
Probabilistic Clustering by Random Swap Algorithm

Pasi Fränti, Olli Virmajoki and Ville Hautamäki
��������	
����
����������	
��	���

��������	������������������	�����	���������������	�������	��	
�
����	������������������� ��!"��	���!���

Abstract
�
#���������������$�$����������������	
������
�$���
�

�	� �� ��%��	��� ��� ��	
��� �&���� ��� �������� ��	����
�!�
#�����&� ����� ������
����������� ��	����
���	
�	����	�
����	��$������
�������������%��
�������	�����	��$������
�����������	
��	������
���	
�	����	�����
���	���	�����!�
'���������	
�����������$�$�����������������(�!
!������)*�
���+!,*-�����������
�����������������	�����	�����	�������
�	�������������	
�����!�

1. Introduction

The main challenge in clustering is to find the
correct global allocation of the clusters. The exact
location of the partition boundaries is less relevant
since the exact partition boundaries can be locally fine-
tuned by ./���	� algorithm.

According to the above definition, the solution
shown in Fig. 1 (current solution) is not the correct
clustering. Most of the centroids at the top are
correctly allocated, except that there are two centroids
in one cluster. In the middle, one centroid is also
missing. K-means is not able to fix the problem as the
two regions are spatially separated from each other,
and gradual changes cannot therefore happen. This
problem is typical for data that contains well-separated
clusters.

The clustering can be found by a sequence of
��	����
��&��� and by fine-tuning their exact location
by k-means. In Fig. 1, only one swap is enough to fix
the problem. Important observation is that it is not
necessary to remove one of the redundant centroids,
and to relocate the centroid within the missing cluster.
Instead, it is sufficient that the swap is made in the
neighborhood of the problematic regions.

Swap-based or closely related methods have been
considered in [1] but the main drawback is the

computational complexity. Much simpler but effective
approach is to select the swap randomly in a trial-and-
error manner. This approach was first formulated as
��$�� ������ [2], and then simplified to ��	
���0�
�
������ ������ [3]. The main observation was that the
same quality is reached independent on the
initialization. The same conclusion was later confirmed
by other authors [4].

Current solution Centroid swapping

Two centroids, but
only one cluster.

One centroid, but
two clusters.

Local repartition Fine-tuning by K-means

Swap is made from
centroid rich area to
centroid poor area..

�������	
����
�������
��
�����������
��������

We formulate this ��	
����&�� (RS) technique as

a probabilistic clustering algorithm. We show by
theoretical analysis and experimental results that the
algorithm outperforms k-means clustering both in time
and quality, and it reaches competitive quality with
agglomerative clustering but much faster. The
algorithm is also extremely simple to implement, and
therefore, useful for practitioners.

978-1-4244-2175-6/08/$25.00 ©2008 IEEE

RandomSwap(X) � C, P

C � SelectRandomRepresentatives(X);
P � OptimalPartition(X, C);

REPEAT T times

(Cnew,j) � RandomSwap(X, C);
Pnew � LocalRepartition(X, Cnew, P, j);
Cnew, Pnew � Kmeans(X, Cnew, Pnew);
IF f(Cnew, Pnew) < f(C, P) THEN

(C, P) � Cnew, Pnew;

RETURN (C, P);

��������
�����������
����������
������������
����
�
��
���������������� !����������
�
��"��

����"##��
$
�����
��#�����#������#��������#���
�%�

2. Number of iterations

The probability to fix one incorrectly allocated
cluster by centroid swap, we need to find favorable
centroid for removal, and find favorable location for
the new centroid. For adding new cluster, there are 1
distinct locations in total (one per each data vector) but
only 2 of them is uniquely distinct (one per each
cluster). However, the exact location within the cluster
is not important since k-means can relocate them
within just a few iterations.

At first sight, the probability for a successful swap
seems to be at order of (1/2)2. However, the capability
of k-means to perform local fine-tuning is not limited
within cluster. It can also move centroids between
neighbor clusters by gradual movements if their
distance is smaller than the deviation within the
clusters. It is therefore not necessary to find exactly the
correct clusters for removal and insertion, but selecting
a neighbor cluster is sufficient.

By following the assumption that any neighbor of
the desired cluster is good enough for the removal and
for addition, the probability can be approximated as:

�(good swap) = (�/2)�(�/2) = (�/2)2

where � is the number of neighbors, on average. It can
be estimated from 3���	��� ��������	 of the vector
space according to the given set of centroids.

The probability becomes lower when the number of
clusters (2) increases, and higher when the
dimensionality (
) increases. Interesting observation is
that the probability is independent on the number of
data vectors (1). Dependency on dimensionality is less
obvious but results from literature imply that �
increases exponentially with the dimensionality [5].

We define the probability to find the clustering in 4
iterations as �, and the probability for failure as %=1-�.

Assuming that only one swap is needed, the
probability of failure equals to the probability of
selecting 4 unfavorable swap in a row: % = 1-(�/2)2

We can estimate the number of iterations needed to
find the correct clustering with probability % as:

��
�

�
		

�
��

2

2

1loglog
2

4% �

��
�

�
		

�
�

�

2

2

1log

log

2

%4
�

(1)

The random swap method can now be formulated
as a probabilistic algorithm as follows. For a given
confidence level (probability %), iterate the algorithm
by the number of times given Eq. (1). It can be shown
that the number of iterations has tight bounds as:

��
�

�
		

�
��

2

2

ln -
�

2%4 (2)

Proof is omitted here and will be presented in the
journal version (in preparation).

In Fig. 1, we can visually estimate that the clusters
have about 4 neighbors, on average. This gives an
estimate for the probability of a favorable swap as
(�/2)2 = (4/15)2 � 7%. According to (1), 41 iterations
would be enough to find the correct clustering with
95% probability, and 95 iterations with 99.9%
probability. The dependency between � and 4 is
further demonstrated in Fig. 3.

0

20

40

60

80

100

0 50 100 150 200 250 300

Iterations

p

��������
�&�
'�'����(�
��������������'(��������
���

The above analyses were made for the case when at

most one cluster was incorrectly located. In the case of
�1-�4 data sets (see Section 4), this is the case for 60%
of any random initialization. In 38% times, there are
two incorrectly located clusters, and only rarely (<2%)
three or more swaps would be needed.

3. Efficiency of the overall algorithm

The efficiency of the method (see Fig. 2) depends

on how many iterations (swaps) are needed, and how
much time each iteration takes. Time complexity of a
single iteration depends on the implementation of the
following steps:

1. Swap of centroid.
2. Remove old cluster.
3. Create new cluster.
4. Update neighbor centroids.
5. Perform two k-means iterations.

The time complexities of these steps have been
summarized in Table 1. Steps 1 and 4 have only
marginal effect on the total processing time. The steps
2 and 3 (removal and addition) are efficient and
require only O(1) time, whereas the k-means iterations
are the bottleneck. Although we perform only 2
iterations, and use the fast reduced search variant [6],
the complexity of k-means sums up to 4�1 = O(�1).

Fig. 4 shows the distribution of the processing time
between the local repartition (steps 1-4) and k-means
(step 5) for a data set with 1=4096 vectors and 2=256
clusters. Selected numbers have been collected in
Table 1.

)�'���	
�)�����
����%��������������
'���*���
���'���
��������
*���	++�����,++��������
��
�

Step: Time 100 500
Centroid swap 3 3 3

Cluster removal 21 8448 10137
Cluster addition 21 8192 8192
Update centroid 41/2�5�2� + 1 61 60
K-means iter. � 4�1 285555 197327

Total O(�1) 302259 215719

�

� �

� �

� �

� �

� � �

� � �

� � �

� 	 � � � � � 	 � � � � � 	 � � � � � 	 � � � � � 	 � 	 � �

� � � � � � �
�

� �
� � � � � � � � � �

� � � � � � �
�

� �
� � � � � � � � � �

� � � � �
�

� � ! � � � � � � � �

" $ % & ')

�������-
�.��'���
�����������
�������������*���
���
��/������'(��������
������������������������
��
�

The total processing time is the time required per
single iteration multiplied by the number of iterations.
Based on the results of Sections 2, it is estimated as:

� � � �
��
�

�
		

� �
�
��� * 12%/1*2%/214

2

2

2 ln
ln , � (3)

From (3), we can make the following observations
about the time complexity of the algorithm.

• Logarithmic dependency on %.
• Linear dependency on 1.
• Quadratic dependency on 2.
• Inverse dependency on �.

The main advantages are that the time complexity
increases only linearly with the size of data, and that
the probability of failure (%) has only minor effect on
the processing time. Furthermore, since � increases
with the dimensionality, the algorithm has inverse
dependency on dimensionality. Thus, the higher the
dimensionality, the faster is the algorithm.

4. Experiments

We cluster the data sets from [7] including four
generated data sets, and four image data sets
(http://cs.joensuu.fi/sipu/datasets/).

)�'����
�0*���������'���
�������'
������
��

Set
� � Set
� �

6��

�� 16 15.3 �1� 2 3.9
7����� 3 7.2 �2� 2 3.3

2����8������� 16 38.7 �3� 2 3.6
'������ 2 5.3 �4� 2 3.7

Table 2 reports the observed number of neighbors.

Using these �-values, we calculated the estimated
number of iterations required to obtain the correct
clustering with three different failure probabilities
(10%, 1% and 0.1%), see Table 1. The number of
iterations is relatively small for the higher dimensional
data sets 6��

� and 2���� 8������: 589 and 89.
Significantly higher number of iterations is needed for
the 2- and 3-dimensional sets ('�����, 7����).

Three other clustering methods were implemented:
./���	� (KM), �������
� ./���	� (RKM) and
�

����������� ��������	
 (AC). K-means results are
obtained by the fast exact variant [6] [8]. The repeated
k-means is the best result after 10 repeats.
Agglomerative clustering refers to Ward’s method as
implemented in [9].

The results are summarized in Table 3. The
proposed RS algorithm reaches the result of k-means
(KM and RKM) within a few iterations, and bypasses

AC by using less iterations than indicated by the
%=1%. The only exception is the Europe data set,
which has relatively large number of clusters and low
dimensionality. Nevertheless, the result of AC is
outperformed after 30226 iterations.

Time-distortion comparison of the proposed
method and RKM are illustrated in Fig. 5. With the
higher dimensional data sets, the method works nearly
as fast as k-means, but it is able to provide
significantly better result when iterated further. Table 4
summarizes comparative results for error probability of
%=1%, which shows the competence against AC as
well.

)�'����
�.��'���
���������
�������������������!�����

��/���������������
�'(���������
���������
���

Iterations required
according to (1)

Iterations needed to
bypass

Data set
%=
0.1

%=
0.01�

%=
0.001� KM RKM AC

6��

�� 644 1287 1931 11 22 749

7����� 2910 5820 8730 7 53 148

2����8������� 100 200 299 13 52 2742

'������ 5371 10742 16113 1476 1477 30226

6�9�71� 1136 2272 3408 38 54 1606

6�9�72� 5221 10441 15661 8 23 902

6�9�73� 1513 3026 4539 15 28 123

�1� 33 66 99 1 17 41

�2� 47 93 140 2 35 59

�3� 39 78 117 9 27 45

�4� 37 74 111 9 14 14

�

)�'���-
�������(�
���������������/�����(�
�
������
��
������/1+
+	�!��23�����04�

Processing time
(seconds)

Clustering quality
(mse) Data set�

RS RKM AC RS� RKM AC

6��

�� 85 17 40 167.6 178.4 168.9

7����� 531 45 509 5.94 6.41 6.27

2����8������� 21 34 116 5.77 5.87 5.36

'������ 46709 9142 10477 2.83 3.38 2.62

6�9�71� 1824 428 3432 4.64 5.27 4.73

6�9�72� 2009 108 3464 2.28 6.46 2.28

6�9�73� 2324 409 3466 1.86 2.11 1.96

�1� 0.7 0.7 7 8.92 13.51 8.93

�2� 1.0 1.0 7 13.28 16.82 13.44

�3� 1.0 1.5 7 16.89 18.60 17.70

�4� 1.0 2.0 8 15.75 16.64 17.52

Birch2

0.0

2.0

4.0

6.0

8.0

10.0

1 10 100 1000

M
ill

io
ns

Time

M
S

E

Repeated k-means

Random
Swap

�������,
�)���5����
���
�����������(��

5. Conclusion

We have formulated a simple swap-based method

as a probabilistic clustering algorithm. It is very simple
to implement, and it outperforms competitive methods
in efficiency. We conclude that the method has
potential to be widely used algorithm for practitioners.

References

1. A. Likas, N. Vlassis and J.J. Verbeek. The global k-

means clustering algorithm. :�����	� 9���
	����	
36:451-461, 2003.

2. P. Fränti, J. Kivijärvi and O. Nevalainen. Tabu search
algorithm for codebook generation in VQ. :�����	�
9���
	����	, 31(8):1139-1148, August 1998.

3. P. Fränti and J. Kivijärvi. Randomised local search
algorithm for the clustering problem. :�����	�8	�������
�	
�8���������	�, 3(4):358-369, 2000.

4. T. Kanungo, D.M. Mount, N. Netanyahu, C. Piatko,
R. Silverman, and A.Y. Wu. A local search
approximation algorithm for k-means clustering.
����������	���;�������, 28(1):89-112, May 2004.

5. V. Pestov, “On the geometry of similarity search:
dimensionality curse and concentration of measure”,
�	��������	�:�������	
�<������, vol. 73, p. 4751, 2000.

6. T. Kaukoranta, P. Fränti and O. Nevalainen. A fast
exact GLA based on code vector activity detection.
�'''�4��	�!����
��:���!, 9(8):1337-1342, 2000.

7. P. Fränti and O. Virmajoki. Iterative shrinking method
for clustering problems. :�����	� 9���
	����	�
39(5):761-765, May 2006.

8. K.-L. Chung and J.-S. Lin. Faster and more robust
point symmetry-based k-means algorithm. :�����	�
9���
	����	, 40(2):410-422, February 2007.

9. P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang.
Fast and memory efficient implementation of the exact
PNN. �'''� 4��	�!� ���
�� :���!, 9(5):773-777, 2000.

