
MINIMIZATION OF THE VALUE OF DAVIES-BOULDIN INDEX

ISMO KÄRKKÄINEN and PASI FRÄNTI
Department of Computer Science, University of Joensuu

Box 111, FIN-80101 Joensuu, FINLAND

ABSTRACT
We study the clustering problem when using

Davies-Bouldin index as the optimization criterion.
The problem is to partition a given data set of N
vectors into M clusters so that the value of the
Davies-Bouldin index is minimized. The index differs
from the mean square error in that it also takes into
account the distance between code vectors. This leads
to the problem that setting the code vectors as the
centroids of the clusters does not give the optimal
placement for minimizing the Davies-Bouldin index.
We derive formula for optimizing the location of the
cluster centroids.

Keywords: pattern recognition, algorithms, cluster
analysis, number of clusters.

1. INTRODUCTION
Unsupervised classification is an important part of

many applications in image processing and analysis.
The main goal is to obtain a high quality clustering
for a set of input vectors minimizing a given
optimization criterion [1]. Clustering is a
combinatorial optimization problem where the aim is
to partition a set of data vectors into a number of
classes. Data vectors with similar features should be
grouped together and vectors with different features
to different groups.

There are several established methods for
generating a clustering [1, 2, 3]. The methods are
usually designed to minimize the mean square error
between the data vectors and their cluster centroid.
Mean square error, however, is not suitable for
determining the number of clusters, since it decreases
as the number of clusters increases. In fact, it would
result in a situation where the number of clusters
equals to the number of data vectors, which yields to
error value of zero. We are therefore forced to use
other criteria and this may lead to changes in the
algorithm itself.

Generalized Lloyd algorithm (GLA) [4] is
a widely used algorithm that seeks local optimum by
iteratively changing between two representations. The
GLA is also used as an integral part of several more
sophisticated algorithms, such as stochastic relaxation
[5], deterministic annealing [6], genetic algorithm [7],
and randomized local search [8]. The optimization
steps of the GLA are basically designed to the

minimization of the mean square error. However,
there is no guarantee that these steps would be
optimal for other criteria, such as Davies-Bouldin
index (DBI) [9].

In this study, we show that the centroid of the
cluster is not the optimal selection of the cluster
representative (code vector) for minimizing DBI. We
then study the problem for the point of view of
a single cluster. We show that the code vector of a
cluster should be moved from the centroid to the
opposite direction from the nearest neighbor cluster.
We also derive formulas that give the exact amount of
the movement. As a result, we obtain a method for
optimizing the evaluation criterion directly. We then
apply the proposed method with the clustering
algorithm presented in [8].

Figure 1: Example of the partition of a data set (the
small black dots). The cluster centroids are

represented by the large gray dots and the cluster
boundaries by Voronoi diagram.

2. CLUSTERING PROBLEM
We use the following notations:

N Number of data vectors.
ni Number of vectors in cluster i.
M Number of clusters.
K Number of attributes.
X Set of N data vectors X = {x1, ..., xN}.
P Set of N cluster indices P = {p1, ..., pN}.
C Set of M code vectors, C = {c1, ..., cM}.
d(a, b) Distance between vectors a and b.

Mean square error (MSE) is the average pairwise
distance between data vectors and the corresponding
cluster representative (code vector). Usually d is
Euclidean distance, but other metrics are also used.
Given the set of code vectors (C), and the set of
cluster indices (P) for each training vector, MSE can
be calculated as




N

i
pi i

cxd
N 1

2),(
1

MSE (1)

There exist several clustering algorithms, of
which we now recall two. Both of the algorithms take
the data set (X), the number of clusters (M), and an
initial solution (e.g. random clustering) as input, and
produce the partition (P), and/or the set of code
vectors (C) as the output..

Generalized Lloyd algorithm, also known as LBG
or k-means, starts with an initial codebook, which is
iteratively improved by using two optimality
conditions in turn. In the first step, each data vector xi

is mapped to the nearest code vector cj. In the second
step, a new set of code vectors is obtained by
replacing each code vector as the centroid (average)
of the data vectors in the cluster. The new solution is
never worse than the previous one [3]. The solution
converges to the nearest local optimum. The
algorithm is easy to implement but very sensitive to
the initial solution due to the fact that only local
changes are made to the solution. Pseudocode of the
GLA is presented in Figure 2.

GLA(X,C) return C,P
REPEAT
 Cprevious  C;
 FOR all i  [1, N] DO
 pi  j such that xi is closest to cj;
 FOR all j  [1, M] DO
 cj  Average of xi, whose pi = j;
UNTIL C = Cprevious;
Return C,P;

Figure 2: Pseudocode for GLA.

Randomized local search (RLS) [8] overcomes the
sensitivity to the initial solution. It starts with a
random solution, which is then improved by a
predefined number of iterations. At each step, a new
candidate solution is constructed as follows. The
clustering structure of the current solution is first
modified by replacing a randomly chosen code vector
by a randomly chosen input vector. The partition of
the new solution is then adjusted in respect to the
modified set of clusters. Two iterations of the GLA
are applied to fine-tune the trial solution. The
candidate is evaluated and accepted if it improves the
previous solution. The algorithm is iterated for
a fixed number of iterations. Pseudocode of the RLS
algorithm is presented in Figure 3.

LS(X,M) return C, P
C  Set of randomly chosen data vectors.
FOR all i  [1, N] DO

 pi  j such that xi is nearest to cj;
FOR a  1 TO NumberOfIterations DO
 Cnew C;
 cj  Randomly chosen data vector
 Cnew, Pnew  GLA(X,Cnew);
 IF MSE(X, Cnew, Pnew) < MSE(X, C, P)
 THEN C  Cnew; P  Pnew;
 END IF
END FOR
return C, P;

Figure 3: Pseudocode for local search.

3. SOLVING THE NUMBER OF
CLUSTERS

In order to determine the correct number of
clusters, we must have a criterion that takes into
account the number of clusters and an algorithm that
varies the number of clusters. Notable property of
MSE is that it's value decreases as the number of
clusters increases. In fact, the optimal solution would
be N = M, and the MSE = 0. This makes the MSE
unsuitable for determining the number of clusters.

We use Davies-Bouldin index [9] as the criterion
because, in our experiments, we have found it in our
experiments quite reliable among several alternative
measures; with regard to pointing out the correct
number of clusters. Davies-Bouldin index takes into
account both the error caused by representing the data
vectors with their cluster centroids (intra cluster
diversity) and the distance between clusters (inter
cluster distance). The intra cluster diversity of
a cluster j is calculated as





jp

ijj

i

xcd
N

MSE 2),(
1

 (2)

The inter cluster distance of the cluster j and k is
measured as the distance between their centroids cj
and ck. With these two measures we can then
calculate the closeness of the two clusters as the sum
of their MSE-values divided by the distance of their
centroids:

||,
kj

kj
kj cc

MSEMSE
R




 (3) 

The closeness of the cluster is proportional to
their MSE-values and indirectly proportional the
distance of their centroids. Small values of Rj,k
indicate that the clusters are separated and large
values that the clusters are close to each other.

In order to calculate DBI-value, we take for each
cluster j the maximum value of (3) and denote it as Rj:

ji
ji

j RR ,max


 (4)

The overall Davies-Bouldin index is defined as:





M

i
iR

M
DBI

1

1

   Nicx ji ,1, 2 

 (5)

The simplest algorithm that determines the correct
number of clusters just varies M over a range of
values [Mmin..Mmax] in a loop and generates clustering
for every number of M using any algorithm. We use
the randomized local search (RLS) for generating the
clustering for each value of M. We refer this approach
as brute force local search. The pseudocode for the
algorithm is presented in Figure 4.

BFLS(X, Mmin, Mmax) return C, P
Cbest, Pbest  LS(X, Mmin);
FOR i  Mmin + 1 TO Mmax DO
 C,P  RLS(X, i);
 IF DBI(X,C,P) <DBI(X, Cbest, Pbest) THEN
 Cbest  C; Pbest  P;
END FOR
return Cbest, Pbest;

Figure 4: pseudocode for brute force local search.

4. SEEKING FOR OPTIMAL DBI
The data required to evaluate the clustering is the

same for both MSE and DBI. Both measures need the
cluster representatives (code vectors) and the
partition, and this information is already available in
the GLA and the RLS algorithms. The optimal
partition can also be generated in the same way for
both measures. Partitioning is performed by mapping
each vector to the cluster that has the closest code
vector.

 (6) dp
Mj

i minarg
1




It is therefore straightforward to apply DBI
instead of MSE in the BFLS algorithm.

The main problem lies in the fact that while we
are using DBI in the BFLS algorithm for evaluating
the solutions we are still using MSE in the RLS and
GLA to refine the solutions. Minimizing MSE
certainly minimizes the denominator of (3), but it
does not do the same for the nominator. I.e., the code
vectors may move closer to each other when we apply
the GLA, but for DBI, it might be better to move the
code vectors away from each other by a small
amount. Although moving the code vector may
increase MSE, the move is beneficial because the
offset in the increase of the distance between code
vectors offsets this increase in MSE, resulting in an
overall decrease of DBI.

We propose to use DBI not only to select among
the several clustering with various number of clusters,
but also for optimal placement the code vectors. In
order to do this, we develop a method to place the
code vectors so that the increase in MSEi does not
offset the increase in the distance between the code
vectors. We must therefore determine the direction
and the magnitude of the shift. We will present
formulas for local optimizations only; i.e., in the case
of each cluster separately. The globally optimal
settlement of the vectors is much more difficult to
obtain because the shift of a single code vector may
cause changes in the optimal placement for another
vectors. Moreover, it is also possible that after
moving a code vector of a cluster j away from its
neighboring cluster k, the cluster k will no longer be
the nearest cluster for j.

We will show later that the direction of the
movement doesn't affect the increase of MSE,
provided that the original placement of the code
vector is the centroid of the cluster. We will also
show that the optimal direction of the movement for
minimizing DBI is the opposite from the direction to
the centroid of the nearest cluster. We presume that
the distance function in use is the Euclidean distance.

Lemma 1: The direction of the movement is the
opposite from the centroid of the nearest neighbor
cluster.

Lemma 2: The magnitude of the optimal
movement, i.e. the length of the vector to be added to
the code vector is:

||)(|| 2
kjkjkj ccMSEMSEcc 

 (7)

We prove the lemmas in the Chapter 5. The effect
of the movement is illustrated in Figure 5.

The movement is implemented inside the GLA as
an additional fine-tuning step, as shown in Figure 6.
In this case, the code vectors are moved after each
GLA iteration. Another approach would be to make
the fine-tuning outside the GLA in the main loop of
the RLS algorithm. However, this is only a matter of
implementation as we expect the effect to be the same
in both approaches.

Figure 5: The direction of the movement..

GLA(X,C) return C,P
REPEAT
 Cprevious  C;
 FOR all i  [1, N] DO
 pi  j such that xi is closest to cj;
 FOR all j  [1, M] DO
 cj  Average of xi, whose pi = j;
 FineTuneCodeVectors(C,P,X);
UNTIL C = Cprevious;
Return C,P;

Figure 6: pseudocode for modified GLA.

The routine FineTuneCodeVectors refines the
location of the code vectors. However, it is not clear
how the fine-tuning should be implemented as there
are a number of practical problems. For M clusters,
we can draw a graph that shows the relationships of
the clusters, in the sense how they contribute to the
Rj-values of other clusters. The graph might look like
that of in Figure 7.

A

B

C
D

E

F

G

H

Figure 7: Nearest neighbor graph of the clusters
demonstrating the contributors for Rj

 for each
cluster.

For each cluster, we face the problem of which
one to move. In some cases the selection is easy. For
example, when considering Figure 7, it is better to
move A, since moving B might move it closer to D
and thus worsen the situation there. Using the same
logic, it is better to move E, H and G than to try to
move F, since most likely F would move towards
some other code vector. If we think of the number of
edges coming to and leaving a node, we can construct
a heuristic that the nodes with less edges should be
moved before others. This seems to be a good rule,
but it still does not guarantee an optimal placement of
the vectors. For example, it is possible that the code
vector j moves too far from its neighbor k, and as a
consequence, the Rj,k decreases so much that it will no
longer be the maximum. For example, moving C
might cause it to become closer to A, which means
that we should move C the amount where RC,D = RC,A
and not any further.

We implemented two different methods. The first
method (simple method) just takes into account the
code vector of the nearest cluster (with which the

maximum of Rj,k). The second method (averaging
method) takes into account all clusters that had their
maximum Rj,k obtained with the cluster in question.
The displacement is then calculated for all cluster
pairs and then the average of these vectors was taken
as the final displacement.

We also experimented with various ways to weigh
the vectors in order to get at least the locally optimal
solution but we did not found any feasible way to
compute the globally optimum placement (found with
exhaustive search in our tests). Among the
experimented methods we used (i) per-cluster MSEs
as defined by equation (2) and (ii) the Rj-values (4)
for the neighbor clusters in question. These two
experimental methods produced an offset vector that
had more incorrect magnitude and more incorrect
direction than the averaging method. Thus, the use of
a more complex algorithm did not seem to be
justified.

5. PROOF OF LEMMAS 1 AND 2
First we show that the increase in MSEj does not

depend on the direction of the movement. Then we
determine the direction into which the code vector
should be moved, and finally, we solve the magnitude
of the movement.

Lemma 3: Increase in MSE depends only on the
magnitude of the movement vector, provided that the
original code vector is the average of the training
vectors in cluster.

Proof of lemma 3: Let MSEj be the per-cluster
MSE with the code vector cj and let  be the
movement vector that is to be added to cj. The MSE
for the cluster j is:







 

 









jp

K

k
ikjkikk

j

jp

K

k
ikjk

j

jp
ij

j
j

i

i

i

xcxc
n

xc
n

xc
n

MSE

1

22

1

2
2

2

)2(
1

)(
1

||
1

 (8)

Using this, we derive formula for the change of
MSEj when the code vector is moved to point cj + 
from the point cj:

 

 

 

jj

kjk

ik

ik

ikkjk

x

c

x

x

xc













2

)(2

jp
ikk

j

K

k jpjjp
kk

j

jp

K

k
kkjkk

j

jp

K

k
jkikjk

j

jp

K

k
ikkjk

j

jj

cx
n

nn

c
n

cxc
n

xc
n

MSEMSEMSE

i

ii

i

i

i




























 









 

 

 

 













22
1

2
11

22
1

2
1

)(
1

1

1

2

1

22

1

22

 (9)

By the assumption that cj equals to the average of

the points (x) in the cluster, we get:

2||  



MSE (10)

Thus, the direction of  has no effect on the MSE
and the only affecting factor is the magnitude of the
vector .

Proof of lemma 1: In order to minimize Rj,k we
must maximize the distance between the code vectors
cj and cstat. We presume that only one code vector (cj)
is being moved and the (cstat) other remains
stationary. Logically,  should point away from cstat.
Let g be the vector cj - cstat. We determine the angle 
between the vectors  and g in order to maximize the
distance r, see Figure 8. The length of  can be
assumed to be fixed.

c
stat

g

r


cj

cj+

Figure 8: Elements for determining the angle of .

Since the distance is always non-negative we can
solve the maxima of the square distance between cj+
and cstat:

 

The lengths of the original distance vector g and
the movement vector are positive constants. The
only variable in equation (11) is , and therefore it is
easy to see that the maxima is obtained when cos
=1. Thus, the optimal value is =0, which proves
the lemma 1.

Proof of lemma 2: The next question is to
determine how much the code vector should be
moved. This depends on the per-cluster MSEs.

We must find || that minimizes the Rj,k when cj is
moved || units away from ck. The direction of  is
now fixed and we need to determine its length only.
The increase in MSEj is ||2 according to (10), and the
increase in the cluster distance is ||, since g and 
have the same direction. Thus, the new Rj value after
the movement is:

 

 








cos||||

cos|

sin| 22

g











cos||||||||

sincos||||

sin||

|||cos||||||

|cos||||||

22

2222

22

2222

2

gg

g

ggr

gr











 (11)

||||

|| 2
'










g

MSEMSE
R

kj
j

 

 (12)

To find out the || that minimizes (13) we take its
derivative and find its zero-crossing points. This
yields to:

2

2
'

||||

)(||||2||
||











g

MSEMSEg
dR

kj
j (13)

The divisor is non-zero because the code vectors
are not identical Therefore, we need to find the zero-
crossing points of the denominator. Since it is a
second-order polynomial with regards to ||, we can
solve it using formula:

kj

kj

MSEMSEgg

MSEMSEgg





2

2

||||

2

)(4||4||2

 (14)

Since negative vector lengths make no sense, we
get (7), and the lemma 2 is therefore proven.

6. Test results
We have tested the proposed methods with two

different training sets. The first set is the one shown
in Figure 1, and the second set is in Figure 9. The
data sets are artificially generated so that they contain
15 clusters. The clusters are clearly visible in the first
set. In the second set, the clusters overlap and there
are no clear boundaries, but it is still possible to
identify the clusters.

We ran the BFLS algorithm 100 times with and
without the optimizations related to the DBI. The
same settings with regard to the number of iterations
and the range for the number of clusters were used in
all tests. For each number of clusters, we applied the
local search algorithm using 5000 iterations and for

each iteration, two iterations of the GLA were
performed.

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

13 14 15 16 17

Number of clusters

D
B

I-
v

a
lu

e

Max
The DBI-values of the original method are

summarized in Figures 10 and 11 for the range from
13 to 17 clusters. The correct number of clusters (15)
was found in all the 100 runs when applied to the first
data set. Thus, the method can distinguish the correct
number of clusters quite easily with training sets
where the clusters are more clearly separated.

Avg

Min

In the case of the second set, the distinction is not as
clear as the DBI-values are virtually equal for M=14
and M=15, see Figure 11. The method finds the
correct number of clusters only in 18 times out of the
100 test runs. The resulting clustering is shown in
Figure 9, where the missing cluster should be in the
middle.

Figure 9: The second data set.

0.40

0.45

0.50

0.55

0.60

13 14 15

Number of cl

D
B

I-
va

lu
e Max

Min

16 17

usters

Figure 10: DBI-values for the test set 1 using the
original method. The results are from 100 test runs.

Figure 11: DBI-values for the test set 2 using the
original method. The results are from 100 test runs.

The reason for poor performance might have been
the low number of GLA-iterations. We therefore tried
to improve the method by increasing the number of
the GLA-iterations to see whether it would solve the
problem. We applied 10 GLA-iterations for each
local search iterations. The results are shown in
Figure 12, where the black bars represent the
modified method. The result clearly shows that the
modification did not help but, on the contrary, it made
the problem even worse.

The results of the new methods (simple method
and averaging method) are summarized in Figure 13.
They show that without the improvements, only 18
runs out of 100 found the correct number. When
applying the simple optimization, the results do not
change much from the original. The correct number
of clusters is found 16 times. When applying the
more averaging method, the correct number of
clusters is found 17 times.

0

20

40

60

80

100

13 14 15 16 17

Number of clusters

%

Original

10 GLA-
iterations

Figure 12: The number of times the different numbers

of clusters are found with the original method by
increasing the number of the GLA iterations.

0

20

40

60

80

100

13 14 15

Number of cl

%

Original

16 17

usters

Simple

Averaging

Figure 13: The number of times the different numbers

of clusters ar found with different optimizations.

0.645

0.650

0.655

0.660

0.665

0.670

13 14 15 16 17

Original

Simple

Averaging

Figure 14: Average DBI-values with different

optimizations.

The results of the optimizations are studied further
in Figure 14. It shows that the optimized method can
find even a lower DBI at the minimum point, but still
for the incorrect (14) number of clusters. The results
for the correct number of clusters (15) are even worse
although the difference is negligible. This indicates
that the problem is more related to DBI itself than to
the exact optimization of the lcoation of the code
vectors.

7. CONCLUSIONS
We have derived formula for optimizing the

location of the code vectors using Davies-Bouldin
index. The formula was then applied in the clustering
when solving the correct number of clusters. The
results were theoretically well argued but their impact
in the practical application was not significant. From
the experiments, we can draw the following tentative
conclusions.

Firstly, it seems that the DBI works well when the
clusters are clearly separable. The suboptimality of
the centroid location seems not to be a serious
problem when we use the brute force search strategy

in the clustering. The problem arises only in extreme
situations when the clusters are greatly overlapping.

Secondly, it is possible that the formula giving the
locally optimal location of a single code vector is not
sufficient. Instead, globally optimum placement of the
code vectors could resolve the problem but it is
computationally not feasible. Moreover, it is
uncertain whether the DBI itself is the correct
measure as it has some heuristic elements. For
example, it considers for each cluster only the nearest
cluster in the measurement. Further studies would
therefore be needed to reach a conclusive answer to
the problem.

REFERENCES:

1. B.S. Everitt: Cluster Analysis. 3rd edition,
(London: Edward Arnold / Halsted Press, 1993).

2. L. Kaufman and P.J. Rousseeuw, Finding Groups
in Data: An Introduction to Cluster Analysis,
(New York: John Wiley Sons, 1990).

3. A. Gersho and R.M. Gray, Vector Quantization
and Signal Compression. (Dordrecht: Kluwer
Academic Publishers, 1992).

4. Y. Linde, A. Buzo, R.M. Gray: An algorithm for
vector quantizer design. IEEE Transactions on
Communications 28 (1), 1980, 84-95.

5. K. Zeger and A. Gersho: Stochastic relaxation
algorithm for improved vector quantizer design,
Electronics Letters, 25 (14), 1989, 896-898.

6. K. Rose, Deterministic annealing for clustering,
compression, classification, regression, and
related optimization problems, Proc. of the IEEE
86 (11), Nov. 1998, 2210-2239.

7. P. Fränti, J. Kivijärvi, T. Kaukoranta, O.
Nevalainen: Genetic algorithms for large scale
clustering problems, The Computer Journal 40
(9), 1997, pp. 547-554.

8. P. Fränti and J. Kivijärvi: Randomized local
search algorithm for the clustering problem,
Pattern Analysis and Applications, 2000 (to
appear).

9. D.L. Davies and D.W. Bouldin: A cluster
separation measure, IEEE Transactions on
Pattern Analysis and Machine Intelligence 1 (2),
1979, 224-227.

	ABSTRACT
	1. INTRODUCTION
	2. CLUSTERING PROBLEM
	3. SOLVING THE NUMBER OF CLUSTERS
	4. SEEKING FOR OPTIMAL DBI
	5. PROOF OF LEMMAS 1 AND 2
	6. Test results
	7. CONCLUSIONS
	REFERENCES:

