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1. Introduction 
 

The main challenge in clustering is to find the 
correct global allocation of the clusters. The exact 
location of the partition boundaries is less relevant 
since the exact partition boundaries can be locally fine-
tuned by ./���	� algorithm.  

According to the above definition, the solution 
shown in Fig. 1 (current solution) is not the correct 
clustering. Most of the centroids at the top are 
correctly allocated, except that there are two centroids 
in one cluster. In the middle, one centroid is also 
missing. K-means is not able to fix the problem as the 
two regions are spatially separated from each other, 
and gradual changes cannot therefore happen. This 
problem is typical for data that contains well-separated 
clusters. 

The clustering can be found by a sequence of 
��	����
��&��� and by fine-tuning their exact location 
by k-means. In Fig. 1, only one swap is enough to fix 
the problem. Important observation is that it is not 
necessary to remove one of the redundant centroids, 
and to relocate the centroid within the missing cluster. 
Instead, it is sufficient that the swap is made in the 
neighborhood of the problematic regions. 

Swap-based or closely related methods have been 
considered in [1] but the main drawback is the 

computational complexity. Much simpler but effective 
approach is to select the swap randomly in a trial-and-
error manner. This approach was first formulated as 
��$�� ������ [2], and then simplified to ��	
���0�
�
������ ������ [3]. The main observation was that the 
same quality is reached independent on the 
initialization. The same conclusion was later confirmed 
by other authors [4].  

Current solution Centroid swapping

Two centroids, but
only one cluster.

One centroid, but
two clusters.

Local repartition Fine-tuning by K-means

Swap is made from
centroid rich area to
centroid poor area..
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We formulate this ��	
����&�� (RS) technique as 

a probabilistic clustering algorithm. We show by 
theoretical analysis and experimental results that the 
algorithm outperforms k-means clustering both in time 
and quality, and it reaches competitive quality with 
agglomerative clustering but much faster. The 
algorithm is also extremely simple to implement, and 
therefore, useful for practitioners. 
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RandomSwap(X) � C, P 

C � SelectRandomRepresentatives(X); 
P � OptimalPartition(X, C); 

REPEAT T times 

(Cnew,j) � RandomSwap(X, C); 
Pnew � LocalRepartition(X, Cnew, P, j); 
Cnew, Pnew � Kmeans(X, Cnew, Pnew); 
IF f(Cnew, Pnew) < f(C, P) THEN 

(C, P) � Cnew, Pnew; 

RETURN (C, P); 
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2. Number of iterations 
 

The probability to fix one incorrectly allocated 
cluster by centroid swap, we need to find favorable 
centroid for removal, and find favorable location for 
the new centroid. For adding new cluster, there are 1 
distinct locations in total (one per each data vector) but 
only 2 of them is uniquely distinct (one per each 
cluster). However, the exact location within the cluster 
is not important since k-means can relocate them 
within just a few iterations.  

At first sight, the probability for a successful swap 
seems to be at order of (1/2)2. However, the capability 
of k-means to perform local fine-tuning is not limited 
within cluster. It can also move centroids between 
neighbor clusters by gradual movements if their 
distance is smaller than the deviation within the 
clusters. It is therefore not necessary to find exactly the 
correct clusters for removal and insertion, but selecting 
a neighbor cluster is sufficient.  

By following the assumption that any neighbor of 
the desired cluster is good enough for the removal and 
for addition, the probability can be approximated as: 

�(good swap) = (�/2)�(�/2) = (�/2)2 

where � is the number of neighbors, on average. It can 
be estimated from 3���	��� ��������	 of the vector 
space according to the given set of centroids. 

The probability becomes lower when the number of 
clusters (2) increases, and higher when the 
dimensionality (
) increases. Interesting observation is 
that the probability is independent on the number of 
data vectors (1). Dependency on dimensionality is less 
obvious but results from literature imply that � 
increases exponentially with the dimensionality [5]. 

We define the probability to find the clustering in 4 
iterations as �, and the probability for failure as %=1-�. 

Assuming that only one swap is needed, the 
probability of failure equals to the probability of 
selecting 4 unfavorable swap in a row:  % = 1-(�/2)2 

We can estimate the number of iterations needed to 
find the correct clustering with probability % as: 
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The random swap method can now be formulated 
as a probabilistic algorithm as follows. For a given 
confidence level (probability %), iterate the algorithm 
by the number of times given Eq. (1). It can be shown 
that the number of iterations has tight bounds as:  
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Proof is omitted here and will be presented in the 
journal version (in preparation).  

In Fig. 1, we can visually estimate that the clusters 
have about 4 neighbors, on average. This gives an 
estimate for the probability of a favorable swap as 
(�/2)2 = (4/15)2 � 7%. According to (1), 41 iterations 
would be enough to find the correct clustering with 
95% probability, and 95 iterations with 99.9% 
probability. The dependency between � and 4 is 
further demonstrated in Fig. 3. 
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The above analyses were made for the case when at 

most one cluster was incorrectly located. In the case of 
�1-�4 data sets (see Section 4), this is the case for 60% 
of any random initialization. In 38% times, there are 
two incorrectly located clusters, and only rarely (<2%) 
three or more swaps would be needed.  

 



3. Efficiency of the overall algorithm 
 
The efficiency of the method (see Fig. 2) depends 

on how many iterations (swaps) are needed, and how 
much time each iteration takes. Time complexity of a 
single iteration depends on the implementation of the 
following steps: 

1. Swap of centroid. 
2. Remove old cluster. 
3. Create new cluster. 
4. Update neighbor centroids. 
5. Perform two k-means iterations. 

The time complexities of these steps have been 
summarized in Table 1. Steps 1 and 4 have only 
marginal effect on the total processing time. The steps 
2 and 3 (removal and addition) are efficient and 
require only O(1) time, whereas the k-means iterations 
are the bottleneck. Although we perform only 2 
iterations, and use the fast reduced search variant [6], 
the complexity of k-means sums up to 4�1 = O(�1).  

Fig. 4 shows the distribution of the processing time 
between the local repartition (steps 1-4) and k-means 
(step 5) for a data set with 1=4096 vectors and 2=256 
clusters. Selected numbers have been collected in 
Table 1. 
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Step: Time 100 500 
Centroid swap 3 3 3 

Cluster removal 21 8448 10137 
Cluster addition 21 8192 8192 
Update centroid 41/2�5�2� + 1 61 60 
K-means iter. � 4�1 285555 197327 

Total O(�1) 302259 215719 
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The total processing time is the time required per 
single iteration multiplied by the number of iterations. 
Based on the results of Sections 2, it is estimated as: 
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From (3), we can make the following observations 
about the time complexity of the algorithm. 

• Logarithmic dependency on %. 
• Linear dependency on 1. 
• Quadratic dependency on 2. 
• Inverse dependency on �. 

The main advantages are that the time complexity 
increases only linearly with the size of data, and that 
the probability of failure (%) has only minor effect on 
the processing time. Furthermore, since � increases 
with the dimensionality, the algorithm has inverse 
dependency on dimensionality. Thus, the higher the 
dimensionality, the faster is the algorithm. 
 

4. Experiments 
 

We cluster the data sets from [7] including four 
generated data sets, and four image data sets 
(http://cs.joensuu.fi/sipu/datasets/).  
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Set 
� � Set 
� � 

6��

�� 16 15.3 �1� 2 3.9 
7����� 3 7.2 �2� 2 3.3 

2����8������� 16 38.7 �3� 2 3.6 
'������ 2 5.3 �4� 2 3.7 

 
Table 2 reports the observed number of neighbors. 

Using these �-values, we calculated the estimated 
number of iterations required to obtain the correct 
clustering with three different failure probabilities 
(10%, 1% and 0.1%), see Table 1. The number of 
iterations is relatively small for the higher dimensional 
data sets 6��

� and 2���� 8������: 589 and 89. 
Significantly higher number of iterations is needed for 
the 2- and 3-dimensional sets ('�����, 7����). 

Three other clustering methods were implemented: 
./���	� (KM), �������
� ./���	� (RKM) and 
�

����������� ��������	
 (AC). K-means results are 
obtained by the fast exact variant [6] [8]. The repeated 
k-means is the best result after 10 repeats. 
Agglomerative clustering refers to Ward’s method as 
implemented in [9].  

The results are summarized in Table 3. The 
proposed RS algorithm reaches the result of k-means 
(KM and RKM) within a few iterations, and bypasses 



AC by using less iterations than indicated by the 
%=1%. The only exception is the Europe data set, 
which has relatively large number of clusters and low 
dimensionality. Nevertheless, the result of AC is 
outperformed after 30226 iterations. 

Time-distortion comparison of the proposed 
method and RKM are illustrated in Fig. 5. With the 
higher dimensional data sets, the method works nearly 
as fast as k-means, but it is able to provide 
significantly better result when iterated further. Table 4 
summarizes comparative results for error probability of 
%=1%, which shows the competence against AC as 
well. 
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Iterations required 
according to (1) 

Iterations needed to 
bypass 

Data set 
%= 
0.1 

%= 
0.01�

%= 
0.001� KM RKM AC 

6��

�� 644 1287 1931 11 22 749 

7����� 2910 5820 8730 7 53 148 

2����8������� 100 200 299 13 52 2742

'������ 5371 10742 16113 1476 1477 30226

6�9�71� 1136 2272 3408 38 54 1606

6�9�72� 5221 10441 15661 8 23 902 

6�9�73� 1513 3026 4539 15 28 123 

�1� 33 66 99 1 17 41 

�2� 47 93 140 2 35 59 

�3� 39 78 117 9 27 45 

�4� 37 74 111 9 14 14 
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Processing time 
(seconds) 

Clustering quality 
(mse) Data set�

RS RKM AC RS� RKM AC 

6��

�� 85 17 40 167.6 178.4 168.9

7����� 531 45 509 5.94 6.41 6.27

2����8������� 21 34 116 5.77 5.87 5.36

'������ 46709 9142 10477 2.83 3.38 2.62

6�9�71� 1824 428 3432 4.64 5.27 4.73

6�9�72� 2009 108 3464 2.28 6.46 2.28

6�9�73� 2324 409 3466 1.86 2.11 1.96

�1� 0.7 0.7 7 8.92 13.51 8.93

�2� 1.0 1.0 7 13.28 16.82 13.44

�3� 1.0 1.5 7 16.89 18.60 17.70

�4� 1.0 2.0 8 15.75 16.64 17.52
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5. Conclusion 

 
We have formulated a simple swap-based method 

as a probabilistic clustering algorithm. It is very simple 
to implement, and it outperforms competitive methods 
in efficiency. We conclude that the method has 
potential to be widely used algorithm for practitioners. 
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