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In a recent study, we have introduced the problem of identifying cell-phones using recorded speech and 
shown that speech signals convey information about the source device, making it possible to identify the 
source with some accuracy. In this paper, we consider recognizing source cell-phone microphones using 
non-speech segments of recorded speech. Taking an information-theoretic approach, we use Gaussian 
Mixture Model (GMM) trained with maximum mutual information (MMI) to represent device-specific 
features. Experimental results using Mel-frequency and linear frequency cepstral coefficients (MFCC and 
LFCC) show that features extracted from the non-speech segments of speech contain higher mutual 
information and yield higher recognition rates than those from speech portions or the whole utterance. 
Identification rate improves from 96.42% to 98.39% and equal error rate (EER) reduces from 1.20% to 0.47% 
when non-speech parts are used to extract features. Recognition results are provided with classical GMM 
trained both with maximum likelihood (ML) and maximum mutual information (MMI) criteria, as well 
as support vector machines (SVMs). Identification under additive noise case is also considered and it is 
shown that identification rates reduces dramatically in case of additive noise.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Development of digital technology has led to development of 
low-cost portable tools such as pocket cameras, dictation ma-
chines, cellular phones and smart phones that form an integral 
part of our daily life. Such tools are used for recording and trans-
mitting multimedia data that play an increasing role as an evi-
dence in forensic investigation [1]. Thus, there is an increasing 
need for accurate analysis and classification of forensic multime-
dia data.

Forensic multimedia analysis has largely focused on digital im-
ages. Determining the integrity and authenticity of an image, iden-
tifying the source camera the image was taken with [2], digital 
image and video watermarking [3] and image steganalysis [4] – the 
problem of detecting the presence of hidden messages in images – 
are common applications. From these, source camera recognition [2]
is one of the most challenging problems. Given an image, the task 
is to determine the source device that the image was taken with 
[5]. This is possible because imperfections in acquisition devices 
leave their device-specific footprints to the images. For example, in 
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[6] and [7], identification of digital cameras based on sensor pat-
tern noise and dust was proposed. In [8], a similar approach was 
used for identifying source scanners from scanned images based 
on dust, dirt and scratch traces on the scanner platen.

When a recorded speech sample appears as forensic evidence, 
it is often necessary to trace the recording device or the environ-
ment. To this end, identification of the microphone and recording 
environment have been addressed in several studies [9–15]. For 
example, [10] studied classification of 4 different microphones and 
10 different environments (rooms) using different time-domain 
features while [11] used Fourier coefficients to classify 7 differ-
ent microphones. The authors of [13] studied identification of 10 
telephone handsets using Mel- and linear-frequency cepstral coeffi-
cients (MFCCs and LFCCs), reporting higher than 90% classification 
accuracy. Similarly, [14] used MFCCs to identify microphones in 
NIST 2008 speaker recognition evaluation (SRE) corpus. More re-
cently, [15] studied identification of 8 different landline telephone 
handsets (four carbon-button and four electret) and 8 different 
microphones using cepstral features while [12] used higher-order 
statistic features for microphone identification.

In our recent study [16], we addressed a similar problem 
to handset identification, source cell-phone identification [16]. As 
typical in speech-related classification tasks, we used features 
extracted from the whole signal. Even though high recognition
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accuracy was achieved, for the present work we hypothesize that 
information about the source device might be more pronounced in 
the non-speech parts of the signal. Therefore, our study gives the 
first detailed account into whether speech or nonspeech parts con-
vey more device-specific information. We attack the problem both 
with classification experiments utilizing Gaussian mixture model 
(GMM) and support vector machine (SVM) classifiers, as well as 
studying device-specific information in different acoustic features 
with the aid of a mutual information criterion. Inspired by the 
use of sensor noise to detect source cameras [6] and establish-
ment of such methodology as state-of-the-art in image forensics, 
we are curious to study the relative importance of non-speech 
segments in cell-phone identification. We approach the problem 
from an information-theoretic perspective, specifically, using max-
imum mutual information (MMI) criterion to analyze the amount 
of device-specific information in speech and non-speech parts. We 
show that features extracted from non-speech parts of the signal 
contain higher mutual information compared to those extracted 
from the speech segments. This naturally somewhat avoids the 
irrelevant information (disturbance) and thus yields higher recog-
nition rates. This result can be justified from signals and systems 
point of view as well. As the non-speech parts contain only noise-
like signals, which have a flatter spectral density compared to 
those of speech signals and provide relatively uncorrelated exci-
tation to the recorder, they capture the transfer function of the 
recording circuitry of source devices (the device footprint) much 
closer to its original. Thus, noise-like signals (non-speech seg-
ments) help us to discriminate source devices easier than the 
speech segments because they transfer the electro-acoustical prop-
erties of the recording device to the recorded signal. For compar-
ison, we examine the performance of classical GMM trained with 
maximum likelihood (ML) criterion as well as the state-of-the-art 
pattern classification method, support vector machines (SVM), and 
provide experimental results.

While the classifiers selected for this study are well-explored 
in speaker recognition [17], it is unknown of how they apply to 
source cell-phone recognition. Besides comparison of classifiers, in 
this paper, we investigate the source device recognition perfor-
mance under additive noise conditions which has not been consid-
ered in the previous studies. Mel-frequency and linear frequency 
cepstral coefficient (MFCC and LFCC) feature representations are 
also compared for both clean and noisy conditions. Our purpose 
in this paper is to compare the performance of established meth-
ods on the source device identification using the proposed feature 
extraction technique.

2. Source cell-phone recognition system

Source cell-phone recognition can refer to two different tasks: 
identification and detection. Both tasks consist of two steps: train-
ing and recognition. In the training step, features are extracted from 
the training speech samples of each cell-phone in the database 
and a cell-phone model is created. In the recognition step of an 
identification system (Fig. 1(a)), features are extracted from a test 
signal and a similarity score is computed for each of the cell-phone 
models in the database. The cell phone that gives the largest sim-
ilarity score is designated as the detected cell phone. In detection 
(Fig. 1(b)), a similarity score between the features extracted from 
test speech and hypothesized cell-phone model is computed; if 
the score is above the threshold the hypothesis is accepted and 
rejected otherwise. Note that our goal is to recognize a specific 
physical cell-phone which exist in our database, rather than rec-
ognizing the brand or the model. Thus, we use the term source 
cell-phone recognition.
Fig. 1. Decision logic for cell-phone (a) identification and (b) detection systems.

Fig. 2. MFCC extraction process.

2.1. Feature extraction

Most of the feature sets in speech processing are extracted 
from the spectrum of the signal. The most popular features for 
the recognition systems are the mel-frequency cepstral coefficients 
[17]. In [16], we considered the recording device (cell-phone) leav-
ing its foot-prints in the recorded speech as device-specific infor-
mation in the form of a convolutional distortion. This information 
can then be captured and represented by MFCC feature vectors in 
additive form with the contributions of speech signal and source 
device. Since the information from the speech signal is itself irrel-
evant to the aim of the task, in this paper, we use the non-speech 
parts of the recorded signal to remove less relevant information.

Considered to be stationary in short-term, the speech signal 
is first divided into overlapping frames and windowed using an 
appropriate window function. The power spectrum is computed 
using the discrete Fourier transform (DFT), which is then smoothed 
with a bank of triangular filters whose center frequencies are uni-
formly spaced on the Mel-scale. Finally, logarithmic filterbank out-
puts are converted into MFCCs by taking the discrete cosine trans-
form (DCT). The MFCC extraction procedure is shown in Fig. 2. In 
the paper, we use 30 millisecond frames with 15 millisecond over-
lap and a Hamming window.

Different from the MFCC features, linear frequency cepstral co-
efficients (LFCCs) are extracted the same way, except that the 
triangular filters are spaced in linear, rather than Mel-scale. We 
compare the source identification performances of these two dif-
ferent acoustic feature sets. Detailed comparison of different fea-
ture extraction and normalization methods on source cell-phone 
identification can be found in [18].

2.2. Speech/nonspeech detection

We use adaptive energy-based speech activity detector (SAD) to 
locate the speech and the non-speech parts. Our energy SAD mea-
sures the energy of each frame and compares it with a threshold. 
The energy of a speech frame is measured as,

Ei =
(

1

S

S∑(
si(k) − s̄i

)2

)1/2

, (1)

k=1
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Fig. 3. Example of speech/non-speech detection using SAD (SAD decision with the 
label +1 corresponds to speech segment and −1 corresponds to non-speech seg-
ment. α = 0.125).

where si(k) is the kth sample of ith speech frame and s̄i is the 
sample mean of ith frame and S is the total number of samples in 
a frame. The threshold is then calculated as:

Λ = Emin + α(Emax − Emin). (2)

Here, Emin and Emax are the minimum and maximum frame en-
ergy values over all frames and 0 ≤ α ≤ 1 is a constant. The ith 
frame is deemed as speech if Ei ≥ Λ and non-speech otherwise. 
Note that when α = 0 no SAD is used. Fig. 3 shows an example of 
a speech signal, SAD decision labels and the signal after the non-
speech parts are removed. It can be seen that around 65% of this 
speech signal is determined as non-speech so the length of the 
speech signal reduced from 4 seconds to 1.4 seconds after SAD.

In this study, we use the energy SAD method for the simula-
tions for reasons of simplicity. In practical forensic applications this 
would be usually replaced by manual segmentation carried out by 
the forensic analyst.

2.3. Mutual information in MFCCs

The use of information theory, mutual information concept in 
particular, has been studied in several speaker recognition studies 
[19–22], where the mutual information is used in selecting fea-
tures for speaker recognition with less redundancy. Features which 
are capable of holding higher mutual information between the in-
put and the speaker models yield higher recognition rate. In this 
paper, the mutual information is similarly used to select the most 
discriminating features with the most appropriate size, and hence 
decide on what part of the recorded signal and what number of 
features to use to represent the device-specific information most 
adequately.

The mutual information between two random variables λ

and C , representing the statistical model of a cell-phone and the 
feature vector extracted from recorded speech signals, respectively, 
is defined as [23]

I(λ, C) = h(λ) − h(λ|C) = h(C) − h(C |λ) (3)
Fig. 4. An estimate of the conditional entropy h(C |λ) and the mutual information 
I(C, λ) in (3) as a function of the number of features employing the TIMIT (first 
row) and the LIVE RECORDS (second row) databases.

where h(λ) and h(λ|C) are the entropy of λ and the condi-
tional entropy of λ given C , respectively. Suppose that {c j

t }T
t=1, j =

1, . . . , N , where N is the number of cell-phone devices in the 
database, are the set of features extracted from the speech sam-
ples recorded by the jth cell-phone. Under the assumption that 
each cell-phone in the database has equal prior probability of 1/N
and adjacent feature vectors are independent, the entropy of a fea-
ture set for a given cell phone is the sum of the entropies over all 
frames. In [19,20] it is shown that an estimate of the mutual infor-
mation Î(λ, C) (shown to be always less than or equal to the true 
value, Î(λ, C) ≤ I(λ, C)) can be computed as,
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, (4)

where λ j represents the jth cell-phone in database. Due to the 
need of probability density functions (pdfs) to compute the en-
tropy of features for each cell-phone model, we use the GMMs 
with 32 components as explained in the next section.

An estimate of the conditional entropy h(C |λ) and the mutual 
information I(C, λ) in (3) using (4) is shown in Fig. 4 for both 
TIMIT and LIVE RECORDS databases (details of the datasets will 
be described in the next section) as a function of the number of 
MFCC features extracted from the whole utterance, speech parts 
only, and the non-speech parts only, by varying it from 2 to 24. 
In Fig. 4, the computation of the mutual information and condi-
tional entropy are done in closed set condition, the training data 
of each cell-phone is used for model training and mutual infor-
mation computation, in order to perform mutual information anal-
ysis independent from test data, similar to [20]. We assume that 
the device-specific information is contained in the MFCCs, where 
the amount of useful information is coded in some form, and its 
amount depends on the number of MFCCs used. This is clearly 
seen from Fig. 4. Here, the mutual information increases with the 
number of MFCCs up to some extent (at most to its true value), but 
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further increase in the number of MFCCs may result in a decrease 
in mutual information. The turning point may be interpreted as 
the point at which the number of features (the smoothness of the 
signal spectrum) is matched to the structure of the discriminatory 
information coded in recorded speech.

The conditional entropy is a concave function of the number 
of MFCCs, and shows the amount of uncertainty in C given the 
model λ. Therefore, smaller conditional entropy corresponds to 
higher mutual information across C and λ. Clearly, features ex-
tracted from the non-speech parts posses the least conditional en-
tropy and therefore attain the highest mutual information whereas 
features obtained from the speech parts only or the whole ut-
terance yield smaller mutual information (as intuitively expected 
and discussed above). Thus, we expect to obtain higher recogni-
tion rates when the features are extracted from the non-speech 
parts of the recorded signal. These observations about the MI and 
conditional entropy hold for the LFCC features, as well.

2.4. Gaussian mixture model classifier

Gaussian mixture model (GMM) is a probabilistic classification 
method used in many applications including speaker, language and 
face recognition [24–26]. GMM represents each class as a weighted 
sum of M multivariate Gaussian components as,

fX|λ(x|λ) =
M∑

i=1

wi fXi (xi), (5)

where wi is the mixture weight and fXi (xi) is a D-variate Gaus-
sian density function with mean vector μi and covariance matrix 
Σ i :

fXi (xi) = 1

(2π)D/2|Σ i|1/2
exp

{
−1

2
(xi − μi)

TΣ−1
i (xi − μi)

}
. (6)

A complete GMM model is parameterized by the mean vectors, 
covariance matrices and weights of all component densities, λ =
{wi, μi, Σ i}M

i=1.
Training a GMM consists of estimating the model parameters, 

wi , μi , and Σ i by maximizing the log-likelihood function of train-
ing vectors X = {x1, . . . , xT} with respect to model λ, defined as,

L(X |λ) = 1

T

T∑
t=1

log fX|λ(xt |λ). (7)

Iterative expectation maximization (EM) algorithm [24] is used to 
estimate the model parameters by maximizing (7) on the train-
ing set. In the recognition phase of an identification system, the 
decision is based on the maximum average log-likelihood of test 
vectors Y = {y1, . . . , yT} and GMMs stored in the database. Namely,

δ = arg max
1≤ j≤N

L(Y |λ j). (8)

The ML training of GMM aims to maximize the overall likelihood 
of training data for a cell-phone.

Besides generative training of a GMM with ML criterion, we 
consider discriminative training of device-specific models using 
Maximum Mutual Information (MMI) criterion [27–29]. The advan-
tage of MMI training is that it maximizes the probability of correct 
decision by taking all the training samples of each class into ac-
count. Another advantage of training GMM with MMI criterion is 
that it does not suffer from the shortcoming of ML method with 
short training data.

It is important to note that training GMM with MMI is dif-
ferent from computing the mutual information of MFCC features 
described in the previous section. Thus, except for the names, there 
is no direct link between MI of MFCCs and GMM-MMI methods. 
Training a GMM with MMI corresponds to estimating its parame-
ters (weights, means and covariances) by maximizing the posterior 
probability of all training features. Formally, the objective function 
for MMI training is [27–30],

F MMI =
N∑

j=1

R∑
r=1

log
p(X j

r |λ j)P (λ j)∑N
k=1 p(X j

r |λk)P (λk)
, (9)

where X j
r is the collection of MFCC vectors extracted from the rth 

training utterance recorded by the jth cell-phone, p(X j
r |λ j) is the 

likelihood of the r-th training utterance, given the correct cell-
phone model, λ j . R is the number of speech utterances used in 
training, and the denominator represents the unconditional prob-
ability density, p(X j

r ). By assuming the prior probabilities of all 
classes (cell-phones) to be equal, the prior terms P (λ j) and P (λk)

in (9) can be ignored. In practice, (9) is maximized using a so-
called extended Baum-Welch (EBW) algorithm [27]. It is an iterative 
procedure that requires an initial set of models. To this end, we use 
the ML-trained models. We have used STK toolkit1 to construct our 
GMM-MMI based classification system, and trained the models us-
ing 20 EBW iterations. Generally the number of EBW iteration is 
selected between 10 and 20 [29,31–34]. We found that 20 EM and 
EBW iterations are sufficient for the convergence. In the recogni-
tion phase, decision is made according to,

δ = arg max
1≤ j≤N

log

{
p(Y |λ j)

1/T∑N
k=1 p(Y |λk)

1/T

}
, (10)

where T is the number of feature vectors in Y .

2.5. Support vector machine classifier

Support vector machine (SVM) is another powerful classifica-
tion method. SVM is originally a binary classifier which models 
the decision boundary (separating hyperplane) between two classes. 
Training an SVM consists of finding the separating hyperplane be-
tween two classes with maximum margin. SVM has become a de 
facto reference classification method in many applications. Since 
speech is a dynamic signal, i.e., its amplitude and frequency con-
tent change over time, features obtained from a speech signal are 
variable-length sequences of D-dimensional vectors rather than 
a single vector. Thus sequence kernel approach was proposed for 
speech applications of SVM [35–37].

One of the simplest sequence kernel methods is generalized lin-
ear discriminant sequence kernel (GLDS-SVM) [35,36]. In GLDS-SVM, 
spectral features are mapped to higher dimensional space by poly-
nomial expansion with monomials (each combination of feature 
vector components) up to a certain degree m. For example, given a 
2-dimensional feature vector x = [x1 x2]T, its expansion of order 2 
is computed as b(x) = [1 x1 x2 x2

1 x1x2 x2
2]T. For a D-dimensional 

feature vector, the dimensionality of expanded feature vector is (D+m
m

) = (D+m)!
D!m! where m denotes the maximum monomial order. 

In practice, the dimensionality of the expanded feature vectors 
becomes too large when m > 3; for example, when D = 24 and 
m = 4, the polynomial expansion leads to a vector of dimension 
20475. Therefore, m = 3 is generally used [31,38]. Given a train-
ing or test feature sequence of a cell-phone, X = {x1, . . . , xT}, it is 
represented by its average expanded vector,

b = 1

T

T∑
t=1

b(xt). (11)

1 http :/ /speech .fit .vutbr.cz /software /hmm-toolkit-stk.

http://speech.fit.vutbr.cz/software/hmm-toolkit-stk


C. Hanilçi, T. Kinnunen / Digital Signal Processing 35 (2014) 75–85 79
Table 1
The brands and models of cell-phones used in the experi-
ments and their class names.

Class name Brand and model

H1 HP IPAQ514
L1 LG KE970
M1 Motorola Q
N1 Nokia 2730
N2 Nokia 3600
N3 Nokia 3600
N4 Nokia 6500
N5 Nokia 6670
SA1 Samsung E250
SA2 Samsung E250
SA3 Samsung D900
SO1 Sony K750I
SO2 Sony W880
SO3 Sony W880

Each cell-phone in the database is represented by its character-
istic vector (b) and SVM model for each cell-phone is trained using 
linear kernel. More details of SVM-GLDS can be found in [35,16,36,
37].

In our experiments we use the LibSVM package [39] with 3rd 
order polynomial expansion. In our preliminary experiments, ex-
pansion orders 1, 2, 3 and 4 were studied and m = 3 was found 
to give the highest accuracy. The advantage of LibSVM package is 
that, in addition to hard decisions, it also provides class probabil-
ity estimates. Another advantage of this package is that it supports 
multi-class training in which one-against-one approach is used to 
train N(N − 1)/2 binary classifiers for N classes. Details about the 
implementation of multi-class SVM with probability outputs can 
be found in [40].

In the recognition stage, given a test vector btest the probabil-
ity that btest comes from the ith class: namely, pi = p(i|btest), i =
1, . . . , N is computed and the cell-phone model which produces 
the maximum probability is determined as the decision.

3. Cell-phone recognition setup

In the experiments, we have used N = 14 models of cell-
phones. Comparing with the source camera identification studies 
in [6,7,41,42], where 9, 4, 16, and 6 camera models were used, re-
spectively, we consider N = 14 cell-phones to be adequate, at least 
for the purpose of presenting preliminary results in this emerg-
ing field. The collection of brands include Nokia, Samsung, Sony 
Ericsson, LG, Motorola and HP. Five of Nokia, three of Samsung, 
one of LG, three of Sony Ericsson, one of Motorola, and one of 
HP models have been used in the experiments. The brands and 
models of cell-phones are listed in Table 1. Note that we have 
three pairs of cell-phones representing exactly the same model and 
brand (N2–N3, SA1–SA2 and SO2–SO3 in Table 1). Source devices 
of the same model and brand are expected to be more difficult to 
discriminate and therefore these three pairs of devices are included 
in our dataset to establish the performance on such devices.

Source cell-phone recognition in forensic applications must be 
text- and speaker-independent by virtue of its nature. We have 
used two different databases to investigate the performance of 
our cell-phone recognition system. The first database, TIMIT, is a 
popular speech/speaker recognition database which consists of 630 
speakers from different dialects of American English (192 females 
and 432 males). Each speaker reads ten utterances each of which 
is approximately 3 seconds long. We have randomly selected 24 
speakers from the test portion of the database, and 240 sentences 
of these 24 speakers are played back with PC loud speaker and 
recorded by each cell-phone in an office environment. With this, 
we have 240 utterances for each cell-phone, in total 3360 speech 
recordings. For each cell-phone, we have used 120 recordings for 
training and the remaining 120 utterances for testing (120 indi-
vidual testings for each cell-phone and total of 1680 identification 
trials).

Apart from TIMIT, we have built a second database by recording 
speech spoken by the same speaker for both training and test ses-
sions and refer it to as LIVE RECORDS in the following. The reason 
of using second database is to test the device discriminating ca-
pability of our recognition system under different conditions. For 
each cell-phone, speech data is recorded in the same room (as was 
the case in TIMIT recordings), which is about 10 minutes long spo-
ken by the same speaker. Half of the recording (5 minutes) is used 
to train each phone, and the remaining 5 minutes portion is seg-
mented into 3s long chunks for testing (100 test sentences for each 
phone, total of 1400 tests). The text content used in two sessions 
are different. It is seen that in the TIMIT database speakers are 
different accross the training and test portions whereas the same 
speaker is used in both portions in the LIVE RECORDS database. 
However, the text content of speech samples are different.

The recorded speech signals are in the adaptive multi-rate 
(AMR) compression format for all phones with 8 kHz sampling fre-
quency and 12.2 kbps bit rate. Recordings of each cell-phone are 
processed in different sessions (14 different recording sessions) but 
in the same office. During the recording sessions, each cell-phone 
was located on the same spatial point in turn (at the same distance 
from the loudspeakers). Our set-up considers cell-phones as ordi-
nary voice recorders; recording over a wireless connection (while 
a call is in progress) is outside the scope. Therefore, our data does 
not include transmission channel or speech coding effects; instead, 
some environmental variability is introduced by controlled additive 
noise degradation described below.

In the cell-phone detection experiments on TIMIT database, 120 
test samples of each cell-phone were scored against each cell-
phone. This yields 1680 trials of which 120 are positive (same 
phone) trials and the remaining 1560 trials are negative (different 
phone) trials per each cell-phone. Thus, we have a total of 1680 
(120 × 14) positive and 21840 (120 × 13 × 14) negative trials. In 
the LIVE RECORDS database, we have a total of 1400 (100 × 14)

positive and 18200 (100 × 13 × 14) negative trials.
For additive noise contamination, we use Filtering and Noise 

Adding Tool (FaNT).2 It is an open-source tool that follows ITU rec-
ommendation for noise adding and filtering. Specifically, it uses 
psychoacoustic speech level computation based on the ITU recom-
mendation P.56 (objective measurement of active speech level). White
and babble noises selected from the NOISEX-92 database3 are used 
with 3 different signal-to-noise ratio (SNR) levels, 0, 5 and 10 dB. 
Let us briefly motivate the selection of our two noise types. Firstly, 
white noise has constant power spectral density and it strongly 
masks especially the lower-amplitude higher formants of human 
speech. Even if not representing a typical real-world case, it is 
often included as a difficult-to-handle [43] case in both speech 
and speaker recognition studies. Secondly, babble noise [44], rep-
resenting an unintelligible mixture of multiple speakers, occurs 
frequently in our daily life: trains, restaurants, school lobbies and 
family celebrations to name a few. These are examples of sites 
where one could illicitly record another person’s voice with a voice 
recorder.

One would claim that in a real scenario, the test data would 
come from a recording made in an unknown acoustical environ-
ment with an unknown orientation between the talker and the 
phone’s microphone, with unknown background noise, with un-
known automatic gain settings in the handset’s input stage, and 
unknown effects of particular speech coding algorithm used in the 

2 http :/ /dnt .kr.hs-niederrhein .de /download .html.
3 http :/ /www.speech .cs .cmu .edu /comp .speech /Section1 /Data /noisex .html.

http://dnt.kr.hs-niederrhein.de/download.html
http://www.speech.cs.cmu.edu/comp.speech/Section1/Data/noisex.html
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handset. However, the reason for adding noise digitally is that the 
parameters of the scenario under which the data is collected must 
be controllable in order to make a plausible performance assess-
ment for their various and critical values, by altering the value of 
only the one variable and holding those of the remaining constant.

In the noisy experiments, each cell-phone is trained using its 
original training samples and noise is added to the test speech 
samples, inducing a mismatch between training and test condi-
tions. In the additive noise experiments, each cell-phone model is 
trained using its original training recordings and noise is added to 
test recordings only.

In the noisy experiments, we first apply power spectral sub-
traction (as described in [45]) as a pre-processing step to reduce 
additive noise effect on the signal domain. Then, 24 feature coeffi-
cients (MFCCs and LFCCs) are extracted from the enhanced signal. 
After applying RASTA filtering [46] to the features, their first and 
second order time derivatives (� and �2) are appended which fi-
nally yields 72 dimensional feature vectors. The last step is cepstral 
mean and variance normalization (CMVN) which helps suppressing 
the effect of noise on the feature level. The SAD labels of origi-
nal recordings are used to locate speech and non-speech frames 
for all the recordings, including those with digitally added noise. 

Fig. 5. Number of detected non-speech frames (in %) as a function of the α param-
eter used in the energy SAD for TIMIT (first row) and LIVE RECORDS (second row) 
databases.
Such an “oracle” SAD ensures that we use the exact same (num-
ber of) frames across the clean and noisy experiments, allowing 
comparable results across different noise types and SNRs. It is well 
known that the performance of any energy-based SAD is severely 
impacted by the presence of additive noise. In forensic casework, 
the speech/non-speech boundaries would in any case be hand-
marked by the forensic analyst, rather than being automatically 
derived.

We used identification error rate as the performance criterion 
in the identification experiments. In the detection experiments, we 
used equal error rate (EER), which is the error rate at which false 
alarm rate (PFA) and miss rates (PFR) are equal. In the detection 
experiments, in addition to EER, detection error trade-off (DET) 
curves [47] are also presented, which is a graphical representation 
of error rates illustrating the tradeoff between PFA vs PFR.

4. Experimental results

4.1. Effect of SAD parameters

We first optimize the α parameter of the energy SAD sepa-
rately for TIMIT and LIVE RECORDS. We consider 120 different 
values of α between 0.0025 ≤ α ≤ 0.3 and compute the num-
ber of detected non-speech frames for training and test data of 
each dataset and the corresponding identification error rates. We 
used GMM classifier trained with ML (GMM-ML) criterion using 12 
MFCCs in this preliminary experiment. Fig. 5 shows the number of 
non-speech frames (in %) and identification error rates (in %) as a 
function of α. Recall that α = 0 implies not using any frames, and is 
therefore not considered. As α increases, the amount of detected 
non-speech frames increases. The number of non-speech frames 
for both training and test data of TIMIT have similar trends and 
both increase when α increases. For LIVE RECORDS, larger number 
of non-speech frames are detected in the training data compared 
to test data. The lowest error rates are obtained with α = 0.0175
and α = 0.2350 for the TIMIT and LIVE-RECORDS datasets, re-
spectively. We have used these values for the remaining experi-
ments.

4.2. Effect of the number of features

Next, we analyze the source cell-phone identification perfor-
mance as a function of the number of MFCCs. Fig. 6 shows the 
identification error rate for the GMM-ML, GMM-MMI and SVM 
classifiers on both datasets. The lowest identification error rates 
Fig. 6. Identification error rates (in %) using GMM-ML, GMM-MMI and SVM classifiers for TIMIT (first row) and LIVE RECORDS (second row) databases.
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Table 2
Confusion table for GMM-MMI-based cell-phone identification on TIMIT database using speech parts only.

H1 L1 M1 N1 N2 N3 N4 N5 SA1 SA2 SA3 SO1 SO2 SO3

H1 120 0 0 0 0 0 0 0 0 0 0 0 0 0
L1 0 119 0 0 0 0 0 1 0 0 0 0 0 0
M1 0 0 119 0 0 0 0 0 0 0 0 1 0 0
N1 0 0 0 110 1 5 2 0 1 0 0 1 0 0
N2 0 0 0 1 76 9 17 2 2 0 4 1 8 0
N3 0 0 0 3 26 57 22 0 1 2 1 4 4 0
N4 0 0 0 8 3 2 94 0 2 5 0 2 3 1
N5 0 4 0 0 0 0 0 104 6 1 1 3 0 1
SA1 0 0 0 0 0 0 0 0 117 2 1 0 0 0
SA2 0 1 0 0 0 0 0 0 0 119 0 0 0 0
SA3 0 0 0 0 0 1 0 0 19 0 98 0 2 0
SO1 0 0 0 0 0 0 0 0 1 0 0 115 1 3
SO2 0 0 0 0 0 0 0 0 0 1 0 0 78 41
SO3 0 0 0 0 0 0 0 18 0 1 0 23 14 64

Table 3
Confusion table for GMM-MMI-based cell-phone identification on TIMIT database using non-speech parts only.

H1 L1 M1 N1 N2 N3 N4 N5 SA1 SA2 SA3 SO1 SO2 SO3

H1 120 0 0 0 0 0 0 0 0 0 0 0 0 0
L1 0 120 0 0 0 0 0 0 0 0 0 0 0 0
M1 0 0 120 0 0 0 0 0 0 0 0 0 0 0
N1 0 0 0 120 0 0 0 0 0 0 0 0 0 0
N2 0 0 0 0 112 8 0 0 0 0 0 0 0 0
N3 0 0 0 0 10 110 0 0 0 0 0 0 0 0
N4 0 1 0 2 0 0 115 0 0 1 1 0 0 0
N5 0 0 0 0 0 0 0 120 0 0 0 0 0 0
SA1 0 0 0 0 0 0 0 0 120 0 0 0 0 0
SA2 0 2 0 0 0 0 0 0 0 118 0 0 0 0
SA3 0 0 0 0 0 0 0 0 0 0 120 0 0 0
SO1 0 0 0 0 0 0 0 0 0 0 0 120 0 0
SO2 0 0 0 0 0 0 0 0 0 0 0 0 119 1
SO3 0 0 0 0 0 0 0 0 0 0 0 0 9 111

Table 4
Identification rates (in %) for GMM and SVM classifiers using 24 MFCCs and LFCCs. For a given classifier, all the differences between the features extracted from the 
speech-only parts and those extracted from the whole utterance or non-speech parts are statistically significant according to McNemar’s test with 95% confidence.

Classifier TIMIT LIVE RECORDS

Whole Speech Non-Speech Whole Speech Non-Speech

MFCC LFCC MFCC LFCC MFCC LFCC MFCC LFCC MFCC LFCC MFCC LFCC

GMM-ML 92.61 94.16 78.03 76.07 95.18 96.79 94.77 95.07 72.85 65.93 96.12 94.57
GMM-MMI 95.65 95.06 82.73 81.67 97.91 94.88 95.21 94.36 89.35 85.21 98.21 95.29
SVM 96.42 96.43 83.63 83.51 98.39 98.27 95.14 93.36 85.93 81.07 97.03 94.93
are obtained when features are extracted from the non-speech 
parts whereas extracting MFCCs from the speech parts yields sys-
tematically the highest identification error rates. For the SVM clas-
sifier, the relative difference on identification error is larger when 
small number of features are used. The SVM classifier outperforms 
GMM-ML on both datasets. As expected from the results of mutual 
information graphs (Fig. 4), in most cases, the lowest identification 
error rate is obtained using 24 MFCCs.

The confusion matrices obtained using speech parts and non-
speech parts for TIMIT database using GMM-MMI classifier are 
given in Tables 2 and 3, respectively. In general, misclassifica-
tion usually occurs within the same brand of cell-phones rather 
than across brands, as expected. Clearly, features obtained from 
the non-speech parts yield considerable improvement in com-
parison to using the whole utterance or the speech-only parts. 
When using the speech parts only, especially the pairs with 
the same brand and model are often misidentified (N2–N3, 
SA1–SA2 and SO2–SO3 pairs). However, when using the non-
speech parts, the recognizer shows fewer confusions in recognizing 
them.
4.3. Comparison of MFCC and LFCC features

Identification performance comparison of the MFCC and LFCC 
features using different classifiers is given in Table 4. Twenty-four 
feature coefficients are used for both feature sets. Regarding the 
two types of feature sets, MFCC features outperform LFCC fea-
tures in a vest majority of cases. Further, for both feature sets, 
features extracted from the non-speech parts yield higher identi-
fication rates than features extracted from the whole utterance or 
the speech parts. For each classifier, the performance differences 
between the baseline features (extracted from the speech parts) 
and those extracted from the whole utterance or the non-speech 
parts were found to be significantly different according to McNe-
mar’s test [48]. McNemar’s test tabulates the correlation of the 
correct and incorrect decisions between two systems and counts 
the number of trials that two systems disagree and then uses the 
chi-square test statistics to compute the p-values. When p < 0.05
the performance difference between two systems are said to be 
significant with 95% confidence [49].

As seen, both speech and non-speech segments contain dis-
criminatory information for cell-phone recognition. Since speech 
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Table 5
Ratio of fusion weights (|wn|/|ws|) computed with logistic regression and identification rates (in %) obtained by fusing the scores of speech and non-speech parts.

Classifier |wn|/|ws| Fused identification rates (%) Whole utterance identification rates (%)

TIMIT LIVE RECORDS TIMIT LIVE RECORDS TIMIT LIVE RECORDS

MFCC LFCC MFCC LFCC MFCC LFCC MFCC LFCC MFCC LFCC MFCC LFCC

GMM-ML 2.56 2.16 15.43 12.65 97.97 98.21 96.64 95.57 92.61 94.16 97.77 95.07
GMM-MMI 0.46 0.68 32.24 26.04 97.91 98.33 96.78 95.85 95.65 95.06 95.21 94.36
SVM 1.76 1.81 2.81 1.98 98.92 99.04 96.21 95.28 94.42 96.43 95.14 93.36

Fig. 7. DET curves for TIMIT and LIVE RECORDS datasets.
and non-speech parts are spectrally very different, one should ex-
pect them to contain complementary cues. This motivates us to 
combine the two classifier output scores (one constructed for the 
speech parts, the other one from the non-speech parts). To this 
end, we adopt a linear score fusion of the form s = w0 + ws × ss +
wn × sn where w0 represents a bias, ws and wn are the weights 
of the speech and non-speech classifiers and ss (speech) and sn

(non-speech) are the corresponding scores of the classifiers. Lin-
ear fusion has the benefit that the weights can be interpreted as 
the relative importance of each classifier and provide insights to 
the problem at hand. Linear score fusion, in fact, often produces 
the most competitive results in state-of-the-art speaker verifica-
tion [50,51]. We do not hand-tune the weights using adhoc grid-
search but optimize them using a logistic regression model which 
provides better generalization. Speaker recognition community has 
developed useful open-source tools to achieve this task; we uti-
lize FoCal Multi-class toolkit [52] to train the fusion weights. It is 
important to note that the purpose of fusion experiment is to ana-
lyze the relative importance of speech and non-speech parts rather 
than trying to prove that it improves the identification rates.

The ratio of optimized fusion weights |wn|/|ws| and the corre-
sponding identification rates obtained through fusion are shown 
in Table 5. It is important to note that |wn|/|ws| > 1 indicates 
that non-speech scores are more discriminative than the speech 
scores. The last two columns of the table show the identifica-
tion rates when features are extracted using the whole utterance 
for TIMIT and LIVE RECORDS databases selected from Table 4. 
From the table, it is clear that non-speech score weights (wn) 
are generally higher than that of speech score weights (ws), the 
only exception being GMM-MMI classifier on TIMIT. Fusing the 
scores of speech and non-speech parts improves the identifica-
tion rates for each classifier compared with the whole utterance 
case independent of classifier or feature set. Identification rates 
after score fusion are higher than the accuracies of best individ-
ual rates on TIMIT database (Table 4). This shows that speech 
and non-speech parts contain complementary device information. 
However, for LIVE RECORS fusion fails to improve identification 
rate in comparison to best individual accuracy (e.g. identification 
rate decreased from 97.03% to 96.21% after score fusion on LIVE 
RECORDS database using MFCC features with SVM classifier).
4.4. Detection experiments

The DET curves for the source cell-phone detection experiments 
using SVM classifier with 24 MFCCs are shown in Fig. 7. Similar to 
the results of the identification experiments, using only the non-
speech parts of the recorded speech signal yields higher accuracy 
compared to those of using the speech only part or the whole 
utterance for both datasets. Using only the non-speech parts for 
feature extraction provides 60.83% and 21.33% relative improve-
ments on the performance compared to that of using the whole 
utterance, on TIMIT and LIVE RECORDS databases, respectively.

4.5. Effect of additive noise

In the noisy experiments, first, the effect of pre-processing 
(spectral subtraction) and feature normalization (CMVN) under mis-
matched conditions are compared. To this end, identification rates 
for white and babble noises with 5 and 10 dB SNR levels, as 
an example, are displayed in Table 6 (similar conclusions hold 
for other SNR levels considered). Spectral subtraction reduces the 
identification rate of original test recordings considerably. How-
ever, identification rate obtained by feature normalization (CMVN) 
is slightly lower and identification rate when both pre- and post-
processing are applied is higher than the accuracy of baseline 
MFCCs (without any pre- and post processing). Identification rates 
reduce dramatically under additive noise contamination, as ex-
pected. In noisy case for TIMIT database, spectral subtraction re-
duces the identification rate for white noise whereas it improves 
the accuracy for babble noise. Similar observations hold for other 
cases (when CMVN is applied and when both spectral subtraction 
and CMVN are applied together). Relative improvement achieved 
by applying pre-processing before feature extraction and then fea-
ture normalization as post-processing is higher than the improve-
ment achieved by spectral subtraction or CMVN. For LIVE RECORDS 
database in turn, applying pre- and post-processing together yields 
the best identification rate for white noise whereas feature extrac-
tion followed by CMVN achieves the highest performance for bab-
ble noise. In general, applying both spectral subtraction and feature 
normalization yields the highest identification accuracies for both 
databases (except for the babble noise case on LIVE RECORDS).
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Table 6
Comparison of identification rates (in %) under additive noise using GMM-MMI classifier with MFCC features extracted from whole utterance with and without pre- and post 
processing (SS: spectral subtraction, and CMVN: cepstral mean and variance normalization).

Noise type TIMIT LIVE RECORDS

Pre-processing / Post-processing Pre-processing / Post-processing

None SS CMVN SS + CMVN None SS CMVN SS + CMVN

Original 94.70 89.72 94.34 95.41 91.85 74.71 78.14 95.35

White (0 dB) 11.19 8.63 8.92 14.10 7.71 11.85 10.35 12.57
White (5 dB) 13.63 9.70 11.96 16.25 15.21 14.35 10.64 16.00

Babble (0 dB) 7.20 9.22 10.35 11.54 14.92 13.85 18.35 15.50
Babble (5 dB) 7.38 13.69 15.53 16.07 25.28 17.50 32.64 25.42

Table 7
Identification rates (in %) under additive noise using GMM-MMI classifier when spectral subtraction, CMVN and RASTA filtering are applied on feature vectors (Wh., Sp. and 
NS. correspond to whole utterance, speech and non-speech, respectively.)

SNR (dB) TIMIT LIVE RECORDS

MFCCs LFCCs MFCCs LFCCs

Wh. Sp. NS. Wh. Sp. NS. Wh. Sp. NS. Wh. Sp. NS.

Original 92.67 66.54 94.94 91.66 64.10 92.20 76.78 32.57 84.28 70.71 35.00 81.78

White 10 33.75 38.75 16.78 35.11 44.82 16.01 39.21 21.00 25.85 21.50 24.64 18.92
5 27.91 27.85 15.17 26.66 33.27 14.82 27.35 14.57 17.14 15.85 18.50 14.07
0 19.22 18.21 12.85 19.40 22.50 13.69 16.35 12.14 12.00 16.21 15.64 12.00

Babble 10 21.19 42.55 12.44 26.07 48.69 14.34 21.14 42.57 12.42 34.50 32.57 20.14
5 18.39 30.35 10.35 22.32 34.82 13.21 27.35 14.57 17.14 15.85 18.50 14.07
0 15.17 23.33 12.32 18.51 27.97 12.61 17.42 12.00 13.85 15.50 20.07 12.78
The previous experiments have focused on the effects of speech 
enhancement, feature normalization and choice of classifier on a 
limited set of data conditions. Let us now fix both the feature 
processing chain (spectral subtraction, delta features, RASTA and 
CMVN) and the back-end classifier (GMM-MMI) and focus on noise 
type, SNR, feature set and frame selection principle (whole ut-
terance, speech or non-speech). These results, for both corpuses, 
are displayed in Table 7. Identification accuracies reduce dramat-
ically independent of the noise type or features in the case of 
added noise. When features are extracted from the speech parts, 
white noise represents a more challenging case from the two types 
of noises. In the cases of non-speech parts and whole utterance 
babble noise is more challenging than the white noise, in gen-
eral.

In contrast to the results of clean recordings presented in the 
previous subsection, extracting features from the speech parts 
yield the highest identification rates independent of the feature 
type or the SNR (except for the MFCC features on LIVE RECORDS). 
The reason for obtaining smaller identification rates by using fea-
tures extracted from the non-speech parts is probably because, 
non-speech parts have smaller energy levels thus these parts are 
corrupted by noise more than the speech parts. With the feature 
extraction setup used for additive noise experiments (spectral sub-
traction, RASTA filtering and CMVN), the recognition accuracy of 
clean recordings are lower than the identification rates given in 
Table 4. This might be because spectral subtraction and RASTA fil-
tering techniques aim to reduce additive noise effect in the signal 
and feature levels, respectively. However, they reduce relevant in-
formation when these methods are applied on clean signals, as 
expected.

Comparing the two sets of features, in contrast to the clean 
tests results (Table 4), under additive noise contamination LFCC 
features outperforms MFCCs in general. For example, for white 
noise (0 dB SNR) LFCCs yield approximately 23% relative improve-
ment over MFCCs (18.21% → 22.50%).
5. Discussion

In speaker, language, and speech recognition, non-speech frames 
are generally not used in the recognition system since they do not 
contain relevant information for such applications. However, differ-
ent from the previous microphone or handset identification studies 
that used whole signals to extract features [10–12,15], in this study 
we show that non-speech portions of the signal are more impor-
tant for identifying the recording device. The results on clean data 
indicate that features extracted from non-speech parts of the signal 
contain higher mutual information than those from speech parts 
or whole utterance (Fig. 4). Twenty-four MFCCs are found to give 
the highest MI when features are extracted from non-speech parts. 
These results are further supported by the classification results in 
Fig. 6 and Table 4.

Similar to the findings for mutual information, identification 
rates of features extracted using the whole utterance is higher 
than that of extracted from the speech-only parts but lower than 
that of extracted from the non-speech parts. This could be because 
the whole utterance is a mixture of the two extreme parts and 
naturally has the performance lying in between but closer to the 
whole utterance. We believe that the performance difference be-
tween whole utterance and non-speech cases would be larger if 
the SAD was perfect. The imperfection mixes some fragments of 
speech signal into the noise-like non-speech parts and some frag-
ments of non-speech segments into the speech parts.

SVM and GMM-MMI classifiers outperform GMM-ML method in 
all cases. The performance improvement of GMM-MMI over GMM-
ML is expected because generative training of a GMM (ML) aims 
to optimize the model parameters so that the estimated model re-
produces the training data with the greatest probability whereas 
discriminative training (MMI) focuses on learning the boundaries 
between classes by considering all classes. In [16], we obtained 
96.42% and 92.28% identification rates using 12 MFCCs with SVM 
classifier for TIMIT and LIVE RECORDS databases, respectively. In 
that study the features were extracted from whole utterances. In 
the same study, vector quantization (VQ) classifier yielded recog-
nition rates of 92.56% (TIMIT) and 92.57% (LIVE RECORDS). A com-
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Table 8
Comparison of identification rates (in %) obtained in [16] and in this study.

Classifier TIMIT LIVE RECORDS

VQ [16] 92.56 92.57
SVM [16] 96.42 92.28
GMM-ML [this study] 96.79 96.12
GMM-MMI [this study] 97.91 98.21
SVM [this study] 98.39 97.03

parison of the highest identification rates obtained in [16] and this 
work are summarized in Table 8.

When linear logistic regression based score fusion is applied to 
the scores of speech and non-speech segments (Table 5) the opti-
mum estimated weight of the non-speech scores are higher than 
that of speech segments, suggesting that non-speech segments are 
more discriminative than the speech segments. Besides, they con-
tain complementary information and fusing the scores improves 
the identification rates, in general, in comparison to the accura-
cies of whole utterance. MFCC features outperforms LFCCs in gen-
eral independent of classifier for both TIMIT and LIVE RECORDS 
databases on clean data. However, when score fusion is applied, 
identification rates obtained with LFCCs are slightly higher than 
that of MFCCs for TIMIT database.

Recognition rates reduce dramatically under additive noise, as 
expected (Tables 6 and 7). Interestingly, in contrast to the find-
ings on clean data, the features extracted from the non-speech 
parts of the signal yield smaller identification rates than the fea-
tures obtained from the speech-only parts or whole utterance. This 
is probably because non-speech parts are corrupted by the noise 
more than the speech-only parts since they have smaller segmen-
tal signal-to-noise ratio (SNR). Signal pre-processing by spectral 
subtraction improves identification rates under babble noise con-
tamination but reduces the accuracy for white noise on TIMIT 
database (Table 6) compared to the accuracy of baseline MFCCs 
without any pre- or post-processing. However, for LIVE RECORDS 
database it reduces the identification rates for both white and 
babble noises but relative degradation under white noise is con-
siderably smaller than babble noise.

From Table 6, applying post-processing (CMVN) reduces the 
identification accuracy under white noise case. However, it con-
siderably improves the accuracy for babble noise (e.g. identification 
rate improves from 7.38% to 15.53% for TIMIT database). In general, 
the highest identification rates under additive noise are obtained 
when both spectral subtraction and CMVN are applied. The identi-
fication rates with the full feature extraction setup which consists 
of applying pre- and post-processing, applying RASTA filtering and 
appending delta features which are summarized in Table 7 are 
considerably higher than that of baseline features with pre- and/or 
post-processing given in Table 6.

6. Conclusion

We proposed source cell-phone recognition system that uti-
lizes features extracted from non-speech parts of the signal. We 
have shown that extracting features using non-speech parts yields 
higher mutual information and hence higher recognition rates in 
comparison to features extracted from speech-only parts or the 
whole utterance. Experiments conducted on two different datasets 
(TIMIT and LIVE RECORDS) using three classifiers (SVM, GMM-ML 
and GMM-MMI) and two sets of features (MFCC and LFCC) indi-
cate that non-speech parts are more representative of the source 
device than the speech parts when the data is relatively clean and 
the highest identification rates and mutual information were ob-
tained using 24 features (MFCC and LFCC) in most cases. However, 
under additive noise, since speech parts have higher segmental 
signal-to-noise ratio, extracting features from the speech parts was 
found more successful. Because of the considerable reduction on 
the recognition accuracy under additive noise, addressing noise-
robust feature extraction methods (e.g. features extracted from 
phase rather than magnitude spectra) for this challenging task are 
necessary in future work. Since the speech/non-speech detection 
used in the experiments has a major effect on the performance of 
source identification using clean data and it is not error-free, com-
parison of different SAD methods using more up-to-date devices 
such as iPhone and Samsung Galaxy would be interesting as well.
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