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ABSTRACT 
We study the clustering problem when using 

Davies-Bouldin index as the optimization criterion. 
The problem is to partition a given data set of N 
vectors into M clusters so that the value of the 
Davies-Bouldin index is minimized. The index differs 
from the mean square error in that it also takes into 
account the distance between code vectors. This leads 
to the problem that setting the code vectors as the 
centroids of the clusters does not give the optimal 
placement for minimizing the Davies-Bouldin index. 
We derive formula for optimizing the location of the 
cluster centroids. 

Keywords: pattern recognition, algorithms, cluster 
analysis, number of clusters. 

1. INTRODUCTION 
Unsupervised classification is an important part of 

many applications in image processing and analysis. 
The main goal is to obtain a high quality clustering 
for a set of input vectors minimizing a given 
optimization criterion [1]. Clustering is a 
combinatorial optimization problem where the aim is 
to partition a set of data vectors into a number of 
classes. Data vectors with similar features should be 
grouped together and vectors with different features 
to different groups. 

There are several established methods for 
generating a clustering [1, 2, 3]. The methods are 
usually designed to minimize the mean square error 
between the data vectors and their cluster centroid. 
Mean square error, however, is not suitable for 
determining the number of clusters, since it decreases 
as the number of clusters increases. In fact, it would 
result in a situation where the number of clusters 
equals to the number of data vectors, which yields to 
error value of zero. We are therefore forced to use 
other criteria and this may lead to changes in the 
algorithm itself. 

Generalized Lloyd algorithm (GLA) [4] is 
a widely used algorithm that seeks local optimum by 
iteratively changing between two representations. The 
GLA is also used as an integral part of several more 
sophisticated algorithms, such as stochastic relaxation 
[5], deterministic annealing [6], genetic algorithm [7], 
and randomized local search [8]. The optimization 
steps of the GLA are basically designed to the 

minimization of the mean square error. However, 
there is no guarantee that these steps would be 
optimal for other criteria, such as Davies-Bouldin 
index (DBI) [9].  

In this study, we show that the centroid of the 
cluster is not the optimal selection of the cluster 
representative (code vector) for minimizing DBI. We 
then study the problem for the point of view of 
a single cluster. We show that the code vector of a 
cluster should be moved from the centroid to the 
opposite direction from the nearest neighbor cluster. 
We also derive formulas that give the exact amount of 
the movement. As a result, we obtain a method for 
optimizing the evaluation criterion directly. We then 
apply the proposed method with the clustering 
algorithm presented in [8]. 

Figure 1: Example of the partition of a data set (the 
small black dots). The cluster centroids are 

represented by the large gray dots and the cluster 
boundaries by Voronoi diagram. 

2. CLUSTERING PROBLEM 
We use the following notations: 

N Number of data vectors. 
ni Number of vectors in cluster i. 
M Number of clusters. 
K Number of attributes. 
X Set of N data vectors X = {x1, ..., xN}. 
P Set of N cluster indices P = {p1, ..., pN}. 
C Set of M code vectors, C = {c1, ..., cM}. 
d(a, b) Distance between vectors a and b. 



Mean square error (MSE) is the average pairwise 
distance between data vectors and the corresponding 
cluster representative (code vector). Usually d is 
Euclidean distance, but other metrics are also used. 
Given the set of code vectors (C), and the set of 
cluster indices (P) for each training vector, MSE can 
be calculated as 
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There exist several clustering algorithms, of 
which we now recall two. Both of the algorithms take 
the data set (X), the number of clusters (M), and an 
initial solution (e.g. random clustering) as input, and 
produce the partition (P), and/or the set of code 
vectors (C) as the output.. 

Generalized Lloyd algorithm, also known as LBG 
or k-means, starts with an initial codebook, which is 
iteratively improved by using two optimality 
conditions in turn. In the first step, each data vector xi 

is mapped to the nearest code vector cj. In the second 
step, a new set of code vectors is obtained by 
replacing each code vector as the centroid (average) 
of the data vectors in the cluster. The new solution is 
never worse than the previous one [3]. The solution 
converges to the nearest local optimum. The 
algorithm is easy to implement but very sensitive to 
the initial solution due to the fact that only local 
changes are made to the solution. Pseudocode of the 
GLA is presented in Figure 2. 

GLA(X,C) return C,P 
REPEAT 
        Cprevious  C; 
        FOR all i  [1, N] DO 
                pi  j such that xi is closest to cj; 
        FOR all j  [1, M] DO 
                cj  Average of xi, whose pi = j; 
UNTIL C = Cprevious; 
Return C,P; 

Figure 2: Pseudocode for GLA. 

Randomized local search (RLS) [8] overcomes the 
sensitivity to the initial solution. It starts with a 
random solution, which is then improved by a 
predefined number of iterations. At each step, a new 
candidate solution is constructed as follows. The 
clustering structure of the current solution is first 
modified by replacing a randomly chosen code vector 
by a randomly chosen input vector. The partition of 
the new solution is then adjusted in respect to the 
modified set of clusters. Two iterations of the GLA 
are applied to fine-tune the trial solution. The 
candidate is evaluated and accepted if it improves the 
previous solution. The algorithm is iterated for 
a fixed number of iterations. Pseudocode of the RLS 
algorithm is presented in Figure 3. 

 

LS(X,M) return C, P 
C  Set of randomly chosen data vectors. 
FOR all i  [1, N] DO 

              pi  j such that xi is nearest to cj; 
FOR a  1 TO NumberOfIterations DO 
        Cnew C; 
        cj  Randomly chosen data vector 
        Cnew, Pnew  GLA(X,Cnew); 
        IF MSE(X, Cnew, Pnew) < MSE(X, C, P) 
        THEN C  Cnew; P  Pnew; 
        END IF 
END FOR 
return C, P; 

Figure 3: Pseudocode for local search. 

3. SOLVING THE NUMBER OF 
CLUSTERS 

In order to determine the correct number of 
clusters, we must have a criterion that takes into 
account the number of clusters and an algorithm that 
varies the number of clusters. Notable property of 
MSE is that it's value decreases as the number of 
clusters increases. In fact, the optimal solution would 
be N = M, and the MSE = 0. This makes the MSE 
unsuitable for determining the number of clusters. 

We use Davies-Bouldin index [9] as the criterion 
because, in our experiments, we have found it in our 
experiments quite reliable among several alternative 
measures; with regard to pointing out the correct 
number of clusters. Davies-Bouldin index takes into 
account both the error caused by representing the data 
vectors with their cluster centroids (intra cluster 
diversity) and the distance between clusters (inter 
cluster distance). The intra cluster diversity of 
a cluster j is calculated as 





jp

ijj

i

xcd
N

MSE 2),(
1

 (2) 

The inter cluster distance of the cluster j and k is 
measured as the distance between their centroids cj 
and ck. With these two measures we can then 
calculate the closeness of the two clusters as the sum 
of their MSE-values divided by the distance of their 
centroids: 
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The closeness of the cluster is proportional to 
their MSE-values and indirectly proportional the 
distance of their centroids. Small values of Rj,k 
indicate that the clusters are separated and large 
values that the clusters are close to each other. 

In order to calculate DBI-value, we take for each 
cluster j the maximum value of (3) and denote it as Rj: 



ji
ji

j RR ,max


  (4) 

The overall Davies-Bouldin index is defined as: 
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The simplest algorithm that determines the correct 
number of clusters just varies M over a range of 
values [Mmin..Mmax] in a loop and generates clustering 
for every number of M using any algorithm. We use 
the randomized local search (RLS) for generating the 
clustering for each value of M. We refer this approach 
as brute force local search. The pseudocode for the 
algorithm is presented in Figure 4. 

BFLS(X, Mmin, Mmax) return C, P 
Cbest, Pbest  LS(X, Mmin); 
FOR i  Mmin + 1 TO Mmax DO 
        C,P  RLS(X, i); 
        IF DBI(X,C,P) <DBI(X, Cbest, Pbest) THEN 
                Cbest  C; Pbest  P; 
END FOR 
return Cbest, Pbest; 

Figure 4: pseudocode for brute force local search. 

 

4. SEEKING FOR OPTIMAL DBI 
The data required to evaluate the clustering is the 

same for both MSE and DBI. Both measures need the 
cluster representatives (code vectors) and the 
partition, and this information is already available in 
the GLA and the RLS algorithms. The optimal 
partition can also be generated in the same way for 
both measures. Partitioning is performed by mapping 
each vector to the cluster that has the closest code 
vector. 

 (6) dp
Mj

i minarg
1




It is therefore straightforward to apply DBI 
instead of MSE in the BFLS algorithm. 

The main problem lies in the fact that while we 
are using DBI in the BFLS algorithm for evaluating 
the solutions we are still using MSE in the RLS and 
GLA to refine the solutions. Minimizing MSE 
certainly minimizes the denominator of (3), but it 
does not do the same for the nominator. I.e., the code 
vectors may move closer to each other when we apply 
the GLA, but for DBI, it might be better to move the 
code vectors away from each other by a small 
amount. Although moving the code vector may 
increase MSE, the move is beneficial because the 
offset in the increase of the distance between code 
vectors offsets this increase in MSE, resulting in an 
overall decrease of DBI. 

We propose to use DBI not only to select among 
the several clustering with various number of clusters, 
but also for optimal placement the code vectors. In 
order to do this, we develop a method to place the 
code vectors so that the increase in MSEi does not 
offset the increase in the distance between the code 
vectors. We must therefore determine the direction 
and the magnitude of the shift. We will present 
formulas for local optimizations only; i.e., in the case 
of each cluster separately. The globally optimal 
settlement of the vectors is much more difficult to 
obtain because the shift of a single code vector may 
cause changes in the optimal placement for another 
vectors. Moreover, it is also possible that after 
moving a code vector of a cluster j away from its 
neighboring cluster k, the cluster k will no longer be 
the nearest cluster for j. 

We will show later that the direction of the 
movement doesn't affect the increase of MSE, 
provided that the original placement of the code 
vector is the centroid of the cluster. We will also 
show that the optimal direction of the movement for 
minimizing DBI is the opposite from the direction to 
the centroid of the nearest cluster. We presume that 
the distance function in use is the Euclidean distance. 

Lemma 1: The direction of the movement is the 
opposite from the centroid of the nearest neighbor 
cluster. 

Lemma 2: The magnitude of the optimal 
movement, i.e. the length of the vector to be added to 
the code vector is: 
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We prove the lemmas in the Chapter 5. The effect 
of the movement is illustrated in Figure 5. 

The movement is implemented inside the GLA as 
an additional fine-tuning step, as shown in Figure 6. 
In this case, the code vectors are moved after each 
GLA iteration. Another approach would be to make 
the fine-tuning outside the GLA in the main loop of 
the RLS algorithm. However, this is only a matter of 
implementation as we expect the effect to be the same 
in both approaches.  

 
Figure 5: The direction of the movement.. 



GLA(X,C) return C,P 
REPEAT 
        Cprevious  C; 
        FOR all i  [1, N] DO 
                pi  j such that xi is closest to cj; 
        FOR all j  [1, M] DO 
                cj  Average of xi, whose pi = j; 
        FineTuneCodeVectors(C,P,X); 
UNTIL C = Cprevious; 
Return C,P; 

Figure 6: pseudocode for modified GLA. 

The routine FineTuneCodeVectors refines the 
location of the code vectors. However, it is not clear 
how the fine-tuning should be implemented as there 
are a number of practical problems. For M clusters, 
we can draw a graph that shows the relationships of 
the clusters, in the sense how they contribute to the 
Rj-values of other clusters. The graph might look like 
that of in Figure 7. 
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Figure 7: Nearest neighbor graph of the clusters 
demonstrating the contributors for Rj 

 for each 
cluster. 

For each cluster, we face the problem of which 
one to move. In some cases the selection is easy. For 
example, when considering Figure 7, it is better to 
move A, since moving B might move it closer to D 
and thus worsen the situation there. Using the same 
logic, it is better to move E, H and G than to try to 
move F, since most likely F would move towards 
some other code vector. If we think of the number of 
edges coming to and leaving a node, we can construct 
a heuristic that the nodes with less edges should be 
moved before others. This seems to be a good rule, 
but it still does not guarantee an optimal placement of 
the vectors. For example,  it is possible that the code 
vector j moves too far from its neighbor k, and as a 
consequence, the Rj,k decreases so much that it will no 
longer be the maximum. For example, moving C 
might cause it to become closer to A, which means 
that we should move C the amount where RC,D = RC,A 
and not any further. 

We implemented two different methods. The first 
method (simple method) just takes into account the 
code vector of the nearest cluster (with which the 

maximum of Rj,k). The second method (averaging 
method) takes into account all clusters that had their 
maximum Rj,k obtained with the cluster in question. 
The displacement is then calculated for all cluster 
pairs and then the average of these vectors was taken 
as the final displacement.  

We also experimented with various ways to weigh 
the vectors in order to get at least the locally optimal 
solution but we did not found any feasible way to 
compute the globally optimum placement (found with 
exhaustive search in our tests). Among the 
experimented methods we used (i) per-cluster MSEs 
as defined by equation (2) and (ii) the Rj-values (4) 
for the neighbor clusters in question. These two 
experimental methods produced an offset vector that 
had more incorrect magnitude and more incorrect 
direction than the averaging method. Thus, the use of 
a more complex algorithm did not seem to be 
justified. 

5. PROOF OF LEMMAS 1 AND 2 
First we show that the increase in MSEj does not 

depend on the direction of the movement. Then we 
determine the direction into which the code vector 
should be moved, and finally, we solve the magnitude 
of the movement. 

Lemma 3: Increase in MSE depends only on the 
magnitude of the movement vector, provided that the 
original code vector is the average of the training 
vectors in cluster. 

Proof of lemma 3: Let MSEj be the per-cluster 
MSE with the code vector cj and let  be the 
movement vector that is to be added to cj. The MSE 
for the cluster j is: 
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Using this, we derive formula for the change of 
MSEj when the code vector is moved to point cj +  
from the point cj: 
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By the assumption that cj equals to the average of 

the points ( x ) in the cluster, we get: 
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Thus, the direction of  has no effect on the MSE 
and the only affecting factor is the magnitude of the 
vector . 

Proof of lemma 1: In order to minimize Rj,k we 
must maximize the distance between the code vectors 
cj and cstat. We presume that only one code vector (cj) 
is being moved and the (cstat) other remains 
stationary. Logically,  should point away from cstat. 
Let g be the vector cj - cstat. We determine the angle  
between the vectors  and g in order to maximize the 
distance r, see Figure 8. The length of  can be 
assumed to be fixed.  

c
stat

g

r


cj

cj+

 
Figure 8: Elements for determining the angle of . 

Since the distance is always non-negative we can 
solve the maxima of the square distance between cj+ 
and cstat: 

 

The lengths of the original distance vector g and 
the movement vector are positive constants. The 
only variable in equation (11) is , and therefore it is 
easy to see that the maxima is obtained when cos 
=1. Thus, the optimal value is =0, which proves 
the lemma 1. 

Proof of lemma 2: The next question is to 
determine how much the code vector should be 
moved. This depends on the per-cluster MSEs. 

We must find || that minimizes the Rj,k when cj is 
moved || units away from ck. The direction of  is 
now fixed and we need to determine its length only. 
The increase in MSEj is ||2 according to (10), and the 
increase in the cluster distance is ||, since g and  
have the same direction. Thus, the new Rj value after 
the movement is: 
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To find out the || that minimizes (13) we take its 
derivative and find its zero-crossing points. This 
yields to: 
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The divisor is non-zero because the code vectors 
are not identical Therefore, we need to find the zero-
crossing points of the denominator. Since it is a 
second-order polynomial with regards to ||, we can 
solve it using formula: 
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Since negative vector lengths make no sense, we 
get (7), and the lemma 2 is therefore proven. 

6. Test results 
We have tested the proposed methods with two 

different training sets.  The first set is the one shown 
in Figure 1, and the second set is in Figure 9. The 
data sets are artificially generated so that they contain 
15 clusters. The clusters are clearly visible in the first 
set. In the second set, the clusters overlap and there 
are no clear boundaries, but it is still possible to 
identify the clusters. 

We ran the BFLS algorithm 100 times with and 
without the optimizations related to the DBI. The 
same settings with regard to the number of iterations 
and the range for the number of clusters were used in 
all tests. For each number of clusters, we applied the 
local search algorithm using 5000 iterations and for 



each iteration, two iterations of the GLA were 
performed. 
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summarized in Figures 10 and 11 for the range from 
13 to 17 clusters. The correct number of clusters (15) 
was found in all the 100 runs when applied to the first 
data set. Thus, the method can distinguish the correct 
number of clusters quite easily with training sets 
where the clusters are more clearly separated.  
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In the case of the second set, the distinction is not as 
clear as the DBI-values are virtually equal for M=14 
and M=15, see Figure 11. The method finds the 
correct number of clusters only in 18 times out of the 
100 test runs. The resulting clustering is shown in 
Figure 9, where the missing cluster should be in the 
middle. 

Figure 9: The second data set. 
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Figure 10: DBI-values for the test set 1 using the 
original method. The results are from 100 test runs. 

 

 
Figure 11: DBI-values for the test set 2 using the 
original method. The results are from 100 test runs. 

The reason for poor performance might have been 
the low number of GLA-iterations. We therefore tried 
to improve the method by increasing the number of 
the GLA-iterations to see whether it would solve the 
problem. We applied 10 GLA-iterations for each 
local search iterations. The results are shown in 
Figure 12, where the black bars represent the 
modified method. The result clearly shows that the 
modification did not help but, on the contrary, it made 
the problem even worse. 

The results of the new methods (simple method 
and averaging method) are summarized in Figure 13. 
They show that without the improvements, only 18 
runs out of 100 found the correct number. When 
applying the simple optimization, the results do not 
change much from the original. The correct number 
of clusters is found 16 times. When applying the 
more averaging method, the correct number of 
clusters is found 17 times. 
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Figure 12: The number of times the different numbers 

of clusters are found with the original method by 
increasing the number of the GLA iterations. 
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Figure 13: The number of times the different numbers 

of clusters ar found with different optimizations. 
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Figure 14: Average DBI-values with different 

optimizations. 

The results of the optimizations are studied further 
in Figure 14.  It shows that the optimized method can 
find even a lower DBI at the minimum point, but still 
for the incorrect (14) number of clusters. The results 
for the correct number of clusters (15) are even worse 
although the difference is negligible. This indicates 
that the problem is more related to DBI itself than to 
the exact optimization of the lcoation of the code 
vectors. 

7. CONCLUSIONS 
We have derived formula for optimizing the 

location of the code vectors using Davies-Bouldin 
index. The formula was then applied in the clustering 
when solving the correct number of clusters. The 
results were theoretically well argued but their impact 
in the practical application was not significant. From 
the experiments, we can draw the following tentative 
conclusions.  

Firstly, it seems that the DBI works well when the 
clusters are clearly separable. The suboptimality of 
the centroid location seems not to be a serious 
problem when we use the brute force search strategy 

in the clustering. The problem arises only in extreme 
situations when the clusters are greatly overlapping.  

Secondly, it is possible that the formula giving the 
locally optimal location of a single code vector is not 
sufficient. Instead, globally optimum placement of the 
code vectors could resolve the problem but it is 
computationally not feasible. Moreover, it is 
uncertain whether the DBI itself is the correct 
measure as it has some heuristic elements. For 
example, it considers for each cluster only the nearest 
cluster in the measurement. Further studies would 
therefore be needed to reach a conclusive answer to 
the problem. 
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