

Enhanced JBIG-based compression for satisfying objectives
of engineering document management system#

(to appear in Optical Engineering)

Eugene I. Ageenko
Pasi Fränti*

Department of Computer Science, University of Joensuu

P.O. Box 111, FIN-80101 Joensuu, FINLAND
Email: franti@cs.joensuu.fi

Abstract: The main objectives of an engineering document management (EDM)
system are outlined. Existing image compression algorithms (eg. ITU Group 4 and
JBIG) offer efficient solutions to the storage problem but do not sufficiently support
other objectives such as spatial access and fast decoding. We propose a novel method
based on JBIG, in which the other objectives are also met. The compression
performance of the proposed method is only 10 % worse than that of JBIG, and at the
same time, spatial access to a compressed file is achieved. The method is also 2.5
times faster in decompression than JBIG. This speed up is comparable to the Group 4
standard, but with better compression performance. The proposed method is
applicable not only to engineering drawings but to binary images in any document
imaging system.

Subject terms: Image compression; document imaging; binary images; lossless
compression.

short version of the paper [1] was presented in Picture Coding Symposium 1997.
* author for correspondence

 1

1. Introduction

Line drawing images such as engineering drawings, cartographic maps, architectural and
urban plans, schemes, and circuits (radio electrical and topological) are mainly designed by
CAD systems. They are stored in digital form using vector representations such as
Computer Graphics Metafile (CGM) or AutoCAD drawings (DWG). Nevertheless, there
are still (and will continue to be) still a large number of drawings that are stored as paper
documents.

It has been estimated by International Data Corporation (IDC) that about eight billion
drawings exist in the world [2]. Only about 13 % of them are designed and stored using
CAD systems. Some paper documents may have been created prior to the CAD era, or
transmitted through facsimile or other media that do not support the CAD formats.

In a typical engineering document management system (EDM), paper documents are
digitized and archived in compressed digital form to reduce the costs of archiving,
updating, and reproducing of the documents. This process increases the productivity of
designers because the images in EDM can be easily browsed, accessed, and retrieved for
viewing, printing, and even further processing. A system diagram off an EDM system is
shown in Fig. 1. The main objectives of the images in EDM are:

1. small storage requirement

2. lossless reconstruction

3. fast decompression

4. quick preview possibility

5. spatial access to the image.

SCANNER ARCHIVE sender receiver

 commands

 data

documents

C

encoder

D

viewprintingprocessingvectorizing

CAD
server

decoder

OCR

TEXT
server

 channel

Fig. 1. Engineering document management system.

EDM images are first digitized by an optical scanner, then encoded into space efficient
form and stored into the digital archive. The scanning process can be efficiently done using
current, relatively inexpensive technology. The questions of a proper encoding algorithm
and file format, however, are much more problematic.

 2

A possible solution for engineering image compression is to perform a raster-to-vector
conversion, where the bitmap image is segmented into CAD primitives such as line
segments, circles, and circular arcs [3, 4, 5]. The vectorized representation is then stored
with any CAD/CAM format. The storage size of an engineering drawing in CAD format
takes about 2 % compared to a raster format with 300 dpi; this corresponds to
a compression ratio of 50.

Raster-to-vector conversion, however, is problematic because the conversion systems have
a high complexity and they are usually far from perfect. The conversion does not produce
a faithful copy of the original and loss of data is apparent. Moreover, the process is often
not automatic but requires human interaction, which makes it expensive. Industrial projects
have shown that the costs for such data acquisition exceed the hardware and software costs
of operational information systems by a ratio of 100:1, according to [6].

Fortunately raster-to-vector conversion is not always necessary and a raster format with a
suitable compression method is often sufficient. Using the latest compression technology
[7, 8], raster images can be compressed approximately by the same amount as required by
vectorized images stored in CAD format. No distortion is caused to the image (besides the
digitization phase) because of lossless compression.

Here we propose a method to represent binary images in a compressed raster form so that
the main objectives of EDM are met. The method is based on JBIG (Joint Bilevel Image
Experts Group), the latest binary image compression standard [9]. The requirements 1 and
2 of EDM are already met by JBIG. To meet the other objectives also, the following
modifications are proposed.

Spatial access is sufficiently supported by clustering the image into fixed-size blocks.
Pointers (indices) to the clusters are stored at the beginning of the image file to enable
direct access to them. The contents of the clusters are separately compressed using a semi-
adaptive context modeling and a two-stage coding process. The two stages include block-
level codes supporting the quick preview property, and pixel-level codes for exact
reconstruction of the clusters. The block level codes also enable faster decoding than the
baseline JBIG [10]. The method is applicable to binary images in any document image
management system, not merely in EDM.

The rest of the paper is organized as follows. EDM system and its objectives are described
in Section 2. The standard JBIG compression method is reviewed in Section 3. A
compression system for the EDM is then outlined in Section 4. The compression algorithm
and the data structure for the EDM file format are given in Section 4.1. It is followed by the
discussion of the implementation details in the Sections 4.2, 4.3 and 4.4. The speed and
compression efficiency of the proposed method is then studied in Section 5. Finally,
conclusions are drawn in Section 6.

2. EDM System Requirements

In a document imaging system like EDM, the documents are obtained and stored in
electronic form. The images must be interactively browsed and efficiently retrieved for
further processing, including viewing and printing on hard-copy terminals. The huge

 3

storage size of digitized images has been a major restriction in document imaging systems.
Although efficient solutions already exist in the form of image compression, insufficient
attention has been paid to supporting the other objectives. The main EDM objectives are
outlined in this section.

2.1 Storage requirement

The primary task in EDM is to reduce the cost of the image storage and transmission. The
storage size impacts nearly every aspect of a document imaging system. Cost savings
emerge from several areas: fewer storage resources are needed and less network bandwidth
required. Faster transfer implies productivity gain because it makes Internet and LAN
access more useful; less time is spent in waiting and fewer resources are required to
retrieve the files.

The storage problem of EDM images is obvious: a raster image of size A4 scanned at
relatively low resolution of 200 dpi (1728×2376) takes about 0.5 Mb whereas a high
quality engineering drawing of size A1 at 400 dpi (4752×6912) requires 16 Mb; and there
is no upper limit. For example, typical images in Geographic Information Systems (GIS)
take 100 Mb and even more [11, 12]. Similar huge volume imaging systems are penetrating
into an increasing number of application domains including cartography, urban planning
and transport management systems.

To solve the storage problem, images must be maintained in compressed (or vectorized)
form. Vectorized images are suitable for editing and they can be scaled without a loss in
quality. They are greatly needed in parametric modeling and control system applications
but they still represent less than 15 % of all applications where engineering documents are
used. In most applications, the raster format is sufficient; especially if the hybrid editing is
supported [2].

Typical hybrid editing systems support (1) raster editing of the raster data, (2) vector
editing of the vector objects, and (3) semi-automatic vectorizing. The third feature is
interesting. The user first picks up a raster object; the system then determines the object
type, traces its shape, and replaces the raster object by the just-recognized vector
primitives. Once the object is pointed out, the vectorizing process is performed
automatically. This feature enables the user to edit raster drawings as if they were vector
images. Objects can also be scaled and rotated at any angle without distortion.

2.2 Lossless reconstruction

The quality of the digitized image depends on the scanning resolution. Fig. 2 illustrates the
dependence of the storage requirement on the image resolution. By doubling the resolution
(e.g. from 200 to 400 dpi) the raw image size is multiplied by a factor of four. The increase
in the compressed image size, however, is smaller than that because higher compression
ratios can be obtained for higher resolution images.

Besides the digitization process, no loss is apparent in the images. The EDM system could
support semi-automatic vectorizing though, which would be performed only when
requested. No resources would be wasted on converting every document into CAD format,

 4

because the conversion would be made only when so desired. Neither would there be any
loss of data without the control of the user.

389

189
285

668

0

100

200

300

400

500

600

700

200 300 400 600
Resolution (dpi)

C
om

pr
es

se
d

si
ze

 (k
B

)

Fig. 2. The total size of the CCITT images when compressed by standard JBIG.

2.3 Fast decompression:

The purpose of the rest of the EDM objectives is to support real-time access to the image
archive. The actual image database may not be physically present, but it might be located in
different place and accessed through communication channels, which could be nothing
more than a slow telephone connection. One might tolerate longer compression times if it
can be done off-line, but fast decompression is always desired. The compression reduces
the amount of data to be transferred, thus making the image retrieval faster. The
decompression itself must also be fast, at least faster than the data transmission so that the
system does not loose its interactivity because of decompression delays.

2.4 Quick preview:

The quick preview property enables the user to browse the archive without decompressing
entire images. Preview represents a recognizable version of an image using only a small
portion of the compressed image data. The quality of the preview must be high enough to
reliably detect the correct image, but it must also be constructed quickly enough to avoid
inconvenient delays.

2.5 Spatial access:

When an image is accessed, the entire file is typically read and decompressed into memory.
This is not possible if the uncompressed raster image size exceeds the available memory
resources (e.g. GIS images). Besides, high-speed channels are not always available. For
example, most communications channels in Russia are 14,400 to 28,800 bit/s channels
based on analog phone lines. 64-128 Kbit/s bridges are used only for connecting separate
city networks together (mostly via satellite links). The actual transmission speed practically
never exceeds 1 kilobyte/s.

 5

The decompression of the entire image can be a major source of inefficiency. Only a small
part of the image is often needed, or the image is processed and/or viewed fragment by
fragment. Typical viewing devices, for example, have a smaller resolution than the original
raster image and thus, only a small fragment of the entire image may be viewed at a time.
When the image is scrolled, a new portion of the data is retrieved and decompressed.
Spatial access together with a fast “on-the-fly” decompression allow the user to operate
directly on the compressed data without retrieving the entire image.

Unfortunately spatial access to compressed image file has received relatively little attention
in the literature [11] (for solutions in text compression, see [13]). The current compression
standards, for example, do not support spatial access but the entire image prior to the
accessed part must be decompressed. Spatial data structures such as quadtree enable both
compact representation and spatial access to the image at the same time [12, 14, 15]. Our
motivation, however, is to support spatial access directly via the compressed bit stream.
This property is usually lost when an efficient representation is found for a quadtree
structure. Besides, we must not forget the primary goal: to compress the image as much as
possible. Quadtree does not offer competitive compression performance in comparison to
JBIG.

3. JBIG compression algorithm

In JBIG the image is compressed pixel by pixel in scan raster order using arithmetic coding
and context-based probability modeling, see Fig. 3. The combination of already coded
neighboring pixels defines the context. In each context the probability distribution of the
black and white pixels is adaptively determined. The pixel is then coded by arithmetic
coding using the probability model of the context. Separate models are used for each
context. After coding the pixel, the statistics in the context are updated. The model thus
dynamically adapts to the image statistics during the coding process.

Binary images are a favorable source for context-based compression since even a relatively
large number of neighboring pixels results in a reasonably small number of contexts. The
larger the context, the more accurate prediction (probability model) that can be obtained.
However, with a large context the adaptation to the image statistics takes longer which
increases the learning cost [16]. JBIG uses a context size of 10 pixels by default; thus,
having 210=1024 different contexts in total. The context template for this and for other
context sizes of k=1..16 are shown in Fig. 4.

 6

Bit stream

Pixel

Modelling

Decoded
 image

Original
 image

Context

Context

Pixel

QM-coder

Modelling

QM-coder Bits

Bits

Fig. 3. Block diagram of JBIG.

?
x

Pixel to be coded

Context pixel

5 1
7 4 2 3 8

10 12
14

15
13

6911

?
16

Fig. 4. Example of context templates up to 16 pixels. The pixels are included
in the order given by the numbering.

Arithmetic coding is an optimal coding method with respect to the probability model. Each
pixel can be compressed by -log2(p) bits, where p is the probability estimation for the
current pixel to be coded. This is denoted here as dynamic entropy because the probability
changes from pixel to pixel. A binary arithmetic coder known as QM-coder is adopted in
JBIG [17, 18]. The QM-coder is an approximative implementation of arithmetic coding
tailored for binary data. Its suboptimality is compensated by the sophisticated table-driven
probability estimation, which has the property of fast adaptation and local adaptivity.

JBIG also includes a progressive mode where a reduced resolution version of the image is
compressed first. It is followed by progressively increasing resolutions of the image so that
the resolution is always doubled for the next layer. The drawback of the progressive mode
is the redundancy that it adds to the code stream. The redundancy remains about 10 %
according to [18].

 7

4. Compression system for EDM

The components of the EDM files are illustrated in Fig. 5. The compression method is
based on the baseline JBIG with the following modifications:

• image is segmented into separate clusters of C × C pixels;

• pointers (indices) to the clusters are stored;

• separate block level codes (preview data) are included;

• semi-adaptive context modeling is applied instead of dynamic modeling.

DOCUMENT IMAGE

PREVIEW IMAGE
(80 149)×

CLUSTER
(128 128)×

PIXEL LEVEL IMAGE

cl
us

te
r i

nd
ic

es
fo

r s
pa

tia
l a

cc
es

s

(1728 2376)×

Fig. 5. Outline of the EDM compression system.

Spatial access is supported by dividing the image into fixed size clusters of C × C pixels.
Each cluster is compressed separately. An index table is constructed from the pointers
indicating where the data of each cluster is located in the compressed file. The index table
is stored at the beginning of the compressed file. To restore any part of the image, only the
clusters consisting of the desired pixels need to be decompressed. The cluster size is
a compromise between compression efficiency and decoding delay; the smaller the cluster,
the shorter is the decoding delay but the greater the overhead of the indices.

To enable the clustering, each cluster must be compressed/decompressed independently
from the other clusters. There are two main restrictions in JBIG contradicting this: (1) the
probability estimation uses the history of all previously coded pixels, and (2) the code

 8

stream produced by QM-coder is unbreakable. The first restriction is overcome using a
semi-adaptive probability model instead of the dynamic one. The probability models for
each context are calculated globally and stored in the header of the compressed file. The
same model is then applied for all clusters. The second restriction can be eliminated simply
by treating the end of a cluster like the end of file situation; the data buffer is filled by
dummy bits and flushed to the code stream. No end-of-code symbol is needed between the
clusters because the indices identify the breaking points uniquely.

The compression algorithm must also enable a quick preview of the image. The progressive
mode of JBIG could be used but we prefer the simpler block modeling scheme of [10, 19].
The image data consists of two separate levels: block-level and pixel-level codes. The
block codes are obtained by dividing the clusters into smaller blocks of B × B pixels. Each
block is classified either as an all-white, all-black, or mixed block. This classification is
coded and stored in the compressed file.

The block coding method has several advantages. (1) It is much simpler to implement than
the progressive mode of JBIG. (2) It does not increase the bit rate because the pixels in
uniform (all-white and all-black) blocks can be omitted without compression. Only the
pixels of the mixed blocks must to be compressed. This fact compensates the overhead due
to the block codes completely. (3) The decrease in the pixel-level data also results in a
speed-up in decompression times by a factor of 2.5, on average.

The preview image can be constructed from the block codes using a simple resolution
reduction technique known as the Logical sum method. Each pixel in the preview image
represents a B × B block in the original image. The color of a pixel is white if the
corresponding block type is all-white; otherwise it is black. This kind of preview is usually
sufficient to identify the image, see Fig. 6. At the same time the overhead remains
marginal. Slightly better preview quality can be obtained if the mixed blocks are
represented as a color of gray. For resolution reduction methods aimed at better line
preserving properties, see [20, 21].

Fig. 6. Preview of the CCITT images using 16×16 block size.

4.1 Algorithm and data organisation

The file data structure is shown in Fig. 7. Unlike in [19] the codes are not mixed, and the
block level codes appear in the compressed file before the pixel level code. Thus, a quick
preview can be constructed by reading the block-level codes only. The pixel level data is
stored cluster by cluster. Any cluster can then be reconstructed based on of its block-level
codes, and by sequentially decompressing its pixel level code starting from the position
given by the index of the cluster. The text header consists only of an identification string
and image size.

 9

The compression algorithm for the EDM is outlined in Fig. 8. In the analysis phase, the
block types are determined for each cluster. The context models for the pixel-level data are
calculated during the same pass. The header data is then stored, block types are
compressed, and context models are written into the compressed file. In the compression
phase, the pixels of the mixed blocks are compressed by semi-adaptive JBIG for each
cluster separately. The implementation details are discussed in the following subsections.

Pixel level data:Preview data:

Text
header

Cluster
indexes

Context
models

Block
codes

Cluster
 1

Cluster
 2

Cluster
 3 ...

Fig. 7. Data organization of the EDM file.

1. Analyze the image (analysis phase)

1.1. Analyze block types
1.2. Construct the pixel level models

2. Write header and block level data
2.1. Store text header
2.2. Compress block codes by QM-coder
2.3. Store dummy indexes
2.4. Store pixel level models

3. Process each cluster (compression phase)
3.1. Compress the pixels by modified JBIG
3.2. Record the starting positions of the next clusters

4. End up compression
4.1. Replace the dummy indexes by the real ones

Fig. 8. Main structure of the compression algorithm.

 10

4.2 Cluster indices

The cluster indices are coded by calculating the starting point of the cluster relative to the
previous cluster. This corresponds to the length of the compressed cluster data. Two bytes
are used for each index. In the worst case (when no compression is achieved) this is enough
for representing cluster sizes up to 724×724 (= 8⋅216 = 524,288 pixels). The space
requirement of the indices is known before the compression and enough space can be
allocated in the header. The actual indices, however, are not known until the entire image
has been compressed and they are stored only at the last stage of the algorithm.

The overhead of the indices remains rather small. However, if very small cluster sizes are
used (resulting relatively large number of clusters) compression of the cluster indices might
be needed to reduce the overhead. An upper bound of log N bits (where N is the size of the
compressed file) for each index is known. The drawback of the compression would be that
the space requirement of the indices cannot be known beforehand. Therefore a temporary
storage space should be used for the compressed data. It could not be written into the final
output file until all the data has been processed, and thus, all index values obtained. In the
present method, we omit such compression schemes for simplicity.

4.3 Preview data

The preview data consists of block codes. It is not a binary version of the (reduced
resolution) image but each block is classified either as all-white, all-black, or mixed block.
The block classifications are coded by two binary decisions shown in Fig. 9. All-white
blocks are represented by a single 0-bit, all-black blocks by a bit sequence of 10, and mixed
blocks by 11. The actual coding is performed by the standard QM-coder using its dynamic
probability estimation scheme. To enhance the compression performance we apply a
simple second order context model. The classification of the neighboring blocks to the left
and above determines the context; there are 2 · 32 = 18 different contexts for the block
codes in total. The block types of the entire image are constructed during the same pass.

ALL-WHITE
 BLOCK

ALL-BLACK
 BLOCK

MIXED
BLOCK

NON-WHITE
 BLOCK

0 1

0 1

Fig. 9. Decision tree of block classification.

 11

4.4 Pixel-level data

In principle, the clusters could be treated as independent images and JBIG applied to them
separately. The dynamic modeling of JBIG has the advantages that only one pass over the
data is needed and no overhead (models or code tables) must be stored in the compressed
file. At the same time the compression ratio remains virtually the same as that of a semi-
adaptive model. The learning cost, however, becomes relatively high when coding smaller
sizes of data. Semi-adaptive modeling is thus a better choice for our purpose.

In semi-adaptive modeling two-passes over the image are needed. In the first pass (analysis
phase) the input data is analyzed and statistical models are constructed for each context.
The pixel-level data are then compressed in the second pass (compression phase). The
same models are used for every cluster. The QM-coder is reinitialized and the models are
restored each time when the compression of a new cluster starts. Note that the neighboring
pixels in the context template can overlap the cluster boundaries, but the pixel values
outside of the current cluster cannot be used. They are thus assumed to be white. After the
cluster has been coded, the data buffer must be filled by dummy bits and flushed to the
code stream. The position of the starting byte of the next cluster is also recorded for the
index data.

The models are obtained in the analysis phase by calculating the frequencies of white and
black pixels for each context separately. The data of the entire image is used. The resulting
probabilities of each context are then mapped to the nearest state in the probability model
automaton of the QM-coder. Each state consists of the probability of the least probable
symbol (LPS), and a bit indicating which color is the LPS. Each context can be stored by
one byte only: 7 bits for the state and 1 bit to indicate the LPS symbol. The total overhead
for storing the model is 2k bytes for a k-pixel contexts (e.g. 1 kB for k = 10).

In semi-adaptive modeling, the compression phase is usually static; once the models have
been initialized they do not change during the compression. The coding, however, is
performed using the original routines of the QM-coder. The models can therefore adapt
within the cluster and possibly exploit local differences in the statistics. It is not expected,
however, that this would have any major effect on the compression performance. The only
difference from the baseline JBIG is that the coder must be reinitialized at the beginning of
each cluster and the models reset to the ones obtained in the analysis phase. For the details
of the semi-adaptive modeling scheme, see [22].

 12

5. Test results

The performance of the EDM system is tested next by compressing the standard CCITT test
images at 200 dpi. All test runs were performed using a Pentium-90 computer (80 MIPS).
The default values for the parameters were set to the following:

• context size: 9

• block size: 16×16

• cluster size: 128×128

The optimal context size of EDM was found to be 9 for the CCITT images (see Fig. 10.)
and is independent of the selected cluster size and relatively robust to the image type.
Larger contexts are impractical because the overhead of the models increases exponentially
as a function of the context size. The optimal context size for JBIG is 14 for the CCITT
images.

The block size is a trade-off between a compression ratio and running time (see Fig. 11).
A block size of 16×16 is a safe choice in the sense that the compression ratio is hardly
compromised at all. Faster decoding (and a higher quality preview) could be achieved
using a block size of as low as 8×8 block at the cost of only 2 % increase in the bit rate.

The effect of the cluster size is illustrated in Fig. 12. The performance of an EDM system
using a dynamic modeling is also shown, even though the results of the semi-adaptive
modeling are better. We propose the cluster size of 128×128 for images at 200-300 dpi, and
256×256 for images at 400-600 dpi. Very small cluster sizes cannot be used without
compromising the compression performance too much.

0
2
4
6
8

10
12
14
16
18
20
22
24
26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Context size

C
om

pr
es

si
on

 ra
tio

JBIG
EDM

optimal

optimal

Fig. 10. Compression ratio as the function of context size.

 13

12

13

14

15

16

17

18

19

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Blocksize
C

om
pr

es
si

on
 ra

tio
 (C

R
)

0

2
4

6
8

10
12

14
16

18

D
ec

om
pr

es
si

on
 ti

m
e

(s
ec

)

 CR

 time

Fig. 11. Compression ratio and decompression time as the function of block size.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

32 64 128 256 512

Cluster size

St
or

ag
e

in
cr

ea
se

Dynamic
Semi-adaptive

Fig. 12. Compression deficiency of EDM as the function of cluster size.
Both dynamic and semi-adaptive modeling are considered. Optimized context
sizes were used: (3, 4, 7, 9, 9) for cluster size (32, 64, 128, 256, 512) in dynamic
modeling. In case of semi-adaptive modeling the context size was always 9.

The compression performance of EDM with the default parameter setup is summarized in
Table 1. The total size of the EDM compressed images is 10 % larger than that of JBIG,
see Table 1. This is a quite reasonable cost for supporting quick preview and spatial access
for the compressed file. Moreover, EDM outperforms the G3 and G4 standards [23, 24],
which are about 60 % and 20 % worse than JBIG. These facsimile standards are based on
run-length encoding and two-dimensional READ-code [25].

The origin of the storage size for EDM is summarized in Table 2. The index table and the
context models both take a fixed amount of storage size. The EDM system thus favors
larger images because the overhead of the context models is independent of the image size
and type. The decrease in the compression ratio is also higher for well-compressible
images. The compression ratio itself, however, is not interesting but the only critical matter
is the absolute increase in the storage size. To sum up, 4 % redundancy is due to the index

 14

table and the context models. The remaining 6 % redundancies originates from the block-
and pixel-level data.

The overhead of the block codes is compensated by the fact that the pixels in uniform
blocks can be omitted without compression. The pixel-level data is reduced approximately
by the same amount as is the overhead of the block codes. The net effect is thus ± 0 %.
Other sources of compression deficiency are the prediction inaccuracy near the cluster
boundaries, decreased local adaptivity, and the dummy bits. Their total effect is about 6 %.

Another benefit of the block codes (besides the preview property) is the speed up in the
compression/decompression because there are less pixels to be processed by the time-
consuming context modeling. On an average, the decompression of an EDM image takes
41 % of the time required by an JBIG image (see Table 3). The method thus achieves
decompression times comparable to the G4 standard.

The compression, on the other hand, takes longer than the decompression because of the
semi-adaptive modeling. Nevertheless, the compression times are still faster: only 58 % of
the time taken by JBIG. Note that the EDM method is expected to be even faster for higher
resolution images because the increase in the resolution evidently results in an increased
number of uniform blocks, and thus less pixel-level data has to be coded.

 Storage size Compression ratio Storage
 JBIG EDM JBIG EDM increase
CCITT 1 14708 16819 34.89 30.51 14 %
CCITT 2 8491 9834 60.44 52.19 16 %
CCITT 3 21990 24553 23.34 20.90 12 %
CCITT 4 54291 61766 9.45 8.31 14 %
CCITT 5 25823 28272 19.87 18.15 9 %
CCITT 6 12552 14084 40.89 36.44 12 %
CCITT 7 56305 58453 9.12 8.78 4 %
CCITT 8 14229 16149 36.07 31.78 13 %

Total: 208389 229930 19.70 17.86 10 %

Table 1: Compression performance of JBIG and EDM.

 Cluster
indices

Block
level data

Context
models

Pixel level
data

CCITT 1 532 297 512 15421
CCITT 2 532 372 512 8361
CCITT 3 532 510 512 22943
CCITT 4 532 514 512 60152
CCITT 5 532 515 512 26656
CCITT 6 532 494 512 12489
CCITT 7 532 801 512 56550
CCITT 8 532 770 512 14278

Total: 2 % 2 % 2 % 94 %

Table 2: Source of the codebits (in bytes).

 15

 Compression Decompression
 JBIG EDM EDM/JBIG JBIG EDM EDM/JBIG
CCITT 1 35 13 37 % 32 8 25 %
CCITT 2 35 12 34 % 32 5 16 %
CCITT 3 36 20 56 % 32 13 41 %
CCITT 4 35 35 100 % 33 26 79 %
CCITT 5 35 20 57 % 33 13 39 %
CCITT 6 35 15 43 % 32 8 25 %
CCITT 7 35 31 89 % 33 23 70 %
CCITT 8 35 17 49 % 32 10 31 %
Average: 35.1 20.4 58 % 32.4 13.3 41 %

Table 3: Running times (sec) of JBIG and EDM.

6. Conclusions

The main objectives of engineering document management systems were outlined.
A method for meeting these objectives was proposed by making small modifications to the
standard JBIG compression method. Fast decoding, quick preview option, and spatial
access to the compressed image was sufficiently supported by clustering the image, using
a semi-adaptive modeling, and by the use of block coding.

The compression performance of the proposed method is only 10 % worse than that of
JBIG, when cluster size of 128×128 is used, and only 5 % worse with a size of 256×256.
At the same time, a speed up in the decompression time by a factor of 2.5 was achieved.
The proposed method is applicable not only to engineering drawings but to any binary
images.

In the future, the EDM might support a hybrid vector-raster file format. In the beginning,
the images were digitized and stored in raster format only. The vectorizing would occur
over the course of time when the images are processed. In this way, no resources would be
wasted on unnecessary work caused by converting every document into CAD format.
Neither would any uncontrollable loss of data occur.

The hybrid file format would also improve the compression ratio of JBIG by utilizing
global dependencies. Additional information can be obtained when global features that are
typical for engineering drawings (such as straight lines) have been extracted from the
image. This would improve the prediction of the pixel-level context model, resulting in
higher compression ratios, assuming that the improvement compensates the overhead
required by storing the extracted features.

Acknowledgements

The work of Pasi Fränti was supported by a grant from the Academy of Finland, and the
work of Eugene I. Ageenko by a grant from the Centre for International Mobility.

 16

References

[1] E.I. Ageenko and P. Fränti, “Storage system for document imaging applications”,

Proc. Picture Coding Symposium, Berlin, Germany, 361-364 (1997).

[2] D.J. Wilson, “How to modernize your paper engineering drawings”, Imaging
World, 1 June, (1996).

[3] D. Dori, Y. Linag, J. Dowell and I. Chai, “Sparse-pixel recognition of primitives in
engineering drawings”. Machine Vision and Applications, 6, 69-82 (Spring-
Summer 1993).

[4] V. Nagasamy and N.A. Langrana, “Engineering drawing processing and
vectorizing system”, Computer Vision, Graphics, and Image Processing, 49, 379-
397 (March 1990).

[5] R. Kasturi, S.T. Bow, W. El-Masuri, J. Shah, J.R. Gattiker and U.B. Mokate,
“A system for interpretation of line drawings”, IEEE Trans. on Pattern Analysis
and Machine Intelligence, 12(10), 978-992 (October 1990).

[6] M. Röösli and G. Monagan, “A high quality vectorizing combining local quality
measures and global constraints”. IEEE Proc. 3rd Int. Conf. on Document Analysis
and Recognition, Montreal, Canada, 243-248 (August 1995).

[7] Arps R.B., Truong T.K., “Comparison of international standards for lossless still
image compression”. Proceedings of the IEEE, 82(6) , 889-899 (June 1994).

[8] S.J. Urban, “Review of standards for electronic imaging for facsimile systems”,
Journal of Electronic Imaging, 1(1), 5-21 (January 1992).

[9] JBIG, Progressive Bi-level Image Compression, ISO/IEC International Standard
11544, ITU Recommendation T.82 (1993).

[10] P. Fränti and O. Nevalainen, “A two-stage modeling method for compressing
binary images by arithmetic coding”, The Computer Journal, 36(7), 615-622
(1993).

[11] R. Pajarola and P. Widmayer, “Spatial indexing into compressed raster images:
how to answer range queries without decompression”. Proc. Int. Workshop on
Multimedia DBMS, Blue Mountain Lake, NY, 94-100 (1996).

[12] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image
Processing and GIS, Addison-Wesley , Reading, MA (1989).

[13] I.H. Witten, A. Moffat and T.C. Bell, Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, New York (1994).

[14] H. Samet, The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA (1990).

 17

[15] T. Markas and J. Reif, “Quad tree structures for image compression applications”,
Information Processing & Management, 28(6), 1992, 707-721.

[16] A. Moffat, “Two-level context based compression of binary images”. IEEE
Proceedings Data Compression Conference, Snowbird, Utah, 382-391 (1991).

[17] W.B. Pennebaker, J.L. Mitchell, G.G. Langdon, R.B. Arps, “An overview of the
basic principles of the Q-coder adaptive binary arithmetic coder”. IBM Journal of
Research and Development, 32(6), 717-726 (1988).

[18] W.B. Pennebaker, J.L. Mitchell, JPEG Still Image Data Compression Standard.
Van Nostrand Reinhold (1993).

[19] P. Fränti, “A fast and efficient compression method for binary images”, Signal
Processing: Image Communication, 6(1), 69-76 (1994).

[20] T. Endoh, S. Kato and Y. Yasuda, “Progressive coding scheme for binary images”,
Electronic and Communications in Japan, part 1, 74(8), 1-17 (1991).

[21] F.C. Mintzer and J.L. Mitchell, “Line-preserving binary image reduction
algorithm”. ISO/IEC JTC1/SC2/WG8, no. 601 (October 1987).

[22] E.I. Ageenko and P. Fränti, “Forward-adaptive variant of JBIG for GIS
applications”, Tech. report A-1997-7, Univ. of Joensuu, Finland (1997).

[23] CCITT, Standardization of Group 3 Facsimile Apparatus for Document
Transmission, ITU Recommendation T.4 (1980).

[24] CCITT, Facsimile Coding Schemes and Coding Control Functions for Group 4
Facsimile Apparatus, ITU Recommendation T.6 (1984).

[25] R.B. Arps, T.K. Truong , “Comparison of international standards for lossless still
image compression”. Proceedings of the IEEE, 82 , 889-899 (June 1994).

	1. Introduction
	2. EDM System Requirements
	2.1 Storage requirement
	2.2 Lossless reconstruction
	2.3 Fast decompression:
	2.4 Quick preview:
	2.5 Spatial access:

	3. JBIG compression algorithm
	4. Compression system for EDM
	4.1 Algorithm and data organisation
	4.2 Cluster indices
	4.3 Preview data
	4.4 Pixel-level data
	5. Test results

	6. Conclusions
	Acknowledgements
	References

