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Abstract: The main objectives of an engineering document management (EDM) 
system are outlined. Existing image compression algorithms (eg. ITU Group 4 and 
JBIG) offer efficient solutions to the storage problem but do not sufficiently support 
other objectives such as spatial access and fast decoding. We propose a novel method 
based on JBIG, in which the other objectives are also met. The compression 
performance of the proposed method is only 10 % worse than that of JBIG, and at the 
same time, spatial access to a compressed file is achieved. The method is also 2.5 
times faster in decompression than JBIG. This speed up is comparable to the Group 4 
standard, but with better compression performance. The proposed method is 
applicable not only to engineering drawings but to binary images in any document 
imaging system. 

Subject terms: Image compression; document imaging; binary images; lossless 
compression. 
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1. Introduction 

Line drawing images such as engineering drawings, cartographic maps, architectural and 
urban plans, schemes, and circuits (radio electrical and topological) are mainly designed by 
CAD systems. They are stored in digital form using vector representations such as 
Computer Graphics Metafile (CGM) or AutoCAD drawings (DWG). Nevertheless, there 
are still (and will continue to be) still a large number of drawings that are stored as paper 
documents. 

It has been estimated by International Data Corporation (IDC) that about eight billion 
drawings exist in the world [2]. Only about 13 % of them are designed and stored using 
CAD systems. Some paper documents may have been created prior to the CAD era, or 
transmitted through facsimile or other media that do not support the CAD formats. 

In a typical engineering document management system (EDM), paper documents are 
digitized and archived in compressed digital form to reduce the costs of archiving, 
updating, and reproducing of the documents. This process increases the productivity of 
designers because the images in EDM can be easily browsed, accessed, and retrieved for 
viewing, printing, and even further processing. A system diagram off an EDM system is 
shown in Fig. 1. The main objectives of the images in EDM are: 

1. small storage requirement 

2. lossless reconstruction 

3. fast decompression 

4. quick preview possibility 

5. spatial access to the image. 
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Fig. 1. Engineering document management system. 

 
EDM images are first digitized by an optical scanner, then encoded into space efficient 
form and stored into the digital archive. The scanning process can be efficiently done using 
current, relatively inexpensive technology. The questions of a proper encoding algorithm 
and file format, however, are much more problematic. 
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A possible solution for engineering image compression is to perform a raster-to-vector 
conversion, where the bitmap image is segmented into CAD primitives such as line 
segments, circles, and circular arcs [3, 4, 5]. The vectorized representation is then stored 
with any CAD/CAM format. The storage size of an engineering drawing in CAD format 
takes about 2 % compared to a raster format with 300 dpi; this corresponds to 
a compression ratio of 50. 

Raster-to-vector conversion, however, is problematic because the conversion systems have 
a high complexity and they are usually far from perfect. The conversion does not produce 
a faithful copy of the original and loss of data is apparent. Moreover, the process is often 
not automatic but requires human interaction, which makes it expensive. Industrial projects 
have shown that the costs for such data acquisition exceed the hardware and software costs 
of operational information systems by a ratio of 100:1, according to [6]. 

Fortunately raster-to-vector conversion is not always necessary and a raster format with a 
suitable compression method is often sufficient. Using the latest compression technology 
[7, 8], raster images can be compressed approximately by the same amount as required by 
vectorized images stored in CAD format. No distortion is caused to the image (besides the 
digitization phase) because of lossless compression. 

Here we propose a method to represent binary images in a compressed raster form so that 
the main objectives of EDM are met. The method is based on JBIG (Joint Bilevel Image 
Experts Group), the latest binary image compression standard [9]. The requirements 1 and 
2 of EDM are already met by JBIG. To meet the other objectives also, the following 
modifications are proposed. 

Spatial access is sufficiently supported by clustering the image into fixed-size blocks. 
Pointers (indices) to the clusters are stored at the beginning of the image file to enable 
direct access to them. The contents of the clusters are separately compressed using a semi-
adaptive context modeling and a two-stage coding process. The two stages include block-
level codes supporting the quick preview property, and pixel-level codes for exact 
reconstruction of the clusters. The block level codes also enable faster decoding than the 
baseline JBIG [10]. The method is applicable to binary images in any document image 
management system, not merely in EDM. 

The rest of the paper is organized as follows. EDM system and its objectives are described 
in Section 2. The standard JBIG compression method is reviewed in Section 3. A 
compression system for the EDM is then outlined in Section 4. The compression algorithm 
and the data structure for the EDM file format are given in Section 4.1. It is followed by the 
discussion of the implementation details in the Sections 4.2, 4.3 and 4.4. The speed and 
compression efficiency of the proposed method is then studied in Section 5. Finally, 
conclusions are drawn in Section 6. 

2. EDM System Requirements 

In a document imaging system like EDM, the documents are obtained and stored in 
electronic form. The images must be interactively browsed and efficiently retrieved for 
further processing, including viewing and printing on hard-copy terminals. The huge 
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storage size of digitized images has been a major restriction in document imaging systems. 
Although efficient solutions already exist in the form of image compression, insufficient 
attention has been paid to supporting the other objectives. The main EDM objectives are 
outlined in this section. 

2.1 Storage requirement 

The primary task in EDM is to reduce the cost of the image storage and transmission. The 
storage size impacts nearly every aspect of a document imaging system. Cost savings 
emerge from several areas: fewer storage resources are needed and less network bandwidth 
required. Faster transfer implies productivity gain because it makes Internet and LAN 
access more useful; less time is spent in waiting and fewer resources are required to 
retrieve the files. 

The storage problem of EDM images is obvious: a raster image of size A4 scanned at 
relatively low resolution of 200 dpi (1728×2376) takes about 0.5 Mb whereas a high 
quality engineering drawing of size A1 at 400 dpi (4752×6912) requires 16 Mb; and there 
is no upper limit. For example, typical images in Geographic Information Systems (GIS) 
take 100 Mb and even more [11, 12]. Similar huge volume imaging systems are penetrating 
into an increasing number of application domains including cartography, urban planning 
and transport management systems. 

To solve the storage problem, images must be maintained in compressed (or vectorized) 
form. Vectorized images are suitable for editing and they can be scaled without a loss in 
quality. They are greatly needed in parametric modeling and control system applications 
but they still represent less than 15 % of all applications where engineering documents are 
used. In most applications, the raster format is sufficient; especially if the hybrid editing is 
supported [2]. 

Typical hybrid editing systems support (1) raster editing of the raster data, (2) vector 
editing of the vector objects, and (3) semi-automatic vectorizing. The third feature is 
interesting. The user first picks up a raster object; the system then determines the object 
type, traces its shape, and replaces the raster object by the just-recognized vector 
primitives. Once the object is pointed out, the vectorizing process is performed 
automatically. This feature enables the user to edit raster drawings as if they were vector 
images. Objects can also be scaled and rotated at any angle without distortion. 

2.2 Lossless reconstruction 

The quality of the digitized image depends on the scanning resolution. Fig. 2 illustrates the 
dependence of the storage requirement on the image resolution. By doubling the resolution 
(e.g. from 200 to 400 dpi) the raw image size is multiplied by a factor of four. The increase 
in the compressed image size, however, is smaller than that because higher compression 
ratios can be obtained for higher resolution images. 

Besides the digitization process, no loss is apparent in the images. The EDM system could 
support semi-automatic vectorizing though, which would be performed only when 
requested. No resources would be wasted on converting every document into CAD format, 
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because the conversion would be made only when so desired. Neither would there be any 
loss of data without the control of the user. 
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Fig. 2. The total size of the CCITT images when compressed by standard JBIG. 

 

2.3 Fast decompression: 

The purpose of the rest of the EDM objectives is to support real-time access to the image 
archive. The actual image database may not be physically present, but it might be located in 
different place and accessed through communication channels, which could be nothing 
more than a slow telephone connection. One might tolerate longer compression times if it 
can be done off-line, but fast decompression is always desired. The compression reduces 
the amount of data to be transferred, thus making the image retrieval faster. The 
decompression itself must also be fast, at least faster than the data transmission so that the 
system does not loose its interactivity because of decompression delays. 

2.4 Quick preview: 

The quick preview property enables the user to browse the archive without decompressing 
entire images. Preview represents a recognizable version of an image using only a small 
portion of the compressed image data. The quality of the preview must be high enough to 
reliably detect the correct image, but it must also be constructed quickly enough to avoid 
inconvenient delays. 

2.5 Spatial access: 

When an image is accessed, the entire file is typically read and decompressed into memory. 
This is not possible if the uncompressed raster image size exceeds the available memory 
resources (e.g. GIS images). Besides, high-speed channels are not always available. For 
example, most communications channels in Russia are 14,400 to 28,800 bit/s channels 
based on analog phone lines. 64-128 Kbit/s bridges are used only for connecting separate 
city networks together (mostly via satellite links). The actual transmission speed practically 
never exceeds 1 kilobyte/s. 
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The decompression of the entire image can be a major source of inefficiency. Only a small 
part of the image is often needed, or the image is processed and/or viewed fragment by 
fragment. Typical viewing devices, for example, have a smaller resolution than the original 
raster image and thus, only a small fragment of the entire image may be viewed at a time. 
When the image is scrolled, a new portion of the data is retrieved and decompressed. 
Spatial access together with a fast “on-the-fly” decompression allow the user to operate 
directly on the compressed data without retrieving the entire image. 

Unfortunately spatial access to compressed image file has received relatively little attention 
in the literature [11] (for solutions in text compression, see [13]). The current compression 
standards, for example, do not support spatial access but the entire image prior to the 
accessed part must be decompressed. Spatial data structures such as quadtree enable both 
compact representation and spatial access to the image at the same time [12, 14, 15]. Our 
motivation, however, is to support spatial access directly via the compressed bit stream. 
This property is usually lost when an efficient representation is found for a quadtree 
structure. Besides, we must not forget the primary goal: to compress the image as much as 
possible. Quadtree does not offer competitive compression performance in comparison to 
JBIG. 

3. JBIG compression algorithm 

In JBIG the image is compressed pixel by pixel in scan raster order using arithmetic coding 
and context-based probability modeling, see Fig. 3. The combination of already coded 
neighboring pixels defines the context. In each context the probability distribution of the 
black and white pixels is adaptively determined. The pixel is then coded by arithmetic 
coding using the probability model of the context. Separate models are used for each 
context. After coding the pixel, the statistics in the context are updated. The model thus 
dynamically adapts to the image statistics during the coding process. 

Binary images are a favorable source for context-based compression since even a relatively 
large number of neighboring pixels results in a reasonably small number of contexts. The 
larger the context, the more accurate prediction (probability model) that can be obtained. 
However, with a large context the adaptation to the image statistics takes longer which 
increases the learning cost [16]. JBIG uses a context size of 10 pixels by default; thus, 
having 210=1024 different contexts in total. The context template for this and for other 
context sizes of k=1..16 are shown in Fig. 4. 
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Fig. 3. Block diagram of JBIG. 
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Fig. 4. Example of context templates up to 16 pixels. The pixels are included  
in the order given by the numbering. 

 

Arithmetic coding is an optimal coding method with respect to the probability model. Each 
pixel can be compressed by -log2(p) bits, where p is the probability estimation for the 
current pixel to be coded. This is denoted here as dynamic entropy because the probability 
changes from pixel to pixel. A binary arithmetic coder known as QM-coder is adopted in 
JBIG [17, 18]. The QM-coder is an approximative implementation of arithmetic coding 
tailored for binary data. Its suboptimality is compensated by the sophisticated table-driven 
probability estimation, which has the property of fast adaptation and local adaptivity. 

JBIG also includes a progressive mode where a reduced resolution version of the image is 
compressed first. It is followed by progressively increasing resolutions of the image so that 
the resolution is always doubled for the next layer. The drawback of the progressive mode 
is the redundancy that it adds to the code stream. The redundancy remains about 10 % 
according to [18]. 
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4. Compression system for EDM 

The components of the EDM files are illustrated in Fig. 5. The compression method is 
based on the baseline JBIG with the following modifications: 

• image is segmented into separate clusters of C × C pixels; 

• pointers (indices) to the clusters are stored; 

• separate block level codes (preview data) are included; 

• semi-adaptive context modeling is applied instead of dynamic modeling. 
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Fig. 5. Outline of the EDM compression system. 

 

Spatial access is supported by dividing the image into fixed size clusters of C × C pixels. 
Each cluster is compressed separately. An index table is constructed from the pointers 
indicating where the data of each cluster is located in the compressed file. The index table 
is stored at the beginning of the compressed file. To restore any part of the image, only the 
clusters consisting of the desired pixels need to be decompressed. The cluster size is 
a compromise between compression efficiency and decoding delay; the smaller the cluster, 
the shorter is the decoding delay but the greater the overhead of the indices. 

To enable the clustering, each cluster must be compressed/decompressed independently 
from the other clusters. There are two main restrictions in JBIG contradicting this: (1) the 
probability estimation uses the history of all previously coded pixels, and (2) the code 
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stream produced by QM-coder is unbreakable. The first restriction is overcome using a 
semi-adaptive probability model instead of the dynamic one. The probability models for 
each context are calculated globally and stored in the header of the compressed file. The 
same model is then applied for all clusters. The second restriction can be eliminated simply 
by treating the end of a cluster like the end of file situation; the data buffer is filled by 
dummy bits and flushed to the code stream. No end-of-code symbol is needed between the 
clusters because the indices identify the breaking points uniquely. 

The compression algorithm must also enable a quick preview of the image. The progressive 
mode of JBIG could be used but we prefer the simpler block modeling scheme of [10, 19]. 
The image data consists of two separate levels: block-level and pixel-level codes. The 
block codes are obtained by dividing the clusters into smaller blocks of B × B pixels. Each 
block is classified either as an all-white, all-black, or mixed block. This classification is 
coded and stored in the compressed file. 

The block coding method has several advantages. (1) It is much simpler to implement than 
the progressive mode of JBIG. (2) It does not increase the bit rate because the pixels in 
uniform (all-white and all-black) blocks can be omitted without compression. Only the 
pixels of the mixed blocks must to be compressed. This fact compensates the overhead due 
to the block codes completely. (3) The decrease in the pixel-level data also results in a 
speed-up in decompression times by a factor of 2.5, on average. 

The preview image can be constructed from the block codes using a simple resolution 
reduction technique known as the Logical sum method. Each pixel in the preview image 
represents a B × B block in the original image. The color of a pixel is white if the 
corresponding block type is all-white; otherwise it is black. This kind of preview is usually 
sufficient to identify the image, see Fig. 6. At the same time the overhead remains 
marginal. Slightly better preview quality can be obtained if the mixed blocks are 
represented as a color of gray. For resolution reduction methods aimed at better line 
preserving properties, see [20, 21]. 

               

Fig. 6. Preview of the CCITT images using 16×16 block size. 

4.1 Algorithm and data organisation 

The file data structure is shown in Fig. 7. Unlike in [19] the codes are not mixed, and the 
block level codes appear in the compressed file before the pixel level code. Thus, a quick 
preview can be constructed by reading the block-level codes only. The pixel level data is 
stored cluster by cluster. Any cluster can then be reconstructed based on of its block-level 
codes, and by sequentially decompressing its pixel level code starting from the position 
given by the index of the cluster. The text header consists only of an identification string 
and image size. 
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The compression algorithm for the EDM is outlined in Fig. 8. In the analysis phase, the 
block types are determined for each cluster. The context models for the pixel-level data are 
calculated during the same pass. The header data is then stored, block types are 
compressed, and context models are written into the compressed file. In the compression 
phase, the pixels of the mixed blocks are compressed by semi-adaptive JBIG for each 
cluster separately. The implementation details are discussed in the following subsections. 

Pixel level data:Preview data:

Text
header

Cluster
indexes

Context
models

Block
codes

Cluster
    1

Cluster
    2

Cluster
    3 ...

 

Fig. 7. Data organization of the EDM file. 

 
1. Analyze the image (analysis phase) 

1.1. Analyze block types 
1.2. Construct the pixel level models 

2. Write header and block level data 
2.1. Store text header 
2.2. Compress block codes by QM-coder 
2.3. Store dummy indexes 
2.4. Store pixel level models 

3. Process each cluster (compression phase) 
3.1. Compress the pixels by modified JBIG 
3.2. Record the starting positions of the next clusters 

4. End up compression 
4.1. Replace the dummy indexes by the real ones 

Fig. 8. Main structure of the compression algorithm. 
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4.2 Cluster indices 

The cluster indices are coded by calculating the starting point of the cluster relative to the 
previous cluster. This corresponds to the length of the compressed cluster data. Two bytes 
are used for each index. In the worst case (when no compression is achieved) this is enough 
for representing cluster sizes up to 724×724 (= 8⋅216 = 524,288 pixels). The space 
requirement of the indices is known before the compression and enough space can be 
allocated in the header. The actual indices, however, are not known until the entire image 
has been compressed and they are stored only at the last stage of the algorithm. 

The overhead of the indices remains rather small. However, if very small cluster sizes are 
used (resulting relatively large number of clusters) compression of the cluster indices might 
be needed to reduce the overhead. An upper bound of log N bits (where N is the size of the 
compressed file) for each index is known. The drawback of the compression would be that 
the space requirement of the indices cannot be known beforehand. Therefore a temporary 
storage space should be used for the compressed data. It could not be written into the final 
output file until all the data has been processed, and thus, all index values obtained. In the 
present method, we omit such compression schemes for simplicity. 

4.3 Preview data 

The preview data consists of block codes. It is not a binary version of the (reduced 
resolution) image but each block is classified either as all-white, all-black, or mixed block. 
The block classifications are coded by two binary decisions shown in Fig. 9. All-white 
blocks are represented by a single 0-bit, all-black blocks by a bit sequence of 10, and mixed 
blocks by 11. The actual coding is performed by the standard QM-coder using its dynamic 
probability estimation scheme. To enhance the compression performance we apply a 
simple second order context model. The classification of the neighboring blocks to the left 
and above determines the context; there are 2 · 32 = 18 different contexts for the block 
codes in total. The block types of the entire image are constructed during the same pass. 
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  BLOCK

ALL-BLACK
  BLOCK

MIXED
BLOCK

NON-WHITE
  BLOCK

0 1

0 1

 

Fig. 9. Decision tree of block classification. 
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4.4 Pixel-level data 

In principle, the clusters could be treated as independent images and JBIG applied to them 
separately. The dynamic modeling of JBIG has the advantages that only one pass over the 
data is needed and no overhead (models or code tables) must be stored in the compressed 
file. At the same time the compression ratio remains virtually the same as that of a semi-
adaptive model. The learning cost, however, becomes relatively high when coding smaller 
sizes of data. Semi-adaptive modeling is thus a better choice for our purpose. 

In semi-adaptive modeling two-passes over the image are needed. In the first pass (analysis 
phase) the input data is analyzed and statistical models are constructed for each context. 
The pixel-level data are then compressed in the second pass (compression phase). The 
same models are used for every cluster. The QM-coder is reinitialized and the models are 
restored each time when the compression of a new cluster starts. Note that the neighboring 
pixels in the context template can overlap the cluster boundaries, but the pixel values 
outside of the current cluster cannot be used. They are thus assumed to be white. After the 
cluster has been coded, the data buffer must be filled by dummy bits and flushed to the 
code stream. The position of the starting byte of the next cluster is also recorded for the 
index data. 

The models are obtained in the analysis phase by calculating the frequencies of white and 
black pixels for each context separately. The data of the entire image is used. The resulting 
probabilities of each context are then mapped to the nearest state in the probability model 
automaton of the QM-coder. Each state consists of the probability of the least probable 
symbol (LPS), and a bit indicating which color is the LPS. Each context can be stored by 
one byte only: 7 bits for the state and 1 bit to indicate the LPS symbol. The total overhead 
for storing the model is 2k bytes for a k-pixel contexts (e.g. 1 kB for k = 10). 

In semi-adaptive modeling, the compression phase is usually static; once the models have 
been initialized they do not change during the compression. The coding, however, is 
performed using the original routines of the QM-coder. The models can therefore adapt 
within the cluster and possibly exploit local differences in the statistics. It is not expected, 
however,  that this would have any major effect on the compression performance. The only 
difference from the baseline JBIG is that the coder must be reinitialized at the beginning of 
each cluster and the models reset to the ones obtained in the analysis phase. For the details 
of the semi-adaptive modeling scheme, see [22]. 
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5. Test results 

The performance of the EDM system is tested next by compressing the standard CCITT test 
images at 200 dpi. All test runs were performed using a Pentium-90 computer (80 MIPS). 
The default values for the parameters were set to the following: 

• context size: 9 

• block size: 16×16 

• cluster size: 128×128 

The optimal context size of EDM was found to be 9 for the CCITT images (see Fig. 10.) 
and is independent of the selected cluster size and relatively robust to the image type. 
Larger contexts are impractical because the overhead of the models increases exponentially 
as a function of the context size. The optimal context size for JBIG is 14 for the CCITT 
images. 

The block size is a trade-off between a compression ratio and running time (see Fig. 11). 
A block size of 16×16 is a safe choice in the sense that the compression ratio is hardly 
compromised at all. Faster decoding (and a higher quality preview) could be achieved 
using a block size of as low as 8×8 block at the cost of only 2 % increase in the bit rate. 

The effect of the cluster size is illustrated in Fig. 12. The performance of an EDM system 
using a dynamic modeling is also shown, even though the results of the semi-adaptive 
modeling are better. We propose the cluster size of 128×128 for images at 200-300 dpi, and 
256×256 for images at 400-600 dpi. Very small cluster sizes cannot be used without 
compromising the compression performance too much. 
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Fig. 10. Compression ratio as the function of context size. 
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Fig. 11. Compression ratio and decompression time as the function of block size. 
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Fig. 12. Compression deficiency of EDM as the function of cluster size. 
Both dynamic and semi-adaptive modeling are considered. Optimized context 
sizes were used: (3, 4, 7, 9, 9) for cluster size (32, 64, 128, 256, 512) in dynamic 
modeling. In case of semi-adaptive modeling the context size was always 9. 

 
The compression performance of EDM with the default parameter setup is summarized in 
Table 1. The total size of the EDM compressed images is 10 % larger than that of JBIG, 
see Table 1. This is a quite reasonable cost for supporting quick preview and spatial access 
for the compressed file. Moreover, EDM outperforms the G3 and G4 standards [23, 24], 
which are about 60 % and 20 % worse than JBIG. These facsimile standards are based on 
run-length encoding and two-dimensional READ-code [25]. 

The origin of the storage size for EDM is summarized in Table 2. The index table and the 
context models both take a fixed amount of storage size. The EDM system thus favors 
larger images because the overhead of the context models is independent of the image size 
and type. The decrease in the compression ratio is also higher for well-compressible 
images. The compression ratio itself, however, is not interesting but the only critical matter 
is the absolute increase in the storage size. To sum up, 4 % redundancy is due to the index 
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table and the context models. The remaining 6 % redundancies originates from the block- 
and pixel-level data. 

The overhead of the block codes is compensated by the fact that the pixels in uniform 
blocks can be omitted without compression. The pixel-level data is reduced approximately 
by the same amount as is the overhead of the block codes. The net effect is thus ± 0 %. 
Other sources of compression deficiency are the prediction inaccuracy near the cluster 
boundaries, decreased local adaptivity, and the dummy bits. Their total effect is about 6 %. 

Another benefit of the block codes (besides the preview property) is the speed up in the 
compression/decompression because there are less pixels to be processed by the time-
consuming context modeling. On an average, the decompression of an EDM image takes 
41 % of the time required by an JBIG image (see Table 3). The method thus achieves 
decompression times comparable to the G4 standard.  

The compression, on the other hand, takes longer than the decompression because of the 
semi-adaptive modeling. Nevertheless, the compression times are still faster: only 58 % of 
the time taken by JBIG. Note that the EDM method is expected to be even faster for higher 
resolution images because the increase in the resolution evidently results in an increased 
number of uniform blocks, and thus less pixel-level data has to be coded. 

 
 

 Storage size Compression ratio Storage 
 JBIG EDM JBIG EDM increase 
CCITT 1 14708 16819 34.89 30.51 14 % 
CCITT 2 8491 9834 60.44 52.19 16 % 
CCITT 3 21990 24553 23.34 20.90 12 % 
CCITT 4 54291 61766 9.45 8.31 14 % 
CCITT 5 25823 28272 19.87 18.15 9 % 
CCITT 6 12552 14084 40.89 36.44 12 % 
CCITT 7 56305 58453 9.12 8.78 4 % 
CCITT 8 14229 16149 36.07 31.78 13 % 

Total: 208389 229930 19.70 17.86 10 % 

Table 1: Compression performance of JBIG and EDM. 

 Cluster 
indices 

Block 
level data 

Context 
models 

Pixel level 
data 

CCITT 1 532 297 512 15421 
CCITT 2 532 372 512 8361 
CCITT 3 532 510 512 22943 
CCITT 4 532 514 512 60152 
CCITT 5 532 515 512 26656 
CCITT 6 532 494 512 12489 
CCITT 7 532 801 512 56550 
CCITT 8 532 770 512 14278 

Total: 2 % 2 % 2 % 94 % 

Table 2: Source of the codebits (in bytes). 
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 Compression Decompression 
 JBIG EDM EDM/JBIG JBIG EDM EDM/JBIG 
CCITT 1 35 13 37 % 32 8 25 % 
CCITT 2 35 12 34 % 32 5 16 % 
CCITT 3 36 20 56 % 32 13 41 % 
CCITT 4 35 35 100 % 33 26 79 % 
CCITT 5 35 20 57 % 33 13 39 % 
CCITT 6 35 15 43 % 32 8 25 % 
CCITT 7 35 31 89 % 33 23 70 % 
CCITT 8 35 17 49 % 32 10 31 % 
Average: 35.1 20.4 58 % 32.4 13.3 41 % 

Table 3: Running times (sec) of JBIG and EDM. 

6. Conclusions 

The main objectives of engineering document management systems were outlined. 
A method for meeting these objectives was proposed by making small modifications to the 
standard JBIG compression method. Fast decoding, quick preview option, and spatial 
access to the compressed image was sufficiently supported by clustering the image, using 
a semi-adaptive modeling, and by the use of block coding.  

The compression performance of the proposed method is only 10 % worse than that of 
JBIG, when cluster size of 128×128 is used, and only 5 % worse with a size of 256×256. 
At the same time, a speed up in the decompression time by a factor of 2.5 was achieved. 
The proposed method is applicable not only to engineering drawings but to any binary 
images. 

In the future, the EDM might support a hybrid vector-raster file format. In the beginning, 
the images were digitized and stored in raster format only. The vectorizing would occur 
over the course of time when the images are processed. In this way, no resources would be 
wasted on unnecessary work caused by converting every document into CAD format. 
Neither would any uncontrollable loss of data occur. 

The hybrid file format would also improve the compression ratio of JBIG by utilizing 
global dependencies. Additional information can be obtained when global features that are 
typical for engineering drawings (such as straight lines) have been extracted from the 
image. This would improve the prediction of the pixel-level context model, resulting in 
higher compression ratios, assuming that the improvement compensates the overhead 
required by storing the extracted features. 
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