
Deterministic and Randomized Local Search Algorithms for Clustering 

Pasi Fränti, Marko Tuononen, and Olli Virmajoki 

Speech and Image Processing Unit 
Department of Computer Science, University of Joensuu, Finland 

{franti, mtuonon, ovirma}@cs.joensuu.fi 

Abstract

We propose a local search algorithm for clustering based 
on deterministic variants of cluster swapping. Within a 
given time limit, the new method finds the correct 
clustering more efficiently than existing ones. The 
algorithm is simple to implement, which makes it useful for 
practitioners. 

1. Introduction 

One of the best clustering algorithm, randomized local 
search [1], is based on a simple cluster swapping 
technique. At every step, one cluster is tentatively re-
allocated into another location and accepted if it improves 
the solution, see Fig. 1. This trial-and-error approach is 
extremely simple to implement and surprisingly effective. It 
has only one additional step (swapping) to the basic 
k-means algorithm [2]. The algorithm does not converge 
but it always finds the correct clustering eventually. 

The main weakness of the algorithm is that it generates a 
large number of candidate solutions that do not provide any 
improvement. This is not a big problem itself but the time 
can become a critical factor when handling very large data 
sets, or used in real-time applications. On the other hand, 
the correct clustering in Fig. 1 could be found by a single 
swap, if we only knew which cluster to remove and where 
the new one should be added.  

We consider deterministic variants of the swapping 
technique to produce the correct clustering more efficiently, 
but at the same time, avoid the problem of getting stuck 
into a local minimum, which can easily happen with 
heuristic swaps. Another challenge is to compute each 
swap fast.

2. Randomized local search 

Given a set of N data vectors X={x1, x2, …, xN}, clustering 
aims at solving partition P={p1, p2, …, pN } so that a given 
distortion function f is minimized. We consider here only 
the mean square error. Assuming that M is given, the 
clustering problem can then be defined as an optimization 
problem. 

Current solution Centroid swapping

Two centroids, but
only one cluster.

One centroid, but
two clusters.

Local repartition Fine-tuning by K-means

Swap is made from
centroid rich area to
centroid poor area..

Figure 1. Demonstration of random swapping.  

Randomized local search performs the clustering 
iteratively starting from any initial solution. At each step of 
the algorithm, a randomly chosen cluster is removed and 
another one is created elsewhere in the space. The new 
solution is locally fine-tuned by two iterations of k-means. 
The modification is accepted only if the new solution 
provides lower distortion than the previous solution. 

The efficiency of the algorithm depends on the number 
of iterations needed, and the time required per iteration. We 
will next analyze these two factors separately. 

 
2.1. Efficiency of the random swap 

Assume that there is only one incorrect centroid allocation 
as in Fig. 1, and only one swap would be needed to correct 
the situation. The probability for selecting the incorrectly 
located group for removal is 1/M, and the probability for 
selecting exactly the correct location for insertion is 1/M.

837978-1-4244-2571-6/08/$25.00 ©2008 IEEE ICME 2008



As both of these must happen, the probability for 
a successful swap (psuccess) is at least (1/M)2.

On the other hand, the local fine-tuning performed by k-
means is capable for relocating centroid gradually if the 
movement happens between neighbor clusters. It is 
therefore not necessary to find exactly the correct locations 
but to select the centroids for removal and insertion in the 
neighborhood where change is needed. For a more accurate 
analysis, we need to estimate the size of neighborhood. 

We denote the number of neighbor clusters by , which 
depends on the number of clusters (M) and the 
dimensionality (d). The probability for a successful swap 
can now be estimated as a function of  and M as follows: 

psuccess = ( /M)2  (1) 

Using the probability, we can estimate the number of 
iterations (T) needed to correct one misplaced cluster 
centroid. Suppose that we need one swap, and we want to 
find the correct clustering with probability plimit (e.g. 95%). 
The expected number of iterations can be calculated as: 

success

limit

limit
T

success

p
p

T

pp

1log
1log

11
  (2) 

In Fig. 1, we can visually estimate that the clusters have 
about 4 neighbors, on average. This would give an estimate 
of psuccess = (4/15)2 = 0.272  7%. According to (2), we 
would need 41 iterations to find the correct swap with 95% 
probability, and 95 iterations with 99.9% probability. 

2.2. Time complexity of the method 

The swap itself can be performed in O(1) time, but the local 
repartition requires more time. As there are N data vectors 
divided into M clusters, a randomly selected cluster 
contains N/M data vectors, on average. A new group for 
each of these vectors is found by searching their nearest 
centroids. Each search takes M distance calculations and 
comparisons, and as there are N/M searches, they sum up to 
M N/M = O(N). Secondly, we must check for each data 
vector whether it remains in its current group or relocates to 
the newly created group. This takes O(N) time. 

The time complexity of the k-means iterations is 
somewhat more complicated to analyze but the same 
principle applies: only local changes appears because of the 
swap. Normally, O(NM) time would be required per 
iteration but as we use the reduced search variant [3], the 
O(M) full search is needed only for the vectors in the 
changed cluster. For the rest of the vectors, it is enough to 
compute distance only to the changed centroids. 

We estimate that the number of changed clusters equals 
to the number of neighbors of the removed and added 
clusters, estimated as 2 . The number of vectors in those 
clusters is estimated as 2 (N/M), and the time complexity 

of the k-means iteration as O(2 (N/M) M) = O( N), which 
is also the overall complexity of the RLS iteration. 

3. Deterministic swap 

The swap consists of two independent steps: removal and 
insertion. We study next these two steps separately, and 
then consider their different combinations. 

3.1. Removal of existing cluster 

The main challenge for designing the deterministic 
selection is to avoid getting stuck into a local minimum. If 
the criterion fails even once, the algorithm would 
immediately stop making further progress, unless there is 
some level of randomness in the process. 

We select the cluster that increases the distortion least 
[4] [5]. For calculating the removal cost, we find the second 
nearest centroid (qi) for every data vector (xi) as follows:  

2

1
minarg ji

pj
mj

i cxq
i

  (3) 

The removal cost for cluster (j) can now be estimated by 
summing up the differences if the vectors in the cluster are 
repartitioned to their second closest one (qi). Taking into 
account that the centroids will be modified due to the 
change, it can be calculated as [5]: 

jp
jiqi

q

q
j

i

i

i

i cxdcxd
n

n
D ),(),(

1
  (4) 

where
iqn refers to the size of the secondary cluster. The 

drawback is that the above operations require O(N) time, 
and as there as M clusters, the overall complexity is 
O(NM).

3.2. Creation of new cluster 

We divide the selection task into two sub tasks, which are 
considered separately: 

1. select an existing cluster,
2. select a location within this cluster. 

It is expected that the choice of the cluster is more 
important, and the exact location within the cluster is less 
significant as the k-means will take care of local fine-
tuning. Thus, the idea is first to select the cluster, and then 
add the centroid somewhere in its vicinity. 

We choose the cluster having the highest distortion, 
which takes O(M+N) = O(N) time. The first term originates 
from the selection, and the second from repartition. 
Distortion of a cluster (Ej) can be calculated as: 

838



jp
jij

i

cxdE ),(   (5) 

Furthest vector in cluster is selected for the exact location. 

3.3. Demonstration of the deterministic swap 

One step of the deterministic swap is demonstrated in 
Fig. 2. The removal costs and the overall distortions for 
each cluster are listed in Table 1. For the removal, clusters 
1 and 2 are clearly the best choices, and for addition, 
cluster 12 causes the highest distortion by a large margin. 
We apply here the furthest vector heuristic. As a result of 
the swap, all centroids will be allocated properly in the 
space, and their exact locations are then fine-tuned by k-
means. 

Current solution (MSE 1.73*109) Centroid swapping (MSE 4.89*109)

Local repartition (MSE 1.59*109) Fine-tuning by K-means
(MSE 1.33*109)

13

10

15

6

11

1

7

4

5

12

8

14

2

3

9

Two centroids, but
only one cluster.

One centroid, but
two clusters.

Figure 2. Demonstration of deterministic swap.  

Table 1.  Removal and additional costs. 

Removal 
cost (Dj)

Generated 
error (Ej)

1 0.80 0.39 
2 1.04 0.64 
3 5.48 1.09 
4 5.66 0.92 
5 6.50 0.76 
6 7.67 1.01 
7 8.47 0.45 
8 9.10 0.75 

Removal 
cost (Dj)

Generated 
error (Ej)

9 9.90 1.42 
10 11.09 1.26 
11 11.47 0.61 
12 12.17 4.70 
13 14.61 0.94 
14 16.41 0.93 
15 16.68 1.41 

3.4. Combining deterministic and random swaps 

We consider the following four combinations of random 
and deterministic techniques: 

- RR = random removal, random addition, 
- RD = random removal, deterministic addition, 
- DR = deterministic removal, random addition, 
- DD = deterministic removal and addition. 

Their time complexities are summarized in Table 2, and 
observed processing times in Fig. 3. The bottleneck of the 
deterministic swap is the removal, which dominates the 
processing time. Consider the analysis of section 2, the 
deterministic removal is more efficient than its random 
counter part if M< T, which is the case with data sets in 
Fig. 1 and 3 (M=15, 4, T=20).

The extra time required by the addition, on the other 
hand, is insignificant. It is therefore expected that the RD 
variant might be a good compromise between the random 
swap (RR) and deterministic swap (DD). 

Table 2.  Summary of the time complexities. 

 Random 
removal 

Deterministic 
removal 

 RR RD DR DD 
Removal O(1) O(1) O(MN) O(MN)
Addition O(1) O(N) O(1) O(N)
Local repartition O(N) O(N) O(N) O(N)
K-means O( N) O( N) O( N) O( N)
Total O( N) O( N) O(MN) O(MN)

Bridge

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

RR RD DR DD

Ti
m

e 
(s

) /
 it

er
at

io
n

Others

Repartition

Sw ap

K-means

Figure 3. Profiles of the processing time. 

4. Experiments 

In the following, we cluster four image data sets [5] by an 
Intel Xeon  2.80 GHz computer. Time-distortion 
comparison of the main variants is illustrated in Fig. 4. The 
best variant is RD, especially on sets that have recognizable 
clusters. When time is critical, it is clearly the best. In 
a long run, it is competitive with the other variants.  

For the data sets that do not include clear clusters, the 
algorithms behave somewhat differently. For these sets, the 
deterministic swap (DD) completes the clustering fast but 
gets stuck into a local minimum that is slightly inferior to 
the variants with random removal (RR, RD). 
 

839



1 10 100
160

165

170

175

180

185

Time (s)

E
rro

r (
M

S
E

)

Bridge

RR
DR
RD
DD

1 10 100 1000
5.2

5.4

5.6

5.8

6

6.2

6.4

Time (s)

E
rro

r (
M

S
E

)

Miss America

RR
DR
RD
DD

1 10 100 1000
5.8

6

6.2

6.4

6.6

6.8

7

Time (s)

E
rro

r (
M

S
E

)

House

RR
DR
RD
DD

10
1

10
2

10
3

10
4

1

2

3

4

5

6

7

8

9

10
x 10

6

Time (s)

E
rro

r (
M

S
E

)

Europe

RR
DR
RD
DD

Figure 4. Time-distortion comparison of the main variants: RR, RD, DR and DD. 

 

The results are briefly compared to some of the existing 
methods in Fig. 5; k-means, two hierarchical algorithms 
(PNN and Split), and the best known clustering algorithm 
(GAIS) [5]. The results compare favorable as RD 
outperforms most of the existing methods by a simple and 
time-efficient algorithm. 

0

10

20

30

40

50

160 165 170 175 180 185 190
MSE

Fr
eq

ue
nc

y

K-means
= 1.41

RD
= 0.70

GAIS
= 0.11

RR
= 0.36

Split
PNN

Figure 5. Histograms of the MSE-values of 50 runs of 
the GAIS method, 500 runs of the k-means, and 300 

runs of the local search variants. 

5. Conclusions 

Deterministic and semi-deterministic variants of the 
swapping-based clustering were considered. The best 
combination was constructed from random cluster removal 
and a deterministic insertion. 

6. References 

[1] P. Fränti, J. Kivijärvi, “Randomized local search algorithm for 
the clustering problem”, Pattern Analysis and Applications, 3 (4), 
pp. 358-369, 2000. 

[2] J.B. McQueen, “Some methods for classification and analysis 
of multivariate observations”, 5th Berkeley Symp. on Mathematical 
Statistics and Probability, Berkeley, 1, pp. 281–297, 1967. 

[3] T. Kaukoranta, P. Fränti, O. Nevalainen, “A fast exact GLA 
based on code vector activity detection”, IEEE Trans. on Image 
Processing, 9 (8), pp. 1337-1342, 2000.

[4] B. Fritzke, “The LBG-U method for vector quantization – an 
improvement over LBG inspired from neural networks”, Neural
Processing Letters, 5 (1), pp. 35-45, 1997. 

[5] P. Fränti and O. Virmajoki, "Iterative shrinking method for 
clustering problems", Pattern Recognition, 39 (5), 761-775, 2006. 

840


