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Context Quantization by Kernel Fisher Discriminant
Mantao Xu, Xiaolin Wu, Senior Member, IEEE, and Pasi Fränti

Abstract—Optimal context quantizers for minimum conditional
entropy can be constructed by dynamic programming in the
probability simplex space. The main difficulty, operationally, is
the resulting complex quantizer mapping function in the context
space, in which the conditional entropy coding is conducted. To
overcome this difficulty, we propose new algorithms for designing
context quantizers in the context space based on the multiclass
Fisher discriminant and the kernel Fisher discriminant (KFD). In
particular, the KFD can describe linearly nonseparable quantizer
cells by projecting input context vectors onto a high-dimensional
curve, in which these cells become better separable. The new
algorithms outperform the previous linear Fisher discriminant
method for context quantization. They approach the minimum
empirical conditional entropy context quantizer designed in the
probability simplex space, but with a practical implementation
that employs a simple scalar quantizer mapping function rather
than a large lookup table.

Index Terms—Context quantization, entropy coding, Fisher dis-
criminants, image compression.

I. INTRODUCTION

AKEY and important task in compressing a dis-
crete sequence is the estimation of

conditional probabilities , where
is the prefix or context of . Given

a class of source models, the model order or the number
of parameters must be carefully chosen in the principle of
minimum description length or universal source coding. The
pioneer solution to the problem is Rissanen’s algorithm Context
[1], which dynamically selects a variable-order subset of the
past samples in , called the context . The algorithm
structures the contexts of different orders by a tree and it can
be shown to be, under certain assumptions, universal in terms
of approaching a minimum adaptive code length for a class of
finite memory sources. A more recent and increasingly popular
universal source-coding technique is context tree weighting [2].
The idea is to weight the probability estimates associated with
different branches of a context tree to obtain a better estimate
of .

Although the tree-based context modeling techniques have
had remarkable success in text compression, applying them to
image compression poses great difficulty. The context tree can
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only model a sequence but not a two-dimensional (2-D) signal
like images. In order to apply the context tree-based techniques
to image coding, one needs to schedule the pixels (or transform
coefficients) of an image into a linear sequence as proposed by
the authors of [3], [4]. Recently, Mrak et al. investigated how to
optimize the ordering of the context parameters within the con-
text trees [5], but any linear ordering of pixels will inevitably
destroy the intrinsic 2-D sample structures of an image. This is
why most image/video image compression algorithms choose a
priori 2-D context models with fixed complexity, based on do-
main knowledge such as correlation structure of the pixels and
typical input image size, and estimate only the model parame-
ters. For instance, the JBIG standard for binary image compres-
sion uses the contexts of a fixed size causal template [6]. The ac-
tual coding is implemented by sequentially applying arithmetic
coding based on the estimated conditional probabilities.

Estimating the conditional probabilities directly
using count statistics from past samples can incur severe context
dilution problem if the number of symbols in the context is large
or/and if the symbol alphabet is large with respect to the length
of the input signal, which is the case for image/video compres-
sion. Context quantization is a common technique to overcome
this difficulty [7]–[9]. For example, the state-of-the-art lossless
image compression algorithm CALIC [10] and the JPEG 2000
entropy-coding algorithm EBCOT [11] quantize the context,
into a relatively small number of conditioning states, and es-
timate , , instead of ,
where denotes a context quantizer.

Context quantization is a form of vector quantization because
context is a random vector in the -dimensional context space

(i.e., the context model has order ). Naturally, the objec-
tive of optimal context quantization should be minimization of
the conditional entropy . Although the convexity of
the entropy function implies , we
would like to make as close to as pos-
sible for a given , or minimize the Kullback–Leibler distance

Note that referring to the true source entropy is not the ac-
tual code length which should include the model cost. Although
the Kullback–Leiber distance (relative entropy) is not strictly a
distance metric for its violation of symmetry and triangular in-
equality, the standard practice is to use it as a nonnegative “dis-
tortion” of context quantizer .

The problem of context quantization in minimizing Kull-
back–Leibler distance was first studied by Wu [7] and then by
Chen [12] for the application of wavelet image compression.
Greene et al. also developed optimal context quantization
algorithm for compression of binary images [13]. Recently,
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Forchhammer et al. proposed a context quantizer design algo-
rithm under the criterion of minimal adaptive code lengths, and
applied it to lossless video coding. A more theoretical treatment
of the problem can be found in [8].

The existing context quantizer design algorithms can be
classified into two approaches: those that form coding contexts
directly in the context space of conditioning events (or the
feature space in the terminology of classification and pattern
recognition) like [7] and [12], and those that form coding
contexts in the probability simplex space [8], [9], [13]. In the
context space, one can apply the generalized Lloyd method [14]
to design a context quantizer by clustering raw contexts of a
training set according to Kullback–Leiber distance, which was
the idea in [12], but this iterative approach of gradient descent
cannot guarantee the globally optimal solution. If the random
variable to be coded is binary, then the VQ problem of context
quantization can be converted to a scalar quantization problem
in the probability simplex space of . This change of space
makes it possible to design globally optimal context quantizer
by dynamic programming (DP) [8], [9], [13]. For the sake of
rigor, we remind the reader that the above-mentioned optimality
is with respect to the statistics of the chosen training data. In
practice, if the statistics of an input image mismatches those of
the training set, then the coding performance becomes of course
suboptimal. Nevertheless, designing optimal context quantizer
still has practical significance because situations exist where
suitable training set can be found. Furthermore, an off-line
optimized context quantizer can be used in conjunction to
adaptive arithmetic coding to compensate for any coding loss
due to the mismatch of statistics.

Regardless of what space is chosen to design the context
quantizer, an input context (feature) vector (a realization of
the random variable ) has to be mapped to a coding state (a
context quantizer cell) when it comes to actual context-based
coding using . In this regard, both design approaches
face a common operational difficulty of complex quantizer
mapping function . Unlike in conventional VQ, the cells
(coding states) of optimal context quantizer are not convex
or even connected in the context space. Since the quantizer
mapping function is highly unstructured and complex in the
context space of , its description seems only possible via table
lookup. Unfortunately, the table size required by grows
exponentially in the order of the context. To circumvent this
problem, the previous authors resorted to prequantization of raw
contexts , i.e., limiting the resolution of the context space [12],
or the technique of product quantization [13]. Another technique
is the projection by the linear Fisher discriminant (LFD) [7].
However, all these techniques compromise optimality. In this
paper, we reexamine the problem of optimal context quantization
and strive to approach the minimal empirical conditional entropy
of under the constraint of a simple quantizer mapping function

. We have made a measured progress in meeting the
objective by designing context quantizers using kernel Fisher
discriminant (KFD).

Thepresentationofthispaperisorganizedasfollows.SectionII
characterizes the structure of the cells of context quantizer in
both probability simplex space and context space and exposes
the complexity of quantizer mapping function. The main results

of this research, i.e., the context quantizer design algorithms
based on multiclass LFD and KFD, are presented in Section III.
The details of the design algorithm by using KFD are given
in Section IV. Section V presents some experimental results,
and the conclusion follows in Section VI.

II. STRUCTURE AND COMPLEXITY OF QUANTIZER MAPPING

A context quantizer partitions a -dimensional context
space into subsets

The criterion of minimizing the Kullback–Leibler distance in
context quantizer design leads to complex structures and shapes
of quantizer cells, which are in general not convex or even con-
nected [8]. However, the associated sets of probability mass
functions (pmfs)

are simple convex sets in the probability simplex space of ,
owing to a necessary condition for minimum conditional en-
tropy quantizer [9].

If is a binary random variable, then the probability sim-
plex is one-dimensional (1-D). In this case, the quantizer cells

are simple intervals. Let (the conditional
probability of as a function of context ) be a random
variable, then the conditional entropy of a context
quantizer can be expressed by

(1)

where the quantizer thresholds partition
the unit interval into contiguous cells .
Thus, the minimal condition entropy context quantizer
(MCECQ) can be reduced to a scalar quantization problem in

, even though the context is drawn from a -dimensional
vector space. The globally optimal solution of the problem

can be obtained using DP. Greene et al. showed that the MCECQ
design problem can be solved in time, where is the
number of raw, i.e. unquantized contexts, thanks to a so-called
concave Monge property of the objective function (1) [13].

Once is scalar quantized for minimal empirical conditional
entropy of a training set, the optimal MCECQ cells are
formed implicitly by

However, is seldom known exactly in practice. Other-
wise one would directly drive an entropy coder with .
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Fig. 1. Example distribution of MCECQ cells A in context space, for M = 3 and the source of least significant bits of DPCM errors of image cameraman.
The x and y axes represent values of the first two elements in raw context [the two directional gradients I(i; j � 1)� I(i; j � 2) and I(i� 1; j)� I(i� 2; j)
as given in (12) and (13)]. The symbols , +, and � in the scatter plot are, respectively, the raw contexts of cells A , A , and A .

Instead, a training set is used to estimate . Wu et al. [8]
showed that the partition of the context space by MCECQ
cells is generally very complex in shape and structure, re-
sulting highly irregular quantizer mapping function . An
example of the distribution of in the context space is given
in Fig. 1. Only when and are
of Kotz-type -dimensional elliptical distributions, the MCECQ
cells are bounded by quadratic surfaces [8]. Consequently,
the implementation of an arbitrary quantizer mapping function

becomes an operational difficulty in using MCECQ in prac-
tice, which is the main issue that motivated this research.

The simplest way of implementing is to use a lookup table.
But since , the number of all possible raw contexts, grows
exponentially in the order of contexts, building a huge table of

entries for is clearly impractical. Hashing techniques can
be used to avoid excessive memory use of the table by ex-
ploiting the fact that the actual number of different raw con-
texts appearing in an input image is much smaller than . But
this saving of memory is at the expense of increased time of
quantizer mapping operation when collision in table access oc-
curs. To achieve constant execution time of the quantizer map-
ping function, the size of hashing table has to be larger than the
number of distinct raw contexts by a sufficient factor. In the case
of image coding, the table size needs to be comparable to the
image size since many raw contexts have very low frequency of
occurrence.

A common technique to simplify the quantizer mapping func-
tion is through projection. Wu proposed a suboptimal context
quantizer design algorithm based on Fisher’s linear discriminant
[7]. The idea was to project the training context vectors in the
direction such that the two marginal posterior distributions of

and , , have
maximum separation. Then, a DP algorithm was used to form a

convex -partition of the corresponding 1-D projection space
to minimize the conditional entropy

(2)

in which the intervals , , define the con-
text quantizer . In this design approach the context quantizer

is a scalar one in the projection direction , i.e., a subspace
of the original context space . Although the projection ap-
proach is suboptimal, it simplifies the quantizer mapping func-
tion to if and only if , which has
operational advantages in practice [7].

III. IMPROVED DESIGN ALGORITHMS

OF FISHER DISCRIMINANTS

The progress made by this paper is to combine the advan-
tages of the two MCECQ design approaches in the probability
simplex space and in the projection context space of Fisher’s
discriminant. Namely, we seek to attain simultaneously the op-
timality of MCECQ in probability simplex space and the sim-
plicity of quantizer mapping in the projection space.

A. Multiclass LFD

In [7], a LFD was used to separate the two posterior dis-
tributions of and , which
is a two-class classification problem. However, the success of
this approach is limited to cases where and

are linearly separable to certain degree, but,
for more difficult, linearly nonseparable shapes of context cells,
a departure from [7] is needed. We seek to separate the op-
timal MCECQ cells formed in the probability simplex space via
a suitable, nonlinear projection of the context space. The goal
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is to apply the discriminant classifier to form a convex parti-
tion in the projection subspace that best matches the optimal
partition of s in the probability simplex space. The multi-
class Fisher discriminant [15] lends us a tool to design a clas-
sifier that approximates the optimal partition of contexts in the
probability simplex space by an optimized partition in a projec-
tion subspace. The separation of input classes (i.e., the partition
of s formed by MCECQ in the context space) in projection
direction can be measured by the so-called F-ratio validity
index defined as the ratio of between-class variance versus
within-class variance

(3)

where is the class label of each sample and is the
mean vector of all raw context samples. The multiclass LFD is
the maximization of F-ratio validity index in (3), i.e.

(4)

where represents a discriminant vector in raw context space.
and in (4) are the between-class covariance matrix and

the within-class covariance matrix, respectively

where and are the mean vector and sample size of class
in context space, respectively. After the projection direction
is determined by (4), one can still apply DP to the projected

samples to optimize context quantizer the same way as in
(2)

B. KFD

The multiclass LFD outperformed the two-class LFD in
terms of designing context quantizers of shorter code length
in our experiments (see Section V). But the contexts of dif-
ferent MCECQ cells (input classes for the Fisher discriminant)
are not linearly separable in the context space as shown in
[8]. A superior alternative is to use a nonlinear classifier of
higher discriminating power. Encouraged by the success of the
kernel-based learning machines, such as support vector ma-
chine, kernel principal component analysis and KFD analysis in
many other classification and learning applications [16]–[20],
we propose a new design technique of context quantizers by
using the multiclass kernel Fisher discriminant. The multiclass
kernel Fisher discriminant has been intensively studied as a
generalization of discriminant analysis using kernel approach
[21], [22]. As an extension of Fisher discriminant, the kernel
one is known for its high discriminating powers on the input
clusters of complex structures. The kernel discriminant first
maps the source feature vectors (or context vectors in MCECQ

design) into some new feature space in which different
classes are better separable. A linear discriminant is computed
to separate input classes in . Implicitly, this process constructs
a nonlinear classifier of high discriminating power in the orig-
inal feature space. In our application of context quantization,
the objective of the kernel discriminant is, given an input
partition , , to find
a projection direction in a new feature space such that
different s are most separable in . A DP algorithm is then
applied to design an MCECQ in . The resulting MCECQ in

implicitly constructs a context quantizer in the context space
.

Let be the nonlinear mapping from context space to
some high-dimensional Hilbert space . Our goal is to find the
projection line in such that the F-ratio validity index

(5)

is maximized, where and are the between-class and
within-class covariance matrices. Since the space is of very
high or even infinite dimensions, the function is infeasible.
A technique to overcome this difficulty is the Mercer kernel
function , which is the dot product in
Hilbert feature space . A popular choice for the kernel func-
tion that has been proved useful (e.g., in support vector ma-
chines) is the Gaussian radial basis function (RBF),

. It is known that under some mild assump-
tions on and , any solution maximizing (5) can
be written as the linear span of all mapped context samples [19]

(6)

As a result, the F-ratio can be reformulated as

(7)

where and are matrices

where is the kernel matrix, and

where are membership vectors corresponding to
class labels, and is the vector of all ones. The projection of a
test context onto the discriminant is given by the inner product

where is the RBF kernel func-
tion. The superior discriminating power of KFD over the LFD
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Fig. 2. Separability of two MCECQ cells A in (a) and A in (b) in the projection subspace formed by the KFD.

Fig. 3. Separability of two MCECQ cells A in (a) and A in (b) in the projection subspace formed by the LFD.

method of [7] for MCECQ design is illustrated in Figs. 2 and
3. The plots are for the context vectors in the modeling of the
least significant bit of the test image Cameraman. By comparing
the histograms of the projected MCECQ cells and from
Cameraman image (for case of ) for the two methods, re-
spectively, one can easily see that KFD offers significantly better
separation of and than LFD. Note that the projection of
KFD is in general nonlinear unlike the classic LFD.

Computationally, the KFD problem is to find the leading
eigenvector of . As the dimension of is higher than
the number of source samples , and is a highly singular

matrix obtained from only source samples, some
form of regularization is necessary. The simplest solution is
to add either the identity or kernel matrix to matrix ,
namely matrix , is replaced by . This makes
the problem numerical more stable because the within-class
matrix becomes more positive definite for large . It is also
roughly equivalent to add independent noises to each of the
kernel bases.

IV. IMPLEMENTATION OF KFD FOR CONTEXT QUANTIZATION

In the above formulations, matrices and are too large in
size in practice. Maximizing (7) takes time since it needs
to solve the matrix eigenvalue problem. This complexity
is too high for large . More importantly, in context quantiza-
tion applications, we are not able to use all the basis functions
corresponding to all raw training contexts. Solving the KFD for
two classes can be cast to a quadratic optimization problem [18],
[19]. However, this scheme can not be directly applied to esti-
mating the multiclass KFD. The possible solution applicable to
any choice of and is to restrict the discriminator to be in
a subspace of , as proposed in [19] and [20]. Instead of using
(6), we express in the subspace

(8)

where , and samples could be either selected from all
raw training context samples or estimated by some clustering
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algorithms. Without loss of generality, if we choose each in
(8) from the training set, , then

(9)

where is the -dimensional vector, and

(10)

are two covariance matrices with being an
sub-matrix of , where

Given the dimension of the subspace of , the partial expan-
sion (8) presents a greedy approximation of the optimal KFD so-
lution, which was described in [19] and [20] and studied theoret-
ically as the reduced set method for supported vector machines
in [23]. This approximation can be incrementally improved by
adding a raw context sample or a new context base one at a time
to the existing expansion, i.e., incrementing the dimensionality

by one at a time. Such incremental expansion can be done in
a greedy fashion, as follows. For each iteration, we first ran-
domly select a subset of the remaining training set, and then
we conduct an exhaustive search in , instead of in the whole
remaining training set, for the training context that maximizes
(9) after being added to (8). The proper size of was shown
to be 59 in order to obtain nearly as good a performance as if the
search was through the entire remaining training set [24]. Since

, incrementing the kernel expansion (8) by one base con-
text merely takes time. Consequently, the approxima-
tion of the kernel discriminant in -dimensional subspace of
has time complexity, which is drastically lower than

. The pseudocode of this practical approximation algo-
rithm of KFD for context quantization is presented in Fig. 4.

We build the context quantizer in three steps. In the first step,
we apply the DP algorithm to design MCECQ in the probability
simplex space. This produces the MCECQ cells that con-
stitute the input classes of KFD. In the second step, we map

back to in the context space, and use the KFD to find a
projection direction in (corresponding to a curve in the con-
text space) in which MCECQ cells have maximum sepa-
ration. In the final step, we compute all projection values of
training contexts and put them into a sorted list. Since each
class in the projection direction is, in general, not convex, in
order to make the underlying classification problem tractable
and, more importantly, make the quantizer mapping function
simple, the DP is used again to construct a convex partition
of the projection subspace that minimizes the conditional en-
tropy , where the kernel projection

is given by

(11)

Fig. 4. Pseudocode of context quantization by KFD.

Once the KFD context quantizer is designed, the decoder can
map a raw context to a coding state in entropy decoding
using the following context quantizer mapping function

if .

V. EXPERIMENTAL RESULTS

We implemented the proposed context quantizers and eval-
uated them in DPCM predictive lossless coding of gray scale
images. The prediction residuals are coded by binary arithmetic
coding that uses context states optimized by the proposed
algorithms. The binary random variables to be coded are
the binary decisions in resolving the value of the prediction
residual. In particular, we are interested in two binary sources:
the signs of DPCM prediction errors on grey scale images,
and the least significant bits of the DPCM prediction errors.
These binary sources are among the most difficult to compress
with their self entropy being maximum (1 bit per sample) and,
thus, present great challenges to context-based entropy coding.
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Consequently, they serve as good, demanding test cases for the
performance of different context quantizers.

The causal context in which the current pixel is coded
consists of three gradients in a local window as

(12)

The reason for choosing as feature vectors in context
modeling is because they capture the variance and signal the
presence of edge structures in the image signal while keeping
the dimensionality of the feature space low. We did not use
higher order context models to avoid overfitting in the coding
phase. Even this three-dimensional feature space generates a
very large number of raw contexts, namely . A scalar pre-
quantization scheme

if
if
if
if

(13)
is used to reduce the number of raw contexts to a manageable
level of ( was chosen to be 6 in our experiments).
Since the gradient is the difference of adjacent samples, it obeys
geometrical distribution for natural images. The above scalar
prequantization merges the raw contexts into equally probable
regions.

The training set of raw contexts was generated out of 23 im-
ages that were samples from two archives of benchmark gray
scale images on the Internet [25], [26]. The test set consisting
of images airplane, barb, boat, cameraman, couple, crowd, girl,
lena, peppers, tiffany is disjoint from the training set. The model
parameters to construct the kernel discriminants for the
two training sets are chosen as (0.0076, 4.16) and (0.0043, 5.33),
respectively, which can be estimated by applying the cross-val-
idation [27], [28] estimation of the minimized misclassification
rate or desirable minimum conditional entropy. Either the en-
coding or decoding of each binary symbol by a KFD context
quantizer needs projecting a context to the discriminant direc-
tion in time according to (8). Thus, the encoding or de-
coding complexity of a KFD context quantizer is ,
where is the length of input sequences.

We compare three context quantizers of Fisher discriminant
type reviewed and developed in this paper. Namely, LFD-I:
the two-class LFD scheme of [7]; LFD-II: the multiclass LFD
scheme discussed in Section III-A; and KFD: the MCECQ
design algorithm based on KFD developed in Section III-B and
Section IV. All the three context quantizer design algorithms
output convex quantizer cells in the context space with simple
quantizer mapping functions. As a performance benchmark,
we also include the ideal results, i.e., the conditional entropy
rates of the MCECQ quantizer in the probability simplex space,
against which the testing results of the three practical methods
are measured. These rates were obtained by MCECQ designed
for the sample statistics of each individual test image. Clearly,
these rates serve as a theoretical lower bound with respect to the
context model in question, since they are the best achievable in

Fig. 5. Average bit rates achieved by the four context quantizers on coding the
sign of DPCM error pixel in bits/sample.

Fig. 6. Average bit rates achieved by the four context quantizers on coding the
least significant bit of DPCM error pixel in bits/sample.

the ideal situation when the training data and input image have
identical statistics and as though the quantizer mapping func-
tion, regardless how complex, could be precisely implemented
in practice.

Figs. 5 and 6 plot the average bit rates achieved by the three
MCECQ design methods in the context space, LFD-I, LFD-II,
and KFD, on coding the sign and the least significant bit of
DPCM errors for the ten test images. The DPCM errors are
generated by the median predictor used by JPEG-LS. The bit
rates are presented as functions of the number of context quan-
tizer cells. As lower bounds for the achievable bit rates by any
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TABLE I
BIT RATES OF SIGNS OF DPCM ERRORS FOR DIFFERENT METHODS

TABLE II
BIT RATES OF LEAST SIGNIFICANT BITS OF

DPCM ERRORS FOR DIFFERENT METHODS

convex partition of the context space, we also include in the fig-
ures the corresponding average conditional entropy rates of op-
timal MCECQs designed in the probability simplex space as ex-
plained above. It can be observed from our experimental results,
as expected, that LFD-II outperforms LFD-I, and KFD outper-
forms the two variants of linear discriminant type, because KFD
has higher discriminating power than the other two with its ca-
pability of forming more complex quantizer cells. In fact, the
KFD method achieves the bit rates that are less than 0.5% away
from the lower bound.

We apply the three context quantizers designed from the
training set to encode the signs and the least significant bits of
DPCM errors from ten test images outside of the training set.
All three context quantizers have 12 cells; in other words, the
conditional entropy coding is carried out in 12 coding states.
Tables I and II show the actual code lengths obtained by the
three context quantizers. Not surprisingly, the KFD, in general,
outperforms the two linear ones.

Table III presents the lossless bit rates of the ten gray-level
test images achieved by adaptive binary arithmetic coding that
uses the modeling contexts designed by the proposed MCECQ
methods for each binary decision. As references in comparison,
the bit rates of the JPEG-LS lossless image-coding standard
are also listed in the table. The comparison is fair and mean-
ingful because JPEG-LS uses the same context template as in
our experiments but it employs a heuristic context quantization
scheme [29]. Since an alternative method for lossless coding of
grayscale images is to code each bitplane using a high-order bi-
nary context as in JBIG, we also include in Table III the lossless

TABLE III
BIT RATES OF LOSSLESS IMAGE COMPRESSION BY DIFFERENT METHODS

bit rates obtained by JBIG standard. The proposed KFD-based
context quantizer outperforms all other methods consistently on
each test image, albeit its improvement over JPEG-LS is quite
small. The small margin between the two methods indicates that
the heuristic context quantizer of JPEG-LS is already very good
compared with a heavily optimized one. We envision this work
to be a useful algorithmic tool to evaluate the quality of more
practical context quantizers.

VI. CONCLUSION

We proposed new algorithms for designing context quantizers
toward minimum conditional entropy based on multiclass Fisher
discriminant and the KFD. We succeeded in approaching the
lower bound of the achievable bit rates with a practical imple-
mentation that employs a simple scalar quantizer mapping func-
tion rather than a large lookup table.
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