial neural networks (self-organizing 
maps) [7] have been used for clustering. New approaches using 
genetic algorithms give also good results [8]. 

Scalar quantization problem is a special case of clustering 
that can be optimally solved in linear time [9, 10]. The reason is 
that the optimal clusters are formed as subsequences of the 
whole data sequence, as the scalar data set can be naturally 
ordered. Order constrained clustering is a special case of vector 
clustering that assumes that the data is ordered, and the clusters 
have to be found as subsequences. The same algorithm that 
finds the optimal solution for scalar quantization can be applied 
to order constrained clustering.  

The scalar quantization and the order constrained clustering 
problems can be both reformulated as minimum weight K-link 
path problems [11]. An oriented graph is constructed for the 
ordered data set, having edges from any node to all the nodes 
that appear later in the sequence. The weight of an edge is equal 
to the distortion of one cluster that contains all the data points 
between the corresponding nodes. The shortest path consisting 
of K edges from the first to the last node in the sequence 
corresponds to the optimal clustering of the set. It can be 
optimally found by a dynamic programming procedure [12]. 

In vector space, the optimal solution for the constrained 
clustering is not necessarily optimal for the unconstrained 



clustering problem. Relative to the unconstrained formulation, 
the quality of the solution obtained by optimal constrained 
clustering is dependent on the order relation of the data. 

Different possibilities to obtain a good order for clustering 
have been studied in [13]. Except the basic approach that uses 
the principal axis projection [14], other two methods are 
proposed. One of them considers tuning the order in the sense of 
minimum weight Hamiltonian path and the other one considers 
using the principal curve to sequence the data. 

B. Clustering Based on Principal Curve 
The principal curve has been developed as a natural 

generalization of the principal component analysis.  Among the 
different approaches to principal curves [15, 16, 17, 18, 19, 20], 
we have we have chosen in [13] to use the principal curve with 
length constraint [18] for clustering. The main reason for the 
choice is that this curve minimizes the distortion of the points to 
the curve. Hereafter we will refer to this curve as just the 
principal curve. 

The clustering based on principal curve performs next steps: 
• constructs the principal curve, 
• projects data points on the curve and sorts them, 
• finds optimal clustering for order constrained 

formulation, 
• forms Voronoi cells, and 
• (optional) fine tunes  the results by K-means. 

The curve and the clustering algorithm that uses it need a 
parameter that controls the curvature and indirectly the curve 
length. The results of clustering are highly dependent on this 
parameter. Although we have proposed in [13] a range for this 
parameter, it does not assure good results for all types of 
datasets. The algorithm might not perform well for complicated 
datasets that cannot be meaningfully modeled by curves. 
Therefore we develop a new method that combines the tree 
structure and the principal curve to better model and cluster 
datasets. In section 2 we introduce the method and in section 3 
we show the experimental results. Section 4 presents the 
conclusions and future work. 

II. PRINCIPAL CURVE WITH TREE STRUCTURE CLUSTERING 
The limitations of the principal curve based clustering come 

from the fact that the principal curve is not a structure that can 
model the data distribution for complicated datasets. A way to 
overcome this problem is to split the data space and to apply the 
algorithm hierarchically. We developed a method to split the 
data set and create subsets that can be modeled by principal 
curves. We cluster each subset using the principal curve based 
algorithm, and then we create the codebook of the whole data 
set combining the partial codebooks. 

A pre-clustering algorithm followed by minimum spanning 
tree (MST) of the codebook can offer a good model of the data 
(see Figure 1). The MST of the codebook is not expensive to 
construct, as the codebook has a reduced size compared to 
whole set size. The MST can be split in branches partitioning 
this way the dataset. The advantage of this method is that the 
data subset corresponding to a branch of the tree can be 

meaningfully modeled by a principal curve. We consider two 
rules to separate the branches: 

• I a node of the tree has only one descendent, both of 
them should belong to the same branch. 

• If a node has more descendents, at most only one of 
them should belong to the same branch with the 
parent node. 

A straightforward algorithm based on depth-first-search trace 
of the tree divides the dataset in several subsets. As it can be 
observed in Figure 1, the subsets can easily be modeled by the 
principal curve.  

Clustering the subsets to the same codebook size as it resulted 
after pre-clustering is not a good option because this would 
improve the solution only locally. We propose to overcome this 
problem by considering multiple codebook sizes for each subset 
and combine them to get the optimal result. 

Minimum spanning tree. Partition in subsets. 

  
Construct principal curve separately on each subset (2 examples). 

  
Cluster to different codebook sizes (example with 3 different codebook sizes). 

           
 
Figure 1.  The main steps of principal curve with tree structure clustering. 

A. Optimal Combination of Codebooks 
The principal curve based clustering uses dynamic 

programming to cluster the data [13]. This technique constructs 
the solution step by step, using optimal sub-solutions. Solving 



the clustering problem for the codebook size K solves clustering 
for all the codebook sizes smaller than K without additional 
computational expense. 

We consider the codebook sizes after pre-clustering as 
estimations of the number of code-vectors in each subset. We 
compute codebooks with varying sizes within the neighborhood 
of the estimation. The optimal combination algorithm constructs 
the codebook of fixed size K for the whole dataset from the 
codebooks of subsets, minimizing the total distortion. This is a 
classical optimization problem that can be solved by dynamic 
programming [21]. 

B. Complexity of the Method 
The complexity of the principal curve clustering algorithm is 

O(K N2) where N is the number of data points and K the 
codebook size. Without considering that the neighborhood 
range from the initial estimation of codebook sizes as 
negligible, the time complexity for applying the principal curve 
based clustering successively on all the subsets is smaller than 
applying it to the whole dataset. The construction of the MST 
and the optimal combination algorithm depend on the codebook 
sizes or the number of branches and these parts are usually 
negligible as complexity. We can conclude that without 
considering the pre-clustering algorithm, the complexity is 
upper bounded by O(K N2).  

III. EXPERIMENTAL RESULTS 
For the experiments we have used three types of data sets. 

The A data sets (A1, A2, A3) are artificial and contain different 
numbers of two-dimensional Gaussian clusters having about the 
same characteristics. The S sets (S1, S2, S3, S4) are also 
artificial two-dimensional datasets with varying complexity in 
terms of spatial data distributions. The real data sets (House, 
Bridge, Camera, Missa) come from images, representing color 
(House), 4×4 non-overlapping blocks of gray image (Bridge and 
Camera) and 4×4 difference blocks of two subsequent frames in 
the video sequence (Missa). Correspondingly, the data sets have 
3 and 16 dimensions. 

For the principal curve with tree structure clustering 
algorithm (TBC) the experiments have considered three values 
for the penalty coefficient: 0.01, 0.04 and 0.1. The principal 
curve based clustering algorithm was used for pre-clustering as 
well. The penalty coefficient parameter was kept unchanged 
during both pre-clustering and subsets clustering. For clustering 
based on principal curve algorithm (PCU) the MSE value was 
chosen as the best considering the penalty coefficient in the 
range 0.001 to 0.22 (15 different values). Values for codebooks 
tuned by K-means are also shown. The results of clustering 
based on principal axis also included in the table. 

The comparative results include the popular K-means and 
randomized local search (RLS) [22]. The K-means MSE values 
are the best results obtained by 10 repeated trials. The MSE 
values for the RLS method have been considered when the 
value of the MSE stabilizes; a slightly better solution is found 
after a larger number of iterations. 

Results show that our improved method finds codebooks very 
close to the global optimum in all the studied cases. The 

performance of the K-means tuned algorithm is slightly better 
than repeated K-means. Although only 3 values of the penalty 
coefficient were tested for TBC, compared to 15 for PCU, the 
best results TBC are slightly better. 

TABLE I.  COMPARISON OF RESULTS FOR A DATA SETS 

A sets 
Method 

A1 A2 A3 

K-means 20.24*105 19.32*105 19.29*105 

RLS 20.24*105 19.32*105 19.29*105 

PAC 83.00*105 156.57*105 176.59*105 

PAC+KM 20.24*105 27.41*105 36.95*105 

PCU 20.30*105 19.33*105 20.59*105 

PCU+KM 20.24*105 19.32*105 19.29*105 

TBC 20.24*105 19.42*105 19.36*105 

TBC+KM 20.24*105 19.32*105 19.29*105 

 

TABLE II.  COMPARISON OF RESULTS FOR S DATA SETS 

S sets 
Method 

S1 S2 S3 S4 

K-means 134.44*107 1 3 . 2 7 * 1 0 8 16.88*108 1 5 . 7 0 * 1 0 8 

RLS 8 9 . 1 7 * 1 0 7 1 3 . 2 7 * 1 0 8 16.88*108 1 5 . 7 0 * 1 0 8 

PAC 840.48*107 7 7 . 3 4 * 1 0 8 57.11*108 6 3 . 4 0 * 1 0 8 

PAC+KM 143.54*107 1 8 . 6 5 * 1 0 8 16.88*108 1 5 . 7 0 * 1 0 8 

PCU 8 9 . 1 8 * 1 0 7 1 3 . 2 9 * 1 0 8 16.94*108 1 5 . 9 1 * 1 0 8 

PCU+KM 8 9 . 1 7 * 1 0 7 1 3 . 2 7 * 1 0 8 16.88*108 1 5 . 7 0 * 1 0 8 

TBC 8 9 . 1 7 * 1 0 7 1 3 . 3 0 * 1 0 8 16.90*108 1 5 . 8 8 * 1 0 8 

TBC+KM 8 9 . 1 7 * 1 0 7 1 3 . 2 7 * 1 0 8 16.88*108 1 5 . 7 0 * 1 0 8 

 

TABLE III.  COMPARISON OF RESULTS FOR IMAGE  DATA SETS 

Image data sets 
Method 

House Bridge Camera Missa 

K-means 36.4 365 278 9.64 
RLS 35.6 364 270 9.50 
PAC 51.6 430 355 13.07 

PAC+KM 39.3 366 276 10.05 
PCU 37.3 377 295 9.99 

PCU+KM 36.1 365 273 9.69 
TBC 38.25 372 289 10.10 

TBC+KM 36.19 365 277 9.62 



IV. CONCLUSIONS 
The results of the new algorithm are slightly than the basic 

algorithm based on principal curve. The biggest improvement of 
the new method consists in the fact that the main problem of the 
principal curve based clustering, setting the penalty coefficient, 
is overcome. The principal curve with tree structure clustering 
algorithm splits the whole dataset into subsets that can be 
successfully clustered using the principal curve, independent on 
the initial data size. The results are good as compared to other 
methods in clustering as well. 

Future work should consider in more detail the combination 
of the codebooks, as there are cases when the clusters are split 
between different subsets. Estimation of the number of clusters 
based on the data model proposed should be studied as well. 
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