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Abstract: The number of GPS trajectories recorded daily has been continuously growing in the recent years and new 

methods to analyse such big data are surfacing all the time. In this paper, we focus on destination prediction, which is 

useful in various applications like hazard detection and advertisement. We proposed a real-time method for destination 

prediction of moving users. It uses the current movement trajectory of the user together with historical and regional 

information to make an accurate prediction. The method is efficient because we can rapidly compute features with the 

help of spatial and non-spatial indexing methods. We tested the method with real trajectories collected by Mopsi users. 

The success rate of the method is up to 65 % depending on the length of the recorded trajectory so far, i.e. how long the 

user has been on move. To our knowledge, this is the first real-time system capable of such success. 
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1. Introduction 

Location-based services are becoming more and more 

popular, and the market size is said to reach 68.85 billion 

US dollars by 2023 (Marketsandmarkets, 2018). Mobile 

users willingly use such services to collect location-based 

of data for a better user experience. For example, in Flickr, 

Instagram and Google Photos, users create geo-tagged 

photo galleries. Other examples are SportsTracker, 

Endomondo and Strava users who record and analyse their 

exercise trajectories. Users of Facebook, Google Places 

and Trip Advisor get personalized ads and location-based 

recommendations. 

Trajectory prediction is a problem that has gotten attention 

in recent years. It refers to obtaining the trajectory of a 

mobile user before it happens. There are two categories of 

application scenarios (Georgiou et al., 2018). The first 

performs long-term predictions, which are important to 

optimize objectives such as achieving low cost efficiency 

or ensuring public transportation. In this work we devised 

a method to guess the end-point using information about 

the current movement, the surroundings, and user history. 

This goal is not easy to achieve mostly because trajectories 

have varying lengths. In (Krumm, 2010; Krumm, 2016) 

prediction is limited to only the very near future. These are 

probability-based methods that use Markov models to 

determine what happens at the following intersection: does 

the user turn or continue forward. While these methods 

work with good accuracy, using them for long-term 

prediction has the side effect of small errors propagating 

and leading to a much lower accuracy.   

The second approach is to compute short-term prediction 

with an immediate response. It is useful for warning a 

driver of upcoming hazards, traffic congestion and 

collision risk (Ammoun and Nashashibi, 2009). An 

alternative use is in advertising where on-path services are 

retrieved using predictive range queries (Jeung et al., 

2010) on spatial databases.  

Predicting the future trajectory can be done in two steps 

(Krumm et al., 2013): destination prediction and finding 

the path to the destination. In this paper we focus on the 

first task and present a method that works in real-time, 

which, to the best of our knowledge is the first of its kind. 

GPS trajectories are sequences of ordered points 

T=(p1,p2…pn) and each point typically has two properties: 

the location (latitude and longitude) and the time stamp. 

Mobile users typically start recording a trajectory by 

pressing a Start button (see Figure 1). We will refer to the 

location at this time as the start-point. Then, the app 

continues to record the trajectory, typically at a fixed 

interval like every 2-4 seconds. We refer to the most recent 

location as the current-point. The user can stop recording 

by pressing the Stop button; we refer to the last location as 

the end-point.  



 

Figure 1. Basic tracking features shown in Mopsi app. 

In (Krumm et al., 2013), the authors tackle the problem of 

predicting the destination farther into the future. Their 

method works by analyzing destination candidates based 

on the efficiency of travel: does the user appear to move 

towards the destination candidate or not. There are two 

problems with this approach. First, processing takes very 

long, in the order of magnitude of hours, because 

calculating the driving efficiency to multiple candidates 

requires many shortest path calculations. Secondly, due to 

the time concerns, the travel duration is limited to 1 hour 

into the future according to the expected trip duration 

inferred from the dataset. This can have an effect on the 

prediction as trajectory lengths vary significantly 

depending on the user, the transportation mode, or the 

street network in the area. 

We will investigate different, less computationally 

expensive features and compare them against this moving 

efficiency approach in the evaluation section.  

Our proposed method is implemented in Mopsi1: a 

location-based social network developed by the School of 

computing of the University of Eastern Finland. Mopsi has 

the following main functionalities: geo-tagged photo 

clustering, trajectory search and analysis, event planning 

and service recommendation. 

2. Method 

The method works in two steps (see Figure 2). First, a pre-

processing step generates historical profiles for the Mopsi 

users and indexes them for fast retrieval, which makes it 

possible to build a real-time system. These profiles include 

all the past destinations, and movement statistics. These 

profiles are updated periodically (once a week), to account 

for changes in behaviour. Second is the actual prediction 

step, which uses the current movement information, 

nearby points of interest (POIs) and the user profile 

information.  

                                                           

1 http://cs.uef.fi/mopsi  

 

Figure 2. Method workflow. 

2.1  Destination Candidates 

One source for the potential destinations is the Mopsi 

services database2, which is a collection of Points of 

interest (POIs) such as restaurants, shops and hotels among 

many others. Other potential source for the destinations are 

particular to the users, such as their home, work or friend’s 

homes. We generate this set by clustering the end-points 

of a user’s past trajectories using the fast PNN algorithm 

(Fränti et al., 2000). The resulting cluster centroids are 

saved into Personal Destinations database (see Figure 2). 

Statistical information like the time and frequency of 

reaching the clustered destinations is also computed at this 

stage. 

A user may decide to stop anywhere, not necessary at a 

place in our database. However, most of the time they stop 

at the calculated destination for reasons we will explain 

later in the experiments section. The main reason for using 

a database of meaningful places is that it will significantly 

reduce the number of tests and, as a result, computation 

time reduces from hours to seconds. If all road 

intersections were considered as potential destinations, 

processing time would be in the order of magnitude of 

hours (Krumm et al., 2013). A further reason for using 

2 http://cs.uef.fi/mopsi/MopsiSet  
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meaningful locations is that we can utilize also their 

metadata (keywords) to improve our prediction by 

matching it to user’s personal interests. 

Given a current (incomplete) trajectory, we select the 

nearest places to the user’s current-point as destination 

candidates to be evaluated. This is done as follows. First, 

automatically infer the transportation mode using the 

method in (Waga et al., 2012). Knowing this, we look in 

the historical profile and check the expected distance 

travelled by the user by the inferred transportation mode 

and retrieve candidates within this expected distance with 

a tolerance (see Figure 3). We set a tolerance of two 

standard deviations and in the unlikely case (5 % chance) 

that no destination candidates are found, we start to double 

the radius until some results appear.  

2.2 Features 

To decide which is the most likely destination among the 

candidates we score each of them using five features: 

1. Time 

2. Interest 

3. Familiarity 

4. Distance 

5. Direction 

The Time feature is used to measure if a given destination 

candidate is typically being visited at the current time. 

Considering all past trajectories of a user A and 

a destination candidate d, we calculate a probability that d 

is the destination: 

 

Figure 3. The number of times Mopsi user Radu ended tracking 
at Science Park and Kahvila Laituri. The data is aggregated by 
time of day (top), day of week (middle) and month of year 
(bottom). 

𝑝(𝑑, 𝐴) =
1

|𝐴|
∑ (end-point(𝐴𝑖) = 𝑑)
|𝐴|
𝑖=1 .   (1) 

We then calculate a time score for d as follows: 

Time(𝑑) =
1

4
(𝑝(𝑑, 𝐴) + 𝑝(𝑑, 𝑇) + 𝑝(𝑑, 𝐷) + 𝑝(𝑑,𝑀)), (2) 

where A is the set of all trajectories of the user, T is the set 

of trajectories recorded at the current time of day, D is the 

set of trajectories recorded on the same day of the week, 

and M is the set of trajectories recorded in the same month 

of the year (see example in Figure 3).  

The Interest feature is similar to the time feature except 

that the type of the destination candidate is used instead. 

This feature will provide a useful scoring in places where 

the user has not visited before. For example, due to the 

Kahvila Laituri visits from Figure 3, all services that serve 

coffee will increase their score.  

The Familiarity feature measures if the user has recorded 

a similar trajectory in the past. If it is a reoccurring pattern, 

destination candidates near to the end-points of the past 

similar trajectories receive a higher score (see Figure 4).  

𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦(𝑑) = 𝑝(𝑑, 𝑆),    (3) 

where S is the set of trajectories which include the current 

trajectory. To obtain S, we query the Mopsi trajectory 

database and rank trajectories using the inclusion measure 

presented in (Mariescu-Istodor and Fränti, 2017), which 

can be computed in real-time. We then limit to the top 

ranking candidates by clustering the inclusion values and 

keeping the top cluster as described in (Mariescu-Istodor 

and Fränti, 2016). 

 

 

Figure 4. Sample past trajectories leaving Radu’s home towards 
the East and where they end.  

The Distance feature measures if the destination candidate 

is within the typical travel distance executed by the user 

with the given transportation mode. It is measured using a 

normal distribution with properties inferred from the user 

profile.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥) =
1

𝜎√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2     (4) 

here µ and σ are the mean travel distance and standard 

deviation. The intuition for using the transportation mode 

is that if the user started driving a car, the destination 

candidate is unlikely to be nearby, whereas if the user is 

walking, the destination cannot be too far away. 



 

Figure 5. Given a start-point, the user is expected to stop 
somewhere along a circle with a given tolerance. 

Direction is important when users move towards the 

destination. In this case, we give low scores to candidates 

in the opposite direction of the user’s movement, for 

instance. The score is calculated as the change in direction 

(angle) between the current trajectory heading and a given 

destination candidate. There are situations when a user 

does not move towards the destination. For example, 

situations when the movement is restricted by the road 

network, or, when the user is making a loop (typical when 

jogging or cycling). We identify these situations by 

looking at the optimality of the current trajectory. If 

another, shorter route exists between the start-point and the 

current-point, it indicates that the movement is not optimal 

and, therefore, the direction of travel should not be trusted 

so much, and we therefore scale its significance as follows: 

Optimality(𝑇1..𝑛) =
length(SP(𝑇1,𝑇𝑛))

length(𝑇1..𝑛)
   (5) 

Direction(𝑇1..𝑛, 𝑑) = angle(𝑇𝑛−, 𝑇𝑛, 𝑑) ∙ Optimality(𝑇1..𝑛)(6) 

where SP is the shortest path between the two points. We 

set a value of = 20, the 20th most recent point.  

In literature, the efficiency of travel towards a destination 

has been used instead of the direction (Krumm and 

Horvitz, 2006; Krumm et al., 2013). In other words, 

calculating shortest path to all destination candidates is 

performed and scoring is based on the relation to the 

current movement. We experimented with this alternative 

as well. While it provides more accurate values than the 

direction feature, the difference was not significant but it 

increases the computation to 10 times, and therefore, we 

decided to use our simpler variant for the sake of speed. 

 

                                                           

3 http://cs.uef.fi/mopsi/routes/2019  

3. Evaluation 

To evaluate the proposed method we performed 

experiments on the MopsiRoutes20193 trajectory dataset. 

The dataset contains the most recent trajectories from 10 

different Mopsi users recorded by 31.3.2019. These 

contain a total of 2,484 trajectories consisting of 3,409,812 

points, travelling of a total 30,599 km in 2,103 hours. The 

trajectories were recorded using different means of 

transport: walking, running, cycling, or by motorized 

vehicle. They are typically exercise sessions or commuting 

to stores and work place. 

The 100 most recent trajectories of each user were used for 

testing and all earlier trajectories up to one year (365 days) 

prior to that were used to generate the profiles.  

To evaluate the method, we collected ground truth for all 

evaluated trajectories. The closest POI to a given trajectory 

end-point is considered the correct destination. If other 

POIs are nearby (within 20 meters to the end-point), we 

accept multiple ground truths in this case. This accounts 

for errors in GPS accuracy, dataset quality, and multiple 

entrances in a building. 

We first evaluated the usefulness of the features. We tried 

predicting using a single feature at a time and ranked the 

results. We noticed the most important feature is the 

Familiarity, followed closely by the Time and then the 

others (see Table 1). 

 

User Time Interest Familiarity Distance Direction 

Andrei ++  +++ +  

Pasi ++  +++  + 

Jukka ++ + +++   

Karol +++   ++ + 

Make +++   ++ + 

Zhentian +++ +  ++  

Radu ++  +++ +  

Oili +++  +++  +++ 

Matti ++  +++ +  

Yuliya ++  +++  + 

Table 1. Usefulness of every feature per user 

We then experimented with summing up the features and 

noticed that the Interests score is actually harmful. It 

improve the prediction for three users but the overall 

performance is lower. This is likely because these three 

users were visiting exactly the same services and not some 

alternatives providing similar service. In the following 

experiments, we removed this feature from the summation. 

http://cs.uef.fi/mopsi/routes/2019


One outcome of the experiment is that the method can be 

evaluated only 74 % of the time. In the rest 26 % of the 

cases, there were no POIs in the area (nearest POI to end-

point was more than 1 km away). This happens when a 

user is travelling first time to another city or country where 

no Mopsi services exist.  

When the method is applicable, we experiment the effect 

of how big proportion of the trajectory is known. We also 

evaluate the outcome in two ways: a hard evaluation where 

the correct candidate must be the candidate with the 

highest score, and a soft evaluation when the correct 

candidate appears in the top three of the prediction results. 

The results are summarized in Table 2. 

There are 222 destination candidates to be evaluated, on 

average. This means a 0.7 % success rate is expected by a 

random choice. We notice that the performance is far 

above that of guessing and it typically increases when 

more of the trajectory is known; success rate being above 

60 % under the soft evaluation. If the entire trajectory 

(100%) is given as input, the method should ideally 

terminate and report the nearest candidate. This happens 

51 % of the time in the hard evaluation, and 72 % in the 

soft evaluation. We also measure the distance from the 

predicted candidate to the end-point of the trajectory and 

found that, on average, the distance is small - about 20 

meters. This suggests that Mopsi services dataset is dense 

enough. 

We compare our results with the method from (Krumm et 

al., 2013) which we implemented to the best of our ability. 

To calculate the efficiency of travel, we use the shortest 

path obtained with Dijkstra’s algorithm and contraction 

hierarchies provided by the Open Source Routing 

Machine4. For the road network we use OpenStreetMap5. 

We calculated the efficiency score to the candidates using 

the following formula 

Efficiency(𝑇1..𝑛, 𝑑) =
SP(𝑇0,𝑑)

length(𝑇1..𝑛)+SP(𝑇𝑛,𝑑)
,  (7) 

where SP is the shortest path between the two points. 

In (Krumm et al., 2013), a travel time restriction of 1 hour 

is imposed. We decided to use our expected travel distance 

score here instead, and selected the candidate with the 

highest efficiency score in a 10 % range near to the 

expected travel distance. This setting provided the best 

outcome on our data with the results summarized in Table 

2.  

The efficiency of the travel is not very useful, especially 

when only little is known of the trajectory. It becomes 

more useful later; however, the time and familiarity 

                                                           

4 http://project-osrm.org  

features in our proposed method outperform the efficiency 

feature by a wide margin. Efficiency is also time 

consuming to compute. It takes 22.5 seconds per 

trajectory, on average, compared to our proposed approach 

which performs the prediction in real-time (1.2 seconds on 

average). 

 

 Proposed method Compared method 

Trajectory 

Proportion 

Hard 

evaluation 

Soft 

evaluation 

Hard 

evaluation 

Soft 

evaluation 

  25 % 37 % 55 % 2.5 % 9.5 % 

  50 % 45 % 62 % 5.7 % 9.9 % 

  75 % 49 % 65 % 11 % 18 % 

100 % 51 % 72 % 28 % 38 % 

Table 2. Performance of the compared methods when different 

proportion of the trajectory is known. Hard and soft evaluation is 

done for each. 

We next simulate a cold-start situation by generating an 

average profile by combining the history of multiple users 

and testing its predicting ability on other users’ 

trajectories. We consider the same 10 users as before to 

create the average profile. However, when testing on 

a specific user, the profile is altered by removing his 

historical data for a fair evaluation.  

 

 
Personal  

profile 

Average  

profile 

User 
Hard 

evaluation 
Soft 

evaluation 
Hard 

evaluation 
Soft 

evaluation 

Andrei 51.0 % 64.0 % 4.0 % 9.0 % 

Pasi 43.0 % 64.0 % 1.0 % 1.0 % 

Jukka 37.0 % 52.0 % 5.0 % 16.0 % 

Karol 29.0 % 51.0 % 15.0 % 34.0 % 

Make 49.0 % 54.0 % 12.0 % 15.0 % 

Zhentian 40.0 % 48.0 % 22.0 % 30.0 % 

Radu 39.0 % 53.0 % 0.0 % 0.0 % 

Oili 40.0 % 80.0 % 0.0 % 0.0 % 

Matti 78.0 % 86.0 % 20.0 % 30.0 % 

Yuliya 47.0 % 65.0 % 1.0 % 2.0 % 

TOTAL 45.30 % 61.70 % 8.00 % 13.70 % 

Table 3. Performance of the methods using personal and average 

profiles per user when trajectory proportion is set to 50%. The 

best results for each profile are shown in blue. 

Table 3 shows the performance of this model compared 

with the personal model when 50% of each trajectory is 

known. The performance is significantly lower, but still 

5 https://www.openstreetmap.org 
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better than the method provided by (Krumm et al., 2013). 

It also appears that for half of the users the performance is 

very poor (hard = 1.2%, soft = 2.4%) while for the better 

half it is quite high in comparison (hard = 14.8%, soft = 

25%). This low performance can be explained by the fact 

that users like Andrei, Pasi and Radu often end tracking at 

their homes (a personal POI). Removing this information 

from the average profile has severe consequences. Also 

users Oili and Yuliya are poorly predicted but here the 

reason is that they travel to locations that other people 

don’t: travelling abroad in various countries and to local 

gym or own home, respectively. Other users for which the 

system provides better prediction have common 

behaviours like living in the same location or shopping in 

the same place. 

Not all users record the same number of trajectories. This 

amount varies significantly as seen in Figure 6. Therefore, 

the one year history we used is more detailed for some 

users than others. There is a surprising negative correlation 

(Pearsons = -0.25) between the number of trajectories and 

the predicting ability. One would expect that a more 

complete profile would make for a better prediction, 

however, the situation here is that users that record less 

tracks have, in general, more predictable behavior such as 

home-to-work and home-to-shop trajectories, while users 

that have more data tend to have more types of activities 

such as cycling, skiing, driving, and orienteering. 

 

Figure 6. Number of trajectories recorded per year by the 10 
Mopsi users. 

In Figure 7, we see a real example using the tools available 

in Mopsi: a home to work trajectory of the user Radu. The 

time feature alone suggests that the end-point would be his 

home, and the workplace is ranked as the second choice. 

This is because the user typically jogs around this time and 

returns home afterwards.  

Interest feature indicates multiple candidates with dining 

possibilities as the user often eats breakfast around the 

same time. Familiarity feature indicate endpoints that 

contain the traveled section; majority of them end at home 

again. Distance feature provides relatively high score 

because all locations are within reach. Scores are slightly 

lower close to home and higher towards city center but the 

difference is not very noticeable in the interface. Direction 

feature provides scores that are higher in the direction of 

the travel. When all the scores are summed up, the correct 

destination is detected. 

 

Figure 7. Example trajectory and scoring for each feature 
individually and combined. The intensity of the color is 
proportional to the score. Red dots are Mopsi services, blue dots 
are personal POIs. The dotted line is the unseen part of the 
trajectory. 

More qualitative examples are shown in Figure 8. Example 

A is a long running track which is a loop and the correct 

destination is correctly detected as the starting point. 

Example B shows returning home from visiting a friend. 

Example C is an example when method fails. It predicts 

the location where the user used to live. User moved to a 

new home recently. Finally, example D is a team building 

cycling trip organized with colleagues and students at 

work. Destination is back to work again. 

 

Figure 8. Qualitative examples. 



4. Discussion 

The proposed method presents a clear advantage over 

other similar systems is its real-time ability to make the 

prediction and still achieve high accuracy. While we 

demonstrate that the method works well, the number of 

users used for testing is quite low and a more solid 

evaluation should be performed to confirm the results. This 

can be possible if more data would be available in the 

future.  

We demonstrated that the method can also work with cold-

start users. However, the system must have data from other 

users in the database. Otherwise, an average profile cannot 

be computed. Another drawback is that if services (POIs) 

are not available in a region of interest, the method cannot 

work. 

5. Conclusions 

We proposed a method to predict the destination of a 

mobile user when knowing part of the current trajectory, 

past movement history and nearby points of interest. The 

method was demonstrated to work in real-time with up to 

65 % success rate using real data collected by Mopsi users. 

The most important features are the familiarity and the 

time, followed by the direction, distance and interest. 

However, this is user specific and experiments suggest that 

a higher performance may be achieved by using machine 

learning to provide better weights for the feature values. 

This qualifies as a future work. 

In 26 % of the test cases, the method was not applicable 

because of limited dataset of POIs. However, this problem 

can be removed by using a more complete dataset instead 

of the Mopsi dataset. 

As a final remark, our study indicates that security may be 

of concern for people who track their movement, 

especially if they have a predictable life-style. This 

concern relates mostly to public data or if a system was 

hacked. 
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