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Abstract

Dynamic clustering problems can be solved by finding 
several clustering solutions with different number of 
clusters, and by choosing the one that minimizes a given 
evaluation function. This kind of brute force approach is 
general but not very efficient. We propose a new dynamic 
local search that solves the number and location of the 
clusters jointly. The algorithm uses a set of basic 
operations, such as cluster addition, removal and 
swapping. The clustering is found by the combination of 
trial-and-error approach of local search, and the local 
optimization capability of the GLA. The algorithm finds the 
results 30 times faster than the brute force approach. 

Keywords: clustering, number of clusters, vector 
quantization, optimization. 

 
1. Introduction 

 
Clustering is an important problem that must often be 

solved as a part of more complicated tasks in pattern 
recognition, image analysis and other fields of science and 
engineering [1, 2]. It aims at answering two main 
questions: how many clusters there are in the data set and 
where they are located. We denote the problem here as 
static clustering if the number of clusters is known 
beforehand, and as dynamic clustering if the number of 
clusters must also be solved. 

Static clustering problem can be solved by methods 
such as the Generalized Lloyd algorithm (GLA) [3], 
simulated annealing [4], deterministic annealing [5], 
genetic algorithm [6] among many others. Randomized 
Local Search (RLS) is a good choice for the clustering 
because of its competitive performance according to the 
results [7] in terms of optimizing the evaluation function 
value. Its simplicity makes it easy to generalize for the 
dynamic clustering problem. 

The RLS method can also be generalized to the case 
where the number of clusters is unknown. The method is 
applied to every reasonable number of clusters and the 
correct solution is the one that minimizes the given 
optimization function. This method (referred to as Brute 
Force) is general but inefficient. A more efficient approach 
(referred to as stepwise local search) is to utilize the 
previous clustering (with m clusters) when solving the 
current one (with m+1 clusters), and by defining 

appropriate stopping criterion for the iterations [8]. The 
algorithm still uses most of the time for optimizing 
solutions with completely wrong number of clusters. 

In this paper, we propose a more efficient approach 
called dynamic local search (DLS). It optimizes the 
number and the location of the clusters jointly. The main 
motivation is that most of the computation should be spent 
on solutions with the correct, or nearly correct number of 
clusters. We first derive a set of basic operations cluster 
addition, cluster removal and cluster swapping. We then 
study how the operations should be applied in order to 
achieve the correct clustering in most efficient way. 

The main problem in the dynamic local search is the 
following. In static clustering, the RLS can find the correct 
clustering starting from any initial solution. The longer the 
algorithm is iterated, the likely if that the correct result is 
reached. In the dynamic approach, however, the 
optimization function can have local minima with the 
changes of M. The algorithm must therefore be able to 
reallocate more than one cluster at a time. This can be 
major source of inefficiency if not properly designed. 

 
2. Clustering Problem 

 
Clustering aims at partitioning a given set of N data 

vectors into M groups so that similar data vectors are 
grouped together and dissimilar data vectors to different 
groups. We assume that the data set is normalized so that 
some standard distance metric, e.g. Euclidean distance, can 
be applied. This allows us to estimate the goodness of a 
solution of M clusters by calculating the mean square 
error (MSE) of the distances from data vectors to their 
cluster centroids. We also assume that the clusters are 
spherical with equal variances.  

 
2.1 Algorithm for static clustering 

 
The static clustering problem can be solved reliably 

using Randomized Local Search (RLS), which provides 
simple and effective method for finding the correct 
location of the clusters [7]. The method is based on trial-
and-error approach as follows. New candidate solutions are 
generated by random swap operation, which reallocates a 
randomly chosen cluster to another part of the vector 
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space. The new cluster is located to the position of 
a randomly drawn vector from the data set. The partition is 
then modified according to the change in the clustering 
structure, and few iterations of the GLA are applied as 
fine-tuning. The new solution replaces the previous one 
only if it decreased the error value. The longer the 
algorithm is iterated, the better is the clustering. 

 
2.2 Determining the number of clusters 

 
In many cases, the number of clusters is not known 

beforehand but solving the correct number of clusters is 
part of the problem. The simplest approach is to generate 
solutions for all possible number of clusters M in a given 
range [Mmin, Mmax], and then select the best clustering 
according to a suitable evaluation function f. This approach 
is referred here as Brute Force (BF) algorithm. It allows us 
to use any static clustering algorithm in the search. 

The choice of the evaluation function is a vital part of 
the clustering; several candidates were presented in [9]. In 
principle, any function could be used to guide the search; if 
the evaluation function and the clustering algorithm are 
properly chosen, BF will find the correct solution but the 
algorithm will be slow. 

In [8], we considered an improved approach that utilizes 
the best solution for the previous number of clusters m 
when searching for the solution of m+1 clusters. The 
algorithm adds one more cluster in the previous solution 
and applies any iterative algorithm such as the GLA or 
RLS. The rationale for this is that the previous solution is 
close to the best solution for current number of clusters and 
therefore fewer iterations are needed.  

 
3. Dynamic Local Search 

 
We next generalize the RLS method so that it solves the 

number and the location of the clusters jointly. We refer 
this algorithm as Dynamic Local Search (DLS). The input 
are the data set (X), an initial solution (C, P), and the 
search range for the number of clusters (Mmin, Mmax). The 
algorithm applies elementary operations to the current 
solution and proceeds as the RLS, see Figure 1. There are 
two main differences to RLS. First is that the only 
operation is not the random swap, but we may add or 
remove clusters. The second is that we must use an 
evaluation function to solve the correct number of clusters. 
 
3.1. Elementary operations 

 
Changing the solution is done in two ways. First way is 

to use GLA iterations inside DLS to improve the solution 
towards the closest minimum. The second way is to apply 
an operation that alters the solution. This change, unlike 
GLA-iterations, does not necessarily result in better 
solution in itself, but it allows the search to proceed away 

from local minimum. We use the following elementary 
operations for modifying the current solution: 

�� Cluster swapping, 
�� Cluster addition, 
�� Cluster removal. 
 

DLS(X, C, P, Mmin, Mmax) return C, P 
C, P � RandomSolution(X, Mmin); 
FOR all i � [1, N] DO pi � j such that xi is nearest to cj; 
FOR a � 1 TO NumberOfIterations DO 
        Cnew ��Operation(C, Mmin, Mmax); 
        Cnew, Pnew � GLA(X, Cnew, M); 
        IF f(X, Cnew, Pnew) < f(X, C, P) THEN 
                C � Cnew; 
                P � Pnew; 
END FOR 
Return C, P; 
Figure 1. Pseudocode for the dynamic local search. 

 
The cluster swapping operation is the same as random 

swap in RLS. Cluster addition creates new clusters by 
randomly selecting vectors from the data set. Cluster 
removal deletes randomly chosen clusters centroid from 
the current solution. Figures 2 and 3 illustrate the addition 
and removal processes. These operations allow the 
algorithm to adjust the number of clusters. 

 

�

 
Figure 2. Adding four random centroids. 

 

�

 
Figure 3. Removing four centroids randomly. 

 
3.2. Amount of change 

 
In the algorithm, in each iteration we first select the 

operation that is applied. We use the following 
probabilities: cluster swap 50%, cluster addition 25%, 
cluster removal 25%. Next we select the number of 
clusters that are added or removed. In the case of cluster 
swap, swapping single cluster is enough [7]. In principle, 
adding or removing one cluster would also be enough to 
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reach all possible number of clusters. Since the evaluation 
function may have local minima, bigger changes must take 
place. 

A simple way to control the amount of change is to 
select the number of clusters to be added or removed (�M) 
randomly so that small changes have higher probability. 
Let L be the limit (Mmin or Mmax), which we may not go 
beyond. Current number of clusters is M. We get 

� �LMrM �����
�1  (1) 

where evenly distributed random number r in the range 
[0, 1[ is raised to power �. The case � = 1 gives even 
distribution. For larger values of �, the distribution is 
skewed towards small values. 

 
3.3. Stopping criterion 

 
There still remains the question of how many iterations 

we must perform in order to find the correct number of 
clusters. Obviously, if we iterate long enough we will 
eventually find the correct solution, but the amount of 
work varies from one data set to another. 

We designed three heuristic stopping criteria for the 
static clustering in [8]. A criterion referred as 50-50 ratio 
halts the search when the improvement for the latter 50% 
of the iterations divided by the improvement made during 
the first 50% of the iterations drops below a given 
threshold value and a given minimum number of iterations 
has been performed. 

 
4. Test Results 

 
First we use three synthetic two-dimensional data sets 

with varying numbers of circular clusters. Cluster counts 
are 20, 35 and 50 for data sets 1, 2 and 3. The graphs of the 
evaluation function for the data sets are shown in Figure 4. 
The range [Mmin, Mmax] was set to [2, 75]. 
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Figure 4. Evaluation function values for the data sets. 
 

4.1. Finding the correct number of clusters 
 
We study how much faster the DLS can find the correct 

solution than BF search. The general test procedure was to 
fix the parameters, repeat the algorithm 100 times and 
calculate how many times the correct number of clusters 
was found. The number of GLA-iterations used in both BF 
and DLS was two per iteration. 

We ran BF with four different iteration counts for all 
data sets. The results are shown in Table 1. The total 
number of iterations clearly shows that while BF will find 
the correct number it comes at the cost of high total 
number of iterations. If the range that is searched is wide, 
then the search will take a long time. 

 
Table 1. Percentage the correct clustering is found by BF. 

Iterations: 
(total) 

100 
(7400) 

200 
(14800) 

300 
(22200) 

500 
(37000) 

Data set 1 83 100 100 100 
Data set 2 26 65 83 98 
Data set 3 9 22 43 73 

 
We tested the DLS algorithm with 1000 and 2000 

iterations using the Eq. (1). Results are shown in Table 2. 
It can be seen that the Eq. (1) gives good results provided 
that the �-parameter is set high enough. It is also noted that 
1000 iterations is not sufficient for all data sets. 

 
Table 2. Percentage of correct clustering is found by DLS. 

1000 iterations 
�=1.0 �=1.5 �=2.0 �=2.5 �=3.0 

Data set 1 80 99 100 100 100 
Data set 2 3 37 77 92 98 
Data set 3 0 4 26 49 75 

2000 iterations 
�=1.0 �=1.5 �=2.0 �=2.5 �=3.0 

Data set 1 98 100 100 100 100 
Data set 2 26 87 99 100 100 
Data set 3 2 36 88 95 100 
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Figure 5. Development of search for data set 1 for three 

different runs of the DLS algorithm. 
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Comparison to BF shows that we can find the correct 

number of clusters with approximately 3% of the amount 
of work needed by BF. This is significantly better than 
what was obtained by the Stepwise algorithm in [8]; it 
decreases the number of iterations to about 40%. 

Figure 5 shows three examples of how the best solution 
develops as the search proceeds. 
 
4.2. Stopping criterion 

 
From the previous results we can see that the DLS will 

find the correct number of clusters when iterated long 
enough (2000 iterations in the case of test sets used here). 
It would be useful for the algorithm to stop when the 
solution has stabilized. We test next whether the stopping 
criterion introduced in Section 3.3 can be reliably used 
with DLS. We set the minimal number of iterations to 400, 
and then apply the static 50-50 ratio with the threshold 
value of 10-5. Results are shown in table 3. 

  
Table 3. Number of times (%) the correct clustering is found 

by DLS using Equation (1). The numbers in parentheses 
are the average number of iterations performed. 

 �=2.0 �=2.5 �=3.0
Data set 1 98 (861) 98 (670) 99 (626)
Data set 2 93 (1932) 94 (1422) 90 (1295)
Data set 3 91 (3479) 89 (2488) 98 (1906)
 
We see that the static 50-50 ratio can be reliably used in 

the case of the first data set. In the case of the other two 
data sets, the results are slightly worse although the 
algorithm keeps iterating longer. It seems that the static 50-
50 ratio works quite well but the optimal choice for the 
parameters is not trivial. 

 

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data dimensionality

%

DLS
CA
Stepwise/LBGU
Stepwise/GLA

 
Figure 6. Percentage of finding the correct clustering with 

different algorithms as function of the dimensionality. 

 
4.3. Comparison with other approaches 

 
We next compare the proposed DLS algorithm with the 

Competitive agglomeration (CA) [10], GLA [3] LBG-U 
[11] when integrated into the Stepwise approach as in [8]. 
The results are summarized in Fig. 6. The main 
observation is that DLS clearly outperforms the other 
approaches, of which CA works also reasonably well for 
these data sets, which are similar to those used earlier 
except the dimensionality varies and there are 9 clusters. 
 
5. Conclusions 

 
Dynamic local search algorithm was proposed to solve 

efficiently clustering problems with unknown number of 
clusters. The algorithm seeks both the correct number of 
clusters and the optimal positions for the centroids. The 
algorithm is much faster than simple brute force search. 
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