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Abstract. Estimating density is needed in several clustering algorithms and
other data analysis methods. Straightforward calculation takes O(N2) because of
the calculation of all pairwise distances. This is the main bottleneck for making
the algorithms scalable. We propose a faster O(N logN) time algorithm that
calculates the density estimates in each dimension separately, and then simply
cumulates the individual estimates into the final density values.
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1 Introduction

The goal of clustering is to partition a set of N data points of D dimensions into
K clusters. Using density in the clustering process is appealing as the cluster centroids
are typically high density points. Several density-based methods have already been
proposed in literature [1, 4, 6, 12, 13, 21, 26].

Most common approach is to estimate the density of every data point individually,
and select the K points of highest density as the cluster centroids. In [1] the k centroids
are selected in a decreasing order, with the condition that they are not closer than a
given distance threshold to an already chosen centroid. The average pairwise distance
(pd) of all data points was used in [28] to calculate the threshold.

DBSCAN is probably the most cited density-based algorithm [6]. It uses a simple
threshold for selecting core points as the points having more than minPts other points
within their R-radius neighborhood. All points within R-radius of a core point are then
considered density reachable and merged to the same cluster. Other points are marked
as outliers. An alternative approach is to calculate the density between the points [17].
However, the correct choice of the parameters is the main challenge in both of these
approaches.

Density peaks algorithm [26] calculates not only the density but it also finds the
nearest neighbor point with higher density. It then applies sorting heuristic based on the
density and the distance to this neighbor. The k highest ranked points are chosen as the
cluster seeds. The rest of the points are assigned to the clusters by following the
neighbor pointers.

Some algorithms use the density-based methods merely as initialization for
k-means, which is used to obtain the final clustering result. For instance, the maximum
density point is selected as the first centroid and the rest are selected as the points
furthest from previously chosen centroids [3, 14, 24]. The distance was also weighted
by the density of the points in order to reduce the effect of outliers [14, 24].
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Density has also been used to detect outliers. For example, a data point is con-
sidered as an outlier if there are less than k points within a given distance d [15].
Another method [23] calculates the k nearest neighbors (k-NN), and uses the distance
to the kth neighbor as the outlier detector; points with the largest distance are labeled as
outliers.

A bottleneck of using density is that it requires O(N2) distance calculations. It is
possible to speed-up by taking a smaller sub-sample of the data at the cost of com-
promising the accuracy of the density estimations. Alternative to sub-sampling is to
pre-cluster the data [2] so that the neighbors are first taken from the same cluster.
Additional check-outs of the neighbor clusters are also performed.

In this paper, we propose a significantly faster algorithm called dimension dis-
tributed density estimation algorithm (DDDE). The idea is as follows. We sort the data,
once per dimension. In each dimension, we use sliding window to find k points (k/2
before and k/2 after) and calculate their average. With the sorted data, this can be
trivially obtained in linear time. We then sum up the cumulated average distances in
each dimension. Their sum represents the density estimation of the data points. The
time complexity is O(D�N logN) due to sorting D times.

We show by experiments that the proposed density estimation drops the median
processing time significantly by a factor of 160:1 in comparison to the brute force
density calculation using k-NN, and 50:1 in comparison to the sub-sampling (2%)
strategy. We test the effect of this speed-up technique with two clustering algorithms:
density-initialized k-means, and the density peaks algorithm [26]. The clustering
accuracy had a slight decrease comparable to that of sub-sampling strategy. Consid-
ering the remarkable speed-up, such a small degradation in quality might be tolerated.

2 Density Estimation

In general, density is defined as mass divided by volume. There are two common
practices to realize this:

• Distance-based (R-radius)
• Neighbor-based (k-NN)

The distance-based approach calculates the number of points (mass) within a fixed
neighborhood (volume). The neighborhood is given by a distance threshold (R), which
defines R-radius hyper ball in D–dimensional space, see Fig. 1. The algorithm then
counts how many data points are within this ball. The approach is also referred to as
cut-off kernel. A variant called Gaussian kernel [12, 20] gives higher weight for nearby
points.

The neighbor-based approach calculates the distance (volume) within a fixed
neighborhood (mass). The neighborhood is defined by the k-nearest neighbors, (k-NN)
where k is the input parameter defining the mass. Then average distance to the
neighbors is calculated, which indirectly defines the volume, see Fig. 1. Distance to the
kth nearest neighbor was also used in [19, 22, 23] but the average distance was found
more robust in [11]. This variant is also referred to as density kernel in [12].
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In other words, the distance-based approach estimates the mass by counting the
number of points for a given volume (distance). The neighbor-based approach esti-
mates the volume by measuring the average distances for a given mass (number of
points k). In both cases, the bottleneck is to find the neighbor points and there is no
shortcut in this: O(N2) distance calculations are needed. From computational point of
view, neither approach has an obvious benefit over the other.

However, their parameterization is different. Distance-based approach has the
distance parameter (R), which depends on the distances in the data. Neighbor-based
approach requires the number of neighbors (k), which depends only on the size of data.
At least the following parameter choices have been used in literature for estimating
density, divergence, or used in other applications of k-NN:

• R = 10–100% * average distance to data center [2]
• R = Average pairwise distance of all data points [28]
• R = 90% * first peak in the pairwise distance histogram [17]
• R = 0.07 [26]
• k = 10 [18]
• k = 30 [12]
• k = 10–100 [27]
• k = 30–200 [5]
• k = √N [19]
• k = min{50, N/(2K)} where K is the number of clusters [this paper]

The optimal choice of the parameter depends on the data. The number of neighbors
(k) is simpler to determine and expected to be more robust than the radius (R) although
contradicting recommendations have also been reported in estimating divergence [30].
According to [19], k should have sub-linear dependency on N. They recommended
√N. In general, automatic choice of the parameter may appear simple in the eye of
theoretician but is hardly so in the eye of practitioners [29]. As a consequence, some
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Fig. 1. Two ways to calculate density estimates: distance-based (cutoff kernel) and
neighbor-based (density kernel).
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methods leave the choice to the user [17], or assume that brute force manual opti-
mization is performed [22].

Both of the approaches require calculating distances between all pairs of points.
Brute force implementation takes quadratic time and there is no general solution to do it
faster except some special cases in low-dimensions. In the following, we use the k-
nearest neighbor due to its wide popularity and expected better robustness.

There is also a third alternative which might also be worth to consider. It divides the
space via a regular grid, and counts the number of points in each cell [2, 10, 14, 24,
34]. The individual points inherit the density value of its cell. This approach might
work well in low-dimensional space but it is impractical for higher dimensions. Kd-tree
[14, 24], space-filling curve [10], and pre-clustering by k-means [2] have also been
used aiming to partition the space into buckets containing roughly the same number of
points.

3 Dimensionally Distributed Density Estimation

We present next our algorithm DDDE. It was inspired by the method in [3] used for
categorical data. They estimate the density based on the popularity of the individual
attributes of the objects. For example, consider an imaginary dataset of 7.6 billion
points, representing the name, occupation and nationality of people in the world, and
take two samples from it: A = [Zhang, Farmer, Mandarin] and B = [Sieranoja, Sci-
entist, Finnish]. The frequencies of Zhang, Farmer and Mandarin are significantly
higher than their counterparts Sieranoja, Scientist and Finnish. The attributes of the first
data point are much more common, and thus, it is density estimate is much higher.

The implementation of algorithm consists of two internal loops. The outer loop
iterates through all the dimensions, and the inner loop through all the points. In each
dimension, we first sort the data according to the values of this dimension. This takes O
(N�logN) time. We then calculate the density for point x by using a sliding window of
size k + 1 with x at the centre of the window. The density is calculated as the
(one-dimensional) mean distance from x to the other points inside the window.

We optimize this process by dividing the window into two halves and maintaining
two cumulative sums: one for the values before x (s−) and another for values after
x (s+). The corresponding mean values are:

mþ ¼ 2sþ

k
m� ¼ 2s�

k

Since all the values before x all are smaller than x, and all the values after x are
greater than x, we can calculate the average distance from x to all points inside the
window as follows:

DensðiÞ ¼ x� m�ð Þþ mþ � xð Þ
2

¼ mþ � m�

2
¼ 2sþ � 2s�

2k
¼ sþ � s�

k
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This average distance serves as our density estimate in this dimension. When
sliding the window to the next point, we only need two additions and two subtractions
to update the cumulative sums, see Fig. 2. This reduces the time complexity of the
sliding window from O(kN) to O(N).

Algorithm DDDE:

DDDE (X[1,N]: dataset, k: neighbors) Dens[1,N]

{
FOR dim=1 to D DO

Z = Project(X, dim); // Take dimth values
Y = Sort(Z);
FOR i=1 TO N DO

Dens[i] += 2*(m+ - m—)/k;
m— = m— + (Y[i] – Y[i-k/2]);
m+ = m+ - Y[i+1] + Y[i+k/2+1];

}

The overall process is illustrated in Figs. 3 and 4 for two-dimensional toy data. The
drawback of the proposed approach is that it does not consider joint influence of the
dimensions. This may cause that, in some dimensions, a point can have high density
because of having similar value than points in a far away dense cluster. It is therefore
possible to detect false density peaks especially with low dimensional data, see Fig. 4.
However, errors in one dimension tend to diminish when there are more dimensions.

Fig. 2. Maintaining cumulative sums (s− and s+) of the two halves of the sliding window allows
efficient O(N) implementation of the density calculations in a given dimension.
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Fig. 3. Example of the DDDE algorithm for a dataset of N = 10 points. The dimension-wise
density estimates are shown above; the cumulative sums and the 2-NN results below.

Fig. 4. The potential problems of the fast density estimation in distance-based clustering. The
k-neighbors in some dimensions can be located far away, and remote density peaks can influence
the density estimation giving false impression of high density.
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4 Experiments

We test the proposed density estimation within two clustering algorithms:

• Density-based sorting + k-means
• Density peaks [26]

Both algorithms require the number of clusters given as input. If it is unknown and
needs to be solved, the following strategy can be applied. First cluster the data several
times with different number of clusters, and then select the one that minimizes the
WB-index [33]. The choice of the suitable index is an open problem. In case of density
peaks, one can use the ranking scores directly and apply some heuristic to decide how
many of the highest ranked centroids are used. Knee point detection heuristic was
considered in [31].
For density estimation we consider three alternatives:

For sub-sampling, we vary the sample size between 0.1%–10%. Since the goal is to
have as small sample size as possible without completely destroying the clustering
quality, we select 2% as the default value.

We use the following datasets and parameters. Since our purpose is to evaluate the
density estimation rather than the clustering performance, we select only datasets that
both algorithms are expected to cluster (at least with reasonable accuracy). The datasets
and their properties are shown below (Table 1):

Full search O(N 2)
Using subsample (s=2%) O(sN 2)
Using DDDE O(N logN )

Table 1.

Dataset: Size: Clusters:

A1–A3 [16];
S1–S4 [8];
Dim32 [9];
Birch1, Birch2 [32];
Unbalance [25];

N = 3000–7500
N = 5000
N = 1024
N = 100,000
N = 6500

K = 20–50
K = 15
K = 16
K = 100
K = 8

For measuring the success of the clustering we use Centroid Index (CI) [7], which
indicates how many centroids are wrong. In specific, CI = 0 indicates that the clus-
tering structure is correct with respect to the ground truth. The results of the
density-based methods appear in Table 2. Reference results are given for k-means, and
repeated k-means (restarted 100 times with different random initialization).

The first observation is that the density-based initialization of k-means is not very
good as such. Sometimes the faster density estimations (sub-sampling and DDDE)
provide even better result. Density peaks, however, is a good algorithm and it finds the
correct clustering with all of these sets (CI = 0 in all cases).

Density peaks was implemented as follows. We first calculate density using the
three alternative methods (full search, sub-sampling, DDDE). The nearest neighbor
with higher density and k-means are then performed for the full dataset (no
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sub-sampling). The selection is made using the delta-criterion: selecting the K centroids
with biggest distances (delta-values) to its nearest neighbor having higher density.

The results show, that sub-sampling by 2% increases error from CI = 0 to CI = 1,
on average, whereas DDDE increases it to CI = 0.8. We therefore compare next the
processing times. Density peaks algorithm has two bottlenecks: calculating the den-
sities, and finding the nearest higher density neighbor. Since we study the density
calculation, we report only processing times of this part. To realize the benefit in the
full algorithm, similar speed-up technique should be developed also on the nearest
neighbor search. The processing time results are summarized in Table 3.

Our first observation is that the DDDE takes only fraction of the processing
required by sub-sampling and by the full search. For the smaller datasets the O(N2) full
search is probably fast enough, but the difference with larger datasets becomes sig-
nificant. In case of Birch1, the full search of both variants takes about 3.5 min, and the
subsample variant about 1 min. DDDE takes only a fraction of a second. The difference
is huge. The median speed-up factor of all datasets is about 160:1 compared to full
search (both algorithms), and 50:1 compared to sub-sample. These are in line with the
time complexities (S1-S4: N = 5000, logN = 12; Birch: N = 100,000; logN = 16).

The effect of the sub-sampling size is also shown in Fig. 5. The results show that
with such large dataset (N = 100,000) sub-sampling is effective; 2% sample is enough

Table 3. Processing times (s) of the density estimation and k-means.

Method S1 S2 S3 S4 A1 A2 A3 Unb B1 B2 D32

Density estimation

Full search 0.36 0.36 0.35 0.40 0.19 0.45 0.85 0.59 193 552 0.04
Sub-sample 0.10 0.10 0.11 0.11 0.04 0.11 0.21 0.16 55 66 0.01
DDDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.01
K-means
Single 0.03 0.03 0.04 0.08 0.02 0.04 0.08 0.05 8.8 17.2 0.04
10 repeats 2.6 3.2 4.1 8.2 2.0 4.4 7.5 4.8 882 172 0.40

Table 2. Clustering results (CI) of the algorithms with various speed-up techniques.

Method S1 S2 S3 S4 A1 A2 A3 Unb B1 B2 D32 Av.

Density-based sorting + k-means
Full search 3.0 5.0 1.0 1.0 2.0 8.0 12.0 5.0 13.0 44.0 7.0 9.2
Sub-sample 2.0 2.7 1.3 1.3 5.6 7.4 14.9 4.0 7.4 17.2 12.0 6.9
DDDE 3.0 2.0 1.0 1.0 4.0 7.0 14.0 4.0 9.0 33.0 4.0 7.5
Density peaks + k-means [26]
Full search 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sub-sample 0.3 0.7 0.9 0.7 1.5 3.0 4.0 0.0 0.0 0.0 0.0 1.0
DDDE 0.0 0.0 0.0 1.0 1.0 1.0 3.0 0.0 2.0 1.0 0.0 0.8
Random + k-means
Single 1.8 1.4 1.3 0.9 2.5 4.5 6.6 3.9 6.6 16.6 3.6 4.5
Repeated 0.1 0.0 0.0 0.0 0.3 1.8 2.9 2.9 2.8 10.9 1.1 2.1
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to get CI = 0 result. However, further speed-up causes the error to increase soon to
about CI = 6 long before reaching real-time (1 s) processing times. We conclude that
sub-sampling, although useful, is not as effective as the proposed algorithm. It also
seems to lose the benefit of the cache that the full search exploits, making it even less
efficient that it otherwise could be.

Figure 6 summarizes the processing times in case of the density-based sorting
variant. We observe that the density estimation is the bottleneck in with the full search,
but the k-means becomes now the bottleneck if DDDE algorithm is used. The median
speed-up factor still remains remarkably high, 18:1. In case of Birch1, it is even 346:1.

5 Conclusion

Rapid O(D�N logN) density estimation algorithm is proposed. Its median speed-up is
remarkable 160:1 compared to the full search for typical data, at the cost of minor
degradation of the accuracy. When used in density-based clustering algorithms, the
accuracy of the density estimator may not be critical. The faster density estimator can
therefore play important role to speed-up density-based clustering methods.

As a result, the density estimation is no longer the bottleneck. In the density-sorted
initialization, k-means becomes the bottleneck. In case of the Birch2 dataset, the
median speed-up factor is still 18:1 when the time taken by k-means is also taken into
account. In density peaks, the nearest neighbor search is still the main bottleneck that
should also be solved.
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