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Data clustering is a combinatorial optimization problem. This article shows that clustering
is also an optimization problem for an analytic function. The mean squared error, or in this
case, the squared error can expressed as an analytic function. With an analytic function we
benefit from the existence of standard optimization methods: the gradient of this function
is calculated and the descent method is used to minimize the function.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Euclidean sum-of-squares clustering is an NP-hard problem [2], where we group n data points into k clusters. Each cluster
has a centre (centroid) which is the mean of the cluster and one tries to minimize the mean squared distance (mean squared
error, MSE) of the data points from the nearest centroid. When the number of clusters k is constant, this problem becomes
polynomial in time and can be solved in Oðnkdþ1Þ time [14]. Although polynomial, this problem is slow to solve optimally. In
practice, suboptimal algorithms are used. The method of k-means clustering [17] is fast and simple, although its worst-case
running time is superpolynomial with a lower bound of 2Xð

ffiffi
n
p
Þ for the number of iterations [3].

Given a set of observations ðx1;x2; . . . ;xnÞ, where each observation is a d-dimensional real vector, then k-means clustering
aims to partition the n observations into k sets ðk < nÞ S ¼ fS1; S2; . . . ; Skg so as to minimize the within-cluster sums of
squares:
arg min
S

Xk

i¼1

X
xj2Si

xj � li

�� ��2
; ð1Þ
where li is the mean of Si. Given an initial set of k means mð1Þ
1 ; . . . ; mð1Þ

k , which may be specified randomly from the set of
data points or by some heuristic [19,22,4], the k-means algorithm proceeds by alternating between two steps: [16].

Assignment step: Assign each observation to the cluster with the closest mean (i.e. partition the observations according
to the Voronoi diagram generated by the means).
SðtÞi ¼ xj : xj �mðtÞ
i

��� ��� 6 kxj �mðtÞ
i� k 8 i� ¼ 1; . . . ; k

n o
: ð2Þ
Update step: Calculate the new means as the centroids of the observations in each cluster:
. All rights reserved.
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Fig. 1. A set of two clusters i = 1, 2 with five data points (0,3), (1,2), (2,4), (8,2), (8,4) in two dimensions (features) j = 1, 2. The feature j of data point k is
represented as xkj .
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mðtþ1Þ
i ¼ 1

SðtÞi

��� ���
X

xj2SðtÞ
i

xj: ð3Þ
The algorithm has converged when the assignments no longer change.
The advantage of k-means is that it finds a locally optimized solution for any given initial solution by repeating this sim-

ple two-step procedure. However, k-means cannot solve global problems in the clustering structure, and thus, it will work
perfectly only if the global cluster structure is already optimized. By optimized global clustering structure we mean centroid
locations from which optimal locations can be found by k-means. This is the main reason why slower agglomerative clus-
tering is sometimes used [10,13,12], or other more complex k-means variants [11,18,4,15] are applied. Gaussian mixture
models can be used (Expectation–Maximization algorithm) [8,25] and cut-based methods have been found to give compet-
itive results [9]. To get a glimpse of the recent research in clustering, see [1,24,26], which deal with particle swarm optimi-
zation, ant-based clustering and minimum spanning tree based split-and-merge algorithm.

The method presented in this paper corresponds to k-means and is based on representing the squared error (SE) as an
analytic function. The MSE or SE value can be calculated when the data points and centroid locations are known. The process
involves finding the nearest centroid for each data point. An example dataset is shown in Fig. 1. We write cij for the centroid
of cluster i, feature j. The squared error function can be written as
f ð�cÞ ¼
X

u

mini

X
j

ðcij � xujÞ2
( )

: ð4Þ
The min operation forces one to choose the nearest centroid for each data point. This function is not analytic because of
the min operations. A question is whether we can express f ð�cÞ as an analytic function which then could be given as input to a
gradient-based optimization method. The answer is given in the following section.

2. Analytic clustering

2.1. Formulation of the method

We write the p-norm as
k�xkp ¼
Xn

i¼1

jxijp
 !1=p

: ð5Þ
The maximum value of xi’s can be expressed as
maxðjxijÞ ¼ lim
p!1
k�xkp ¼ lim

p!1

Xn

i¼1

jxijp
 !1=p

ð6Þ
Since we are interested in the minimum value, we take the inverses 1
xi

and find their maximum. Then another inverse is
taken to obtain the minimum of the xi:
minðjxijÞ ¼ lim
p!1

Xn

i¼1

1
jxijp

 !�1=p

ð7Þ
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2.2. Estimation of infinite power

Although calculations of the infinity norm without comparison operations are not possible, we can estimate the exact
value by setting p to a high value. The estimation error is
Table 1
Inaccur

p

0
10
20
30
40
50
60
70
80
90

100
110
120
� ¼
Xn

i¼1

1
jxijp

 !�1=p

� lim
p2!1

Xn

i¼1

1
jxijp2

 !�1=p2

ð8Þ
The estimation can be made up to any accuracy, the estimation error being
j�j > 0:
To see how close we can come in practice, a mathematical software package run was made:
1=nthrootðð1=x1Þ^pþ ð1=x2Þ^p;pÞ:
For example, with the values x1; x2 ¼ 500; p ¼ 100 we got the result 496.54. When the values of x1 and x2 are far from
each other, we get an accurate estimate, but when the numbers are close to each other, an approximation error is present. In
Table 1, the inaccuracy of the estimate is shown for different values of p and xi. In this table, the estimate with two equal
values x1 ¼ x2 is calculated. In Fig. 2, the inaccuracy is calculated as a function of p. In this example, p cannot be increased
much more, although it would give a more accurate answer. In Fig. 3, we see how large values of p can be used in maximum
value calculations with this package. Moreover, in Fig. 4, we see how accurate the estimates can be using these maximum
powers. On the basis of these results, we recommend scaling the values of xi to the range [0.5,2] to achieve the best accuracy.
Typically, dataset values are integers and range in magnitude from 0 to 500 or floats and range in magnitude from 0 to 1.

2.3. Analytic formulation of SE

Combining (4) and (7) yields
f ð�cÞ ¼
X

u

lim
p!1

X
i

1X
j

ðcij � xujÞ2
�����

�����
p

0
BBBBB@

1
CCCCCA

�1=p0
BBBBB@

1
CCCCCA

2
666664

3
777775: ð9Þ
Proceeding from (9) by removing lim, we can now write f̂ ð�cÞ as an estimator for f ð�cÞ:
f̂ ð�cÞ ¼
X

u

X
i

X
j

ðcij � xujÞ2
 !�p !�1

p
2
4

3
5: ð10Þ
This is an analytic estimator, although the exact f ð�cÞ cannot be written as an analytic function when the data points lie in
the middle of cluster centroids in a certain way.

Partial derivatives and the gradient can also be calculated. The formula for partial derivatives is calculated using the chain
rule:
@ f̂ ð�cÞ
@cst

¼
X

u

�1
p
�
X

i

X
j

ðcij � xujÞ2
 !�p !�pþ1

p

�
X

i

ð�p �
X

j

ðcij � xujÞ2
 !�ðpþ1Þ

Þ � 2 � ðcst � xutÞ

2
64

3
75: ð11Þ
acy of the estimate of the maximum value of ((6)) as p and xi , (i ¼ 1; 2) change.

xi ¼ 1 (%) xi ¼ 10 (%) xi ¼ 100 (%) xi ¼ 500 (%)

100 100 100 100
7 7 7 7
3 3 3 3
2 2 2 2
2 2 2 2
1.4 1.4 1.4 1.4
1.1 1.1 1.1 1.1
1.0 1.0 1.0 1.0
0.9 0.9 0.9 0.9
0.8 0.8 0.8 0.8
0.7 0.7 0.7 0.7
0.6 0.6 0.6 0.6
0.6 0.6 0.6 N/A
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Fig. 2. Inaccuracy of estimate of the maximum value of ((6)) as a function of p (xi ¼ 1 to xi ¼ 500; i ¼ 1; 2).
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Fig. 3. Maximum power that can be calculated by a mathematical software package with different values of xi .
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Fig. 4. Inaccuracy as a function of xi , i ¼ 1; 2, and when p is maximal.
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2.4. Time complexity

For analysing the time complexity of calculating f̂ ð�cÞ, which is presented in ((10)), we know that ð�Þ�p ¼ 1
ð�Þp involves p divi-

sions and that one division requires constant time in computer, and ð�Þ
1
p takes Oðlog pÞ [7]. Using these, we can calculate
Tðf̂ ð�cÞÞ ¼ d � ðMultþ AddÞ � k � ðTð^ � pÞ þ AddÞ þ T ^ � 1
p

� �� �
� n ¼ Oðd �Mult � k � Tð^ � pÞ � nÞ

¼ Oðd �Mult � k � p � nÞ ¼ Oðn � d � k � pÞ: ð12Þ
The time complexity of calculating f̂ ð�cÞ grows linearly with the number of data points n, dimensionality d, number of cen-
troids k, and power p.

To calculate the time complexity of the partial derivative (s), which are presented in ((11)), we divide this into three parts,
A, B, C:
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A ¼
X

i

X
j

ðcij � xujÞ2
 !�p !�pþ1

p

B ¼
X

i

�p �
X

j

ðcij � xujÞ2
 !�ðpþ1Þ

0
@

1
A

C ¼ ðcst � xutÞ:

ð13Þ
Knowing that ð�Þ�
pþ1

p ¼ ð�Þ�1 � ð�Þ�
1
p , we can write
TðAÞ ¼ d � ðMultþ AddÞ � k � ðTð^ � pÞ þ AddÞ þ T ^ � 1
p

� �
;

TðBÞ ¼ Oðd � ðMultþ AddÞ � Tð^ � ðpþ 1ÞÞ � kÞ;
TðCÞ ¼ Subtr;

ð14Þ
and
Tðpartial derivativeÞ ¼ OðTðAÞ þ TðBÞ þ TðCÞÞ � nÞ ¼ OðTðBÞ � nÞ ¼ Oðd �Mult � Tð^ðpþ 1ÞÞ � k � nÞ ¼ Oðd � p � k � nÞ
¼ Oðn � d � k � pÞ: ð15Þ
To calculate all partial derivatives, we have to calculate part C for each partial derivative. The parts A and B are the same
for all derivatives. Since we calculate part C n times, and there are k � d partial derivatives, we get
Tðall partial derivativesÞ ¼ Oðndkpþ n � TðCÞ � k � dÞ ¼ Oðndkpþ n � k � d � SubtrÞ ¼ OðndkpÞ: ð16Þ
This is linear in time for n; d; k and p, and differs only by the factor p from one iteration time complexity of the k-means
Oðk � n � dÞ.

2.5. Analytic optimization of SE

Since we can calculate the values of f̂ ð�cÞ and the gradient, we can find a (local) minimum of f̂ ð�cÞ by the gradient descent
method. In the gradient descent method the points converge iteratively to a minimum:
�ciþ1 ¼ �ci �rf̂ ð�ciÞ � l; ð17Þ
where l is the step length. The value of l can be calculated at every iteration, starting from some lmax and halving it recursively
until f̂ ð�ciþ1Þ < f̂ ð�ciÞ.

Eq. (11) for the partial derivatives depends on p. For any p P 0, either a local or the global minimum of (10) is found. Set-
ting p large enough, we get a satisfactory estimator f̂ ð�cÞ, although there is always some bias in this estimator and a p that is
too small may lead to a different clustering result.

There is also an alternative way to minimize f̂ ð�cÞ. Minimizing f̂ ð�cÞ to the global minimum could be done by solving all �c
from (18) and trying them, one at a time, in f̂ ð�cÞ, because at a minimum point (global or local) all components of the gradient
must be zero:
X
i;j

@ f̂ ð�cÞ
@cij

 !2

¼ 0: ð18Þ
This alternative way has only theoretical significance, since it is not known how to find all solutions of (18). There are at
least imax! solutions to this equation, since from each solution (which surely exist), imax! solutions can be obtained by permut-
ing the centroids.

The analytic clustering method presented here corresponds to the k-means algorithm [17]. It can be used to obtain a local
minimum of the squared error function similarly to k-means, or to simulate the random swap algorithm [11] by changing
one cluster centroid randomly. In the random swap algorithm, a centroid and a datapoint are chosen randomly, and a trial
movement of this centroid to this datapoint is made. If the k-means with the new centroid provide better results than the
earlier solution, the centroid remains swapped. Such trial swaps are then repeated for a fixed number of times.

Analytic clustering and k-means work in the same way, although their implementations differ. Their step length is differ-
ent. The difference in the clustering result also originates from the approximation of the 1-norm by the p-norm.

We have used an approximation to the infinity norm to find the nearest centroids for the datapoints, and used the sum-
of-squares for the distance metric. The infinity norm, on the other hand, could be used to cluster with the infinity norm dis-
tance metric. Most partitioning clustering papers use the p ¼ 2 (Euclidean norm) as the distance metric as we do, but some
papers have experimented with different norms. For example, p ¼ 1 gives the k-medians clustering, e.g. [23], and p! 0 gives
the categorical k-modes clustering. Papers on the k-midrange clustering (e.g. [6,20]) employ the infinity norm (p ¼ 1) in
finding the range of a cluster. In [5] a p ¼ 1 formulation has been given for the more general fuzzy case. A description
and comparison of different formulations has been given in [21]. With the infinity norm distance metric, the distance of a
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data point from a centroid is the dominant feature of the difference vector between the data point and the centroid. Our con-
tribution in this regard is that we can form an analytic estimator for the cost function even if the distance metric were the
infinity norm. This would make the formula for f̂ ð�cÞ and the formula for the partial derivatives a little bit more complicated
but nevertheless possible as a future direction, and thus, it is omitted here.
3. Experiments

We test this new clustering method not by using the p-norm but using the min-function to calculate the distances to the
nearest centroids and a line search instead of the gradient descent method. We use several small and mid-size datasets (see
Fig. 5) and compare the results of the analytic clustering, the k-means clustering, the random swap clustering, and the ana-
lytic random swap clustering. The number of clusters is based on the known number of clusters in the datasets. The results
are illustrated in Table 2 and show that analytic clustering and k-means clustering provide comparable results. In these
experiments, the analytic random swap algorithm sometimes gives a better (lower) SE value than random swapping. We also
calculated the Adjusted Rand index, a neutral measure of clustering performance beyond sum of squares, for ten runs of the
analytic clustering and the k-means clustering as well as for the random swap variants of these. Runs are done for the s-sets.
The means of the Rand indices are shown in Table 3. These results indicate that the clustering performance is very similar
between the analytic and the traditional methods. The running time for the s-sets is reasonable (e.g., 4.6 s for analytic clus-
s1 s2 s3
d = 2 d = 2 d = 2

n=5000 n = 5000 n = 5000
k = 15 k =15 k = 15

s4 iris thyroid
d=2 d = 4 d = 5
n=5000 n=150 n=215
k=15 k = 2 k = 2

wine breast yeast
d = 1 3 d = 9 d = 8
n=178 n=699 n=1484
k = 3 k = 2 k=10

Fig. 5. Datasets s1, s2, s3, s4, iris, thyroid, wine, breast and yeast used in experiments. Two first dimensions are shown.



Table 2
Averages of SE values of 30 runs of analytic and traditional methods. The SE values are divided by 1013 or 106 (wine set) or 104 (breast set) or 1 (yeast set).
Calculated using ((4)). Processing times in seconds for different datasets and methods.

Dataset Squared error Processing time

k-Means Random swap k-Means Random swap

Anal. Trad. Anal. Trad. Anal. Trad. Anal. Trad.

s1 1.93 1.91 1.37 1.39 4.73 0.04 52.46 0.36
s2 2.04 2.03 1.52 1.62 6.97 0.08 51.55 0.61
s3 1.89 1.91 1.76 1.78 4.59 0.06 59.03 0.58
s4 1.70 1.68 1.58 1.60 5.43 0.23 49.12 1.13
Iris 22.22 22.22 22.22 22.22 0.12 0.01 0.48 0.03
Thyroid 74.86 74.80 73.91 73.91 0.22 0.02 0.72 0.04
Wine 2.41 2.43 2.37 2.37 0.44 0.02 4.39 0.04
Breast 1.97 1.97 1.97 1.97 0.15 0.02 1.07 0.04
Yeast 48.87 48.79 45.83 46.06 5.15 0.12 50.00 0.91

Table 3
Adjusted Rand indices for analytic clustering and k-means clustering and for the random swap variants of these.

Dataset Analytic k-Means Analytic random swap Random swap

s1 0.86 0.87 0.95 0.95
s2 0.89 0.89 0.95 0.95
s3 0.85 0.87 0.95 0.95
s4 0.84 0.86 0.93 0.92
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tering vs. 0.1 s for k-means). The proposed method can theoretically be applied to large datasets as well, or datasets with a
large number of dimensions or clusters. The time complexity is linear with respect to all of these factors. However, in our
implementation, we use line search to optimize and use min-function to calculate the nearest centroids, and we have expe-
rienced that time consuming increases heavily when these factors increase, and larger datasets are too heavy for this. See the
running time comparisons in Table 2. The software used to compute the values in Table 2 is available at http://cs.uef.fi/sipu/
soft.

Experiments with the s-sets show that the proposed approach leads to similar membership results for the individual data
points. Out of the 15 centroids, typically 12–13 are approximately at the same locations and the other two or three at dif-
ferent locations.
4. Conclusions

We proposed a way to form an analytic squared error function. From this function, the partial derivatives can be calcu-
lated, and then a gradient descent method can be used to find a local minimum of the squared error. Analytic clustering and
k-means clustering provide approximately the same result, whereas analytic random swap clustering sometimes gives a bet-
ter result than random swapping. In k-means, there are two phases in one iteration, but in analytic clustering these two
phases are combined into a single phase. As a future work, we could consider an implementation including also the gradient
calculation and the use of the gradient descent method. Also, then, it would be natural to set a suitable value for the power p,
for which now only an extreme theoretical upper limit can be calculated.
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