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Estimating Tree Height Distribution Using
Low-Density ALS Data With and

Without Training Data
Lauri Mehtätalo, Anni Virolainen, Jukka Tuomela, and Petteri Packalen

Abstract—This study applies an approach based on stochastic
geometry for retrieval of forest characteristics from airborne laser
scanning (ALS) in two situations: 1) without ground-measured
training data and 2) with training data. The applied model treats
the ALS echo heights as an outcome of a random process, express-
ing the observed heights of canopy envelope as a function of stand
density, the parameters of the tree height distribution, and the
shape of the individual tree crown. The model was applied to a
eucalyptus plantation dataset with known spacing, where the main
interest was to estimate the plot-specific tree height distribution.
Estimation without training data resulted in RMSEs of 2.9 and
0.9 m for mean and dominant heights, respectively. Estimation
using training data resulted in RMSE’s of 1.4 and 0.8 m, respec-
tively. In both cases, the estimates of dominant height were more
accurate than with the reference method, but the estimates of
mean height were less accurate (area-based approach; RMSEs 1.1
and 0.9 m, respectively). The model-based method was robust to
substantial decrease in echo density from 1.4 echoes/m2 to 0.14
echoes/m2.

Index Terms—Airborne laser scanning (ALS), eucalyptus, forest
inventory, recovery, height, stochastic geometry.

I. INTRODUCTION

A IRBORNE laser scanning (ALS) provides three-
dimensional (3-D) information on forest canopy, and the

use of it in forest inventory has increased rapidly (e.g., [1], [2]).
There are two main approaches to recover stand attributes. In
a single-tree detection [3], individual trees are detected from
the point cloud to produce tree-specific information. Only
trees visible from above are detected and trees lying under
the dominant tree layers often remain undetected [4]. This
approach requires high echo density but does not necessarily
need ground measured training data for tree height recovery.
In the area-based approach [5], the data derived from laser
scanning are used to estimate different forest attributes for plots
and stands. It uses low echo density (usually about one echo
per square meter). A regression approach, either parametric
[5] or nonparametric [6], is used to generalize the relationship
of ALS data and ground measurements from sample plot
locations to other locations. The predictors of the regression
model are different characteristics of the laser data, such as
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quantiles of the echo heights, or proportion of echoes below
a given threshold height. Currently, ALS data are routinely
used in forest management inventories of seminatural forests
in boreal conditions (e.g., [7]), but studies on the use of it on
other forest types, such as Eucaluptys plantations, have been
conducted as well (e.g., [8]–[10]).

The benefit of ALS data over other remote sensing materi-
als, such as aerial and satellite images, is that ALS data include
direct measurements of the dimensions of forest canopy.
Therefore, the distribution of ALS echo heights has a math-
ematical relationship with the tree heights. Motivated by this
fact, the distribution of ALS echo heights is often used as a
measure of the canopy structure of the stand (e.g., [11]–[15]).
However, the dependence of the canopy structure on the stand
structure, measured, e.g., with the distribution of tree heights
or diameters, is complex due to several reasons. These include
the effects of stand density, crown overlap, individual crown
shape, and variation in the crown projection area (see [16] for
a detailed description of these issues). Such situation is natu-
rally approached by a stochastic geometric approach [17], by
recognizing that ALS provides measurements of the union of
tree crowns, whereas the primary interest in forest inventory is
on the individual trees that form this union. Magnussen et al.
[18] developed such models for tree height recovery that take
into account the effect of individual crown shape and the crown
projection area. More sophisticated and even better justified
models were published by Sun and Ranson [19], and Ni-Meister
et al. [20] to model the energy of ALS echoes for a given for-
est stand (see also [11], [21]). Mehtätalo and Nyblom [22], [23]
treated the forest stand as an outcome of a stochastic geometric
process, parameters of which were the characteristics of interest
in forest inventory.

To summarize, even though ALS has proved to be very use-
ful in forest inventory applications, the relationship between
the laser measurements and tree attributes is not very well
known. Therefore, selection of the predictors for the models
of the area-based approach is based mostly on intuition and
empirical findings, and not on well-established theory about the
processes generating the laser echo. In this study, we take a step
toward this direction by applying the model of Mehtätalo and
Nyblom [23] for estimation. We call this approach model-based
approach in contrast to the conventional (empirical) area-based
method.

Our approach is based on the concept of canopy envelope.
The canopy envelope of a sample plot is a solid, moderately
smooth surface that covers all trees like a hood when seen from
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above, and has the minimum volume below it [16]. We use a
model that expresses the probability distribution of the canopy
envelope height as a function of stand density, the parameters
of the height distribution of trees, and the shape of individual
tree crowns. The model has been developed for three differ-
ent spatial patterns of tree locations: 1) random locations [22];
2) square grid [23]; and 3) rectangular grid pattern of locations
[24]. Applications to empirical datasets have been previously
reported [23], [24]. Especially, Mehtätalo et al. presented a
two-stage approach, where the first stage included model train-
ing using training sample plots and the second stage included
estimation for evaluation plots [24]. The model also enables
estimation of all its parameters without field-measured train-
ing dataset using low-density data. However, such formulation
of the model has not been presented before nor evaluated with
empirical data.

This study applies the rectangular grid model [24] to the sit-
uation where no field measured training data are available. In
addition, two different procedures utilizing ground-measured
training data are presented and evaluated. The robustness of
the model-based approach to decreased echo density is also
evaluated. Three small improvements to model formulation
and estimation procedures are implemented. First, the differ-
ence between the top surface of the canopy and echo height is
allowed through a fixed shift parameter in the model. Second,
the individual tree shape is modeled using the Lamé curve [25]
instead of the ellipse used in the previous publications. Third,
a new approximation of the likelihood is presented for model
fitting.

II. MATERIAL

The study material includes sample plots from the pulp-
wood plantation growing eucalyptus in Bahia state, Brazil. This
study used a dataset of 37 sample plots, of which 18 were
used for training and 19 for evaluation. The plots were mea-
sured in August–September 2008. The plots represented the
whole range of mean canopy heights in the plantation. Plots
were located in 13 different stands. Trees in the plantation
are planted in rows, with fixed square grid spacing. On each
circular sample plot of radius 13 m, all trees were callipered
for diameter. Every seventh tree was measured for height so
that height was measured typically from six or seven trees per
plot. Näslund’s height curve [26] was fitted by stands and used
to predict heights for trees without height measurement. The
RMSE of predicted height of the tree level was 1.14 m and
bias −0.004 m, and the RMSE of mean height of the plot level
was 0.54 m and bias −0.002 m. However, predicted heights
from this model are hereafter regarded as the true heights,
and the prediction error in them is ignored. A summary of the
training and evaluation plots is shown in Table I.

The ALS data were collected on August 16, 2008 using an
Optech ALTM 3100 laser scanning system. The flight altitude
was approximately 1200 m above ground level and the field
of view was 30◦. The nominal sampling density of about 1.5
measurements/m2, totalling 471–1209 echoes per each of the
530 m2 sample plot; the large variation in echo density results
in that some plots were covered by one and others by two
flight lines. The footprint diameter was about 35 cm. A digital

TABLE I
BASIC INFORMATION ON THE TRAINING AND EVALUATION DATASETS

elevation model (DEM) was generated from the ALS data.
There was no understory complicating the DEM modeling.
First, laser echoes were classified as ground and nonground
echoes using the method reported by Axelsson [27]. Then,
a raster DEM with a 1-m pixel size was interpolated using
ground echoes. Finally, the raster DEM was subtracted from
the ellipsoidal heights of laser echoes to scale the ALS data
to the above-ground level (hereafter denoted by z). We used
solely echo categories first of many and only. The observations
below 10 m were taken as ground hits and treated as zeroes in
the analysis. All trees were over 15 m tall, so a 10-m threshold
was regarded as sufficient.

III. METHODS

A. Model for a Tree

For simplicity of model formulation, it is assumed that the
forest stand is viewed directly from above, even though this
assumption is not exactly met in practice. The crown envelope
of an individual tree is handled in two pieces. In the upper part
above the level of maximum radius, the radius is decreasing
toward the tree top. In the lower part, the radius is the constant
describing the maximum radius although it would in reality
decrease toward the ground. The upper part of the envelope is
modeled using the Lamé curve [25](

z − qh

h− qh

)t

+
( r

R

)t

= 1 (1)

where z is the envelope height, h is the tree height, q =]0, 1[
the relative crown length, h− qh the distance between tree top
and the maximum crown radius, r the crown radius, R the max-
imum crown radius, and t a shape parameter of the curve (see
Fig. 1). When t increases, the curve approaches the rectangular
shape, and when t approaches 0, the curve aproaches the shape
of inverted letter T. Case t = 1 produces a conical shape and
t = 2 an ellipsoidal shape.

Solving (1) for h, and allowing an additional constant shift
parameter P between the envelope height and the height of
echo yields the following expression for the height of a tree
with crown envelope radius r at height z

h(z, r) =
z(

1− (
r
R

)t)1/t

(1− q) + q

+ P. (2)

The constant shift is justified by the assumption that the pulse
does not return at the top surface but penetrates into the crown.
For simplicity, all pulses are assumed to penetrate a similar
fixed amount, which is quantified in the parameter P . Thus,
function h has four parameters: 1) the maximum crown radius
R; 2) the relative height of the maximum radius q; 3) the
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Fig. 1. Lamé curve for a tree with the total height of h and maximum crown
radius R at height qh using four different values of parameter t.

shape parameter t; and 4) the shift P . These parameters of the
tree crown are denoted by θ = (R, t, q, P ), and assumed to be
common for all trees of a sample plot.

B. Model for Canopy Height of a Stand

Let F be the distribution function of tree heights. It can
be described, e.g., by the cumulative form of the Weibull
function as

F (h|ξ) = 1− exp

{
−
(
h

β

)α}
,

where ξ = (α, β) are Weibull parameters. Other functions than
Weibull could be used as well, but this function was chosen
because of its flexibility and established use in modeling tree
size [28], [29].

Let Z(v) be the height of the stand-specific canopy envelope
at a fixed point v, i.e., the vertical distance between the ground
level and the canopy envelope. The canopy envelope height at a
given point can be thought of as the maximum over the heights
of the tree-specific envelopes at that point. Therefore, the prob-
ability of having Z(v) below the height z above ground is the
probability that none of the neighboring tree crowns at height
z extend to point v [23]. Under independence of tree heights, it
can be written as

P (Z(v) ≤ z) =
N∏
i=1

Fh(z, ‖v − ui‖|θ)|ξ} (3)

where N is the number of neighboring trees at point v, θ
includes the crown shape parameters, ξ includes the parameters
of height distribution, and ‖v − ui‖ is the distance between the
fixed point v and the location ui of tree i.

Equation (3) assumes that the horizontal cross section of a
tree crown is circular. The N neighboring trees include those
trees that are located so close to the point v that their crowns

have a nonzero probability to reach to the point v. For a ran-
domly selected point within set A, the cumulative distribution
function of Z is the mean of (3) over the set. In a rectangular
grid pattern of tree locations, however, this mean is equal for
each grid cell (we ignore the possible effects of stand edge).
Therefore, for a grid spacing with distance l between rows and
distance m between trees of a row, the cumulative distribution
function of echo height is

G(z|θ, ξ) = 1

lm

∫ l

0

∫ m

0

N∏
i=1

F {h(z, ‖ui − v‖|θ)|ξ} dv

z ≥ 0. (4)

The corresponding probability density function is defined in
two parts. When z > 0, the probability density function is the
differential of the cumulative distribution function

g(z|θ, ξ) = 1

lm

∫ l

0

∫ m

0

N∑
i=1

⎡⎣f{h(z, ‖ui − v‖|θ)|ξ}

· d

dz
h(z, ‖ui − v‖|θ)

·
N∏

j=1,j �=i

F{h(z, ‖ui − v‖|θ)|ξ}
⎤⎦dv (5)

where f = F ′(x) is the probability density function of tree
heights. When z = 0, the probability mass is

g(z|θ, ξ) = G(z|θ, ξ).

C. Estimation

Estimation of parameters θ and ξ is done with the method of
maximum likelihood. Assuming that the laser observations are
an independent and identically distributed sample from the dis-
tribution (4) (see [23] for a discussion on these assumptions),
the log likelihood is the sum of logarithmic densities at the
observed values of z

�(θ, ξ) =

M∑
j=1

ln g(zj |θ, ξ) +M0 lnG(0|θ, ξ) (6)

where M is the number of echoes from crowns and M0 is the
number of ground echoes.

Computing the likelihood function using (6) is computation-
ally intensive for large datasets because of the numerical area
integral of (5). To decrease the computing time, we classi-
fied the observed nonzero values of z into a small number of
classes. We used 15 classes of variable width (average 1–2 m),
so that each class had an equal number of observations. For
each class i, the mean of z values was calculated as zi. The
zero echo heights formed an additional, 16 class. The resulting
approximate likelihood was

�(θ, ξ) ≈
16∑
i=1

ni ln g(zi|θ, ξ)

where ni is the number of observations in class i.
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The main parameters of interest are the Weibull parameters ξ,
which specify the plot-specific distribution of tree heights. In
addition, the model includes the crown-shaped parameters θ.
Both parameter vectors can be simultaneously estimated using
ALS data, but known values of either ξ or θ can be used as well.
This enables different estimation procedures, which are detailed
in the following sections. Especially, we present a one-stage
procedure, where all parameters are estimated from ALS data
without using training data at all, and two versions of a two-
stage procedure, where information on measured tree heights
of the training plots is utilized.

1) Estimation Without Training Data: In this procedure
called nofield, the crown shape parameters and Weibull param-
eters of the evaluation plot in question are all estimated by
maximizing the likelihood function (6) jointly with respect to
θ and ξ. However, the shift parameter P is assumed to be
known in advance for a technical reason: the solution with-
out this assumption is not unique. We set the value of P to
2.1 m, according to the experience gained from the two-stage
approach described below; and recognizing that a similar value
was previously reported for broadleaved tree data [30].

2) Estimation By Utilizing Training Data: The procedures
using training data include two stages. First, the crown shape
parameters θ are estimated using the training dataset (Stage A).
Second, the Weibull parameters of the height distribution ξ are
estimated for the evaluation data using the estimated crown
parameters from stage A and laser echo heights from the plot
of question (Stage B). Two different two-stage procedures were
implemented: 1) a basic; and 2) a regress procedure.

The two stages of the basic procedure are as follows.
A) The Weibull distribution is fitted to the true tree heights

of each of the 18 training plots using the method of
maximum likelihood to get the estimates of Weibull
parameters ξ̂ for each plot. These estimates are used in
the likelihood function (6), and the crown shape parame-
ters θ̂ are estimated for the training plots. The correlation
of the resulting plot-specific estimates θ̂ with the plot-
specific means of the canopy echo heights is explored
graphically. If needed, a regression line is fitted to explain
the observed trend; otherwise, the mean of plot-specific
estimates is computed.

B) The crown shape parameters θ̃ are predicted for the 19
evaluation plots using the regressions or means from
stage A, and used in the likelihood (6), which is now
maximized with respect to the Weibull parameters ξ.
This results in an estimated height distribution for each
evaluation plot.

In the regress procedure, the estimated height distribution is
forced to have the mean height given by a predictive model
based on the training data. The procedure is similar to the basic
procedure, except for the following changes.

a) In addition to estimation of θ, mean height h̄k for each
training plot k is computed using the known tree heights
and a regression of plot-specific mean height is fitted. The
model for plot k is [31]

h̄k =
1

p0 + p1z90,k + p2z295,k + p3
√
z̄k

+ ek (7)

where p0, . . . , p3 are coefficients, z90,k and z95,k are the
percentiles of ALS echo heights, z̄k is the mean of the
laser echo heights, and ek is the residual for plot k. The
coefficients p0, . . . , p3 are estimated using nonlinear least
squares.

b) In addition to the crown shape parameters, also the mean
height is predicted for each evaluation plot using the
model of stage A. This enables profiling parameter β
from the Weibull distribution by using equation β =
h̄/Γ

(
1 + 1

α

)
, where h̄ is the predicted mean height; the

equation is based on the expected value of the Weibull
distribution. The resulting profile likelihood (6), is maxi-
mized with the only remaining parameter, i.e., the shape
parameter α of the Weibull distribution.

3) Area-Based Method: The empirical area-based method
is also implemented for the dataset. In that implementation, the
model of the form of (7) is fitted for both the mean and domi-
nant heights (mean height of 100 tallest trees/ha) in the training
dataset of this study. These models are used for prediction in the
evaluation data, and served as a reference method in evaluation
of the model-based approaches.

D. Evaluation

The fit of estimated Weibull distribution was evaluated using
Kolmogorov–Smirnov (KS) test on each plot. In addition,
the mean and dominant heights of the evaluation plots were
computed using the estimated distribution of tree heights as

HMEANk =

∫ ∞

0

uf(u|ξ)du

HDOMk =
N

100

∫ ∞

q

uf(u|ξ)du

where f(u|ξ) is the density of the estimated height distribution,
q is the (N − 100)/N th quantile of it, and N is the stand den-
sity (trees/ha). The accuracy of estimates compared to the true
data was evaluated in terms of root mean square error (RMSE),
bias, and correlation coefficient

RMSE =

√∑n
k=1(hk − ĥk)2

n

bias =

∑n
k=1(ĥk − hk)

n

r2 = cor(hk, ĥk)
2

where n is the number of plots, hk is the true mean or domi-
nant height of the plot k, h̄k is the estimated mean or dominant
height of the plot.

We also analyzed the influence of decreased echo density on
the results. For this purpose, the echo density was decreased
from 1.4/m2 to 0.35/m2 and 0.14/m2 and the estimation with
method basic was conducted using these low density datasets.
The thinning was conducted by taking systematically every 4th
and every 10th echo from the original data, where the echoes
were ordered according to time stamp of the echo.
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TABLE II
SUMMARY OF THE ESTIMATES OF THE CROWN SHAPE PARAMETERS IN

THE 19 EVALUATION PLOTS FOR THE ONE-STAGE PROCEDURE AND ON

THE 18 TRAINING PLOTS IN THE TWO-STAGE PROCEDURES

z̄ is the mean height of the canopy hits. In the
one-stage procedure, the penetration parameter
was set at P = 2.1 m.

Fig. 2. Shape of the crown as tree height increases.

IV. RESULTS

The results from the estimation of the crown shape parame-
ters are shown in Table II. The maximum radius R is similar for
both one- and two-stage methods and does not vary much. The
mean relative height of the maximum radius q is also similar for
both methods, but varies much between sample plots. The range
of the parameter t is also wide. With the one-stage procedure,
the estimates of t are over two in all but two plots, indicating
a shape that is more convex than an ellipsoid. In the two-stage
approach, a correlation between t and average echo height was
found. The fitted regression indicates increasing convexity as
tree height increases (Fig. 2).

The nonlinear regression models of the reference method
(Table III) had the RMSE of 1.097 and 0.896 m for the mean
and dominant height in the evaluation data, respectively. The
estimation using no field data (method nofield, Table IV) pro-
vided lower RMSE of dominant height than the reference
method (0.86 m) but much higher RMSE of mean height (about
2.9 m). From among the two two-stage procedures, which have
similar data needs than the reference method, the basic method
provided a lower RMSE of dominant height than the methods
reference and nofield (0.8 m), but a higher RMSE of mean

TABLE III
COEFFICIENTS AND THEIR STANDARD ERRORS FOR THE NONLINEAR

REGRESSION MODEL OF MEAN HEIGHT AND DOMINANT HEIGHT

The models provide the predictions of the reference method; however,
the model for mean height was used also in method regress.

height (1.4 m). Forcing the mean of the height distribution to
be equal to the prediction of the reference method (method
regress) decreased the RMSE of mean height to the level of the
reference method but increased the RMSE of dominant height
to 0.99 m. The biases of mean and dominant heigh were not sig-
nificantly different from zero (Table IV) for any of the methods
due to low number of sample plots.

To enable comparison of the estimated height distributions
with the true ones, the “true” Weibull parameters were esti-
mated for each plot by fitting the Weibull distribution to the
tree height data of each plot using maximum likelihood. KS
tests on these fits did not indicate any lack of fit. Fig. 3 plots
the ALS-based estimates of the Weibull parameters using meth-
ods nofield, basic, and regress on these true parameter values
of the plot. The estimated scale parameter (β) is strongly cor-
related with true scale parameter with both methods, but the
correlation between estimated and true shape parameter (α) is
weak. The estimation of the shape parameter was especially
inaccurate with the method nofield.

For a further insight into the results, the Weibull distributions
based on methods nofield, basic, and regress were compared
to the empirical height distribution of the plot using KS-test.
Of the 19 evaluation plots, Weibull distribution fitted well with
method nofield in two plots, with method basic in four plots,
and with regress in seven plots. However, despite this lack of
fit, the estimated height distribution was still many times able
to provide good estimates of mean and dominant height. For
example, in the plot 19 with regress method, the KS test indi-
cated severe lack of fit (p-value is 0.0008), but a graph of
the fitted density (Fig. 4, right, middle) does not show a big
difference between the shape of estimated and true Weibull dis-
tribution. Fig. 4 shows the empirical height histograms and the
fitted height distributions for three different plots using all three
methods. The evaluation plots, marked in Fig. 3, were chosen
to illustrate an example of a badly underestimated, well esti-
mated, and badly overestimated shape parameter α. These fits
are clearly illustrated with Fig. 4.

To illustrate the distribution of ALS echoes and the fitted
model, Fig. 5 shows the fitted density function g(z|θ, ξ) for
sample plot 3 (same plot as in the left panel of Fig. 4). The
estimated density function shows good fit to the observed laser
data.

The results with moderate and heavy thinned ALS data
showed only small differences compared to the results
with complete data (Table V). The RMSE of mean height
even slightly decreased, whereas that of dominant height
increased.
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TABLE IV
VALUES OF RMSE, BIAS, AND COEFFICIENT OF DETERMINATION FOR THE ESTIMATED MEAN HEIGHT AND DOMINANT HEIGHT

Fig. 3. Estimated Weibull parameters of height distribution with method nofield (top) and with the two-stage approaches (bottom). The example plots of Fig. 4
are labeled using the plot identification.

V. DISCUSSION

The study applied the model of Mehtätalo and Nyblom
[23] to the estimation of forest attributes in two situations:
1) in a situation where no field calibration data are used; and
2) in a situation where field measured data are used for model
training. Especially, we presented and evaluated a new area-
based method that did not utilize the ground measurements of
the training plots. The model for rectangular grid pattern of
tree locations was used [24]. However, some improvements in
the model and the estimation procedures were implemented,
including a constant shift parameter to take into account the
penetration of the pulse into tree crowns, replacing the ellip-
soidial crown shape with a shape based on Lamé function, and
introducing a two-stage approach that is able to utilize a fit-
ted model for mean height in estimation. For model fitting, an
approximate of the likelihood was presented to make the com-
putations faster. In addition, the robustness of the model-based

approach to substantial decrease in the echo density was
evaluated.

In the procedure that did not use training data, all param-
eters of the model were estimated in one stage by using the
ALS echo heights. However, the value for the shift parameter
was taken as given, because estimation of it using ALS data
without measured tree height information was not possible. The
approach has similar data needs than individual tree detection
approaches. However, it can utilize low echo density data, too,
as demonstrated in the evaluation where the echo density was
reduced to 0.14 echoes/m2.

The second applied approach was a two-stage approach,
where the first stage included estimation of the four tree crown-
related parameters using training plot data, and the second
stage includes the estimation of the distribution of tree heights
for other plots using the parameter estimates from the first
stage and ALS data from the plots of interest. With respect
to data needs, this approach is comparable to the area-based
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Fig. 4. True tree heights (histogram), the true Weibull density fitted to the tree heights (dashed line) and the estimated Weibull height distribution (solid line) on
three example sample plots. The estimates are based on procedures nofield (top) basic (middle), regress (bottom) for sample plots 3 (left), 7 (middle), and 19
(right).

approach, even though the detailed field measurements needed
from the training plots differ. The practical applications of these
two approaches were demonstrated with empirical data from
eucalyptus plantations with known spacing.

A specific property of our plantation dataset was that the rect-
angular spatial pattern, and therefore also the stand density were
known in advance. This information was utilized implicitly in
the model, and the main interest focused on the estimation of
the plot-specific distribution of tree heights. However, knowl-
edge of the density or spacing of trees is not necessary, and
the methods presented in this study could be tailored for plan-
tations with unknown density as well. In that case, the stand
density would just be an additional parameter of interest in the
model.

The fit of the estimated height distribution was evaluated
using the RMSE and bias of mean and dominant heights. Both
the one-stage and two-stage procedures provided more accu-
rate estimates of dominant height than the empirical area-based
method, which was used as a reference method. However, the
estimates of mean height were less accurate. As an attempt to

increase the accuracy of mean height estimation, we also pro-
posed the regress procedure, which ensured as good accuracy
of mean height as with the reference method. Unfortunately,
while significantly improving the accuracy of mean height, this
restriction reduced the accuracy of dominant height.

We also evaluated the effect of echo density in the accuracy
of prediction. Decreased echo density had only minor effect on
the accuracy of results. Therefore, both procedures are robust
to significant decrease in the echo density. This is an interesting
option especially with the nofield approach: no other methods
have been proposed that could be used for estimation using low-
density data without field measurement data.

The true heights of the data were based on predictions of
local regressions from a subsample of trees. The related pre-
diction error was ignored in accuracy assessment. In addition,
tree heights were measured only to the nearest 0.5 m. The
RMSE of height prediction was 0.54 m which is almost half of
the observed RMSE of mean heights of 1.1–1.4 m. Therefore,
the reported RMSEs of the mean height and dominant height
may be overestimates. In addition, the predicted tree heights
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Fig. 5. Graph of distribution of echo heights Z (histogram) and fitted density
g(z|θ, ξ) (line) in the one-stage procedure nofield (top) and in the two-stage
proceduress after step B5. The middle graph shows the result form method
basic and the bottom graph from method regress.

have lower variation than true tree heights have; therefore, the
height distributions regarded as true are too narrow. To con-
clude, ALS-based prediction of tree heights with our dataset is
so accurate with all these methods, that quite large proportion
of the observed errors may actually be due to the inaccuracy of
evaluation data.

There are also some previous research on the use of ALS
in Eucalyptus plantations [8]–[10]. Especially, Goncalves-Seco
et al. [32] predicted forest attributes in high-density eucalyptus
plantations using ALS data. They used linear and multiplicative

regression models to estimate attributes such as mean height,
dominant height, mean diameter, and volume. They had the
average echo density of about four echoes per square meter.
The RMSE of prediction error was 1.33 m for mean heights
and 1.18 m for dominant height, which are higher than with our
reference method and comparable to the results of our basic
method.

With respect to the data needs, the method nofield is com-
parable to the individual tree detection approach, where a row
detection algorithm was used with the data collected from the
same eucalyptus plantations [33]. Compared to their results, the
method nofield of this study gave more accurate predictions for
dominant height (RMSEs were 0.86 and 1.03 m, respectively),
but less accurate results for mean height (RMSEs of 2.86 and
1.49 m, respectively). However, as already noted, the model-
based method can be used also with low-density data, whereas
the ITD cannot.

The penetration parameter was estimated to be about 2 m.
The result is realistic if it is compared to Gaveau and Hill
[30], where the laser pulse penetration was 2.12 m for a tree
canopy of broadleaved trees dominated by oak and ash. The
reasons for penetration can be divided to two separate causes:
1) the laser pulse may hit an opening between the branches of
a tree crown and 2) the sensor needs some accumulated energy
before recording the reflected echo. The constant penetration
for a certain plot and inventory campaign might be suitable
model for the second cause, whereas the first cause is clearly
a random process even within a sample plot. Based on the sec-
ond cause above, we hypothesized that a fixed value within a
plot would provide a satisfactory model for the penetration.
However, the problems noticed in this study indicate that a
random component is needed to the model of penetration.
A natural starting point for the random penetration is provided
by the exponential distribution, which is based on the widely
applied Beer–Lambert’s law [34]. Assuming randomness in the
penetration would make it technically possible to estimate also
the parameters related to it in the method nofield.

The model-based approach provided accurate estimates of
the dominant height, which is computed using the right tail
of the height distribution. However, the prediction of mean
height was less accurate, and efforts to increase the accuracy
always led to decrease in the accuracy of dominant height.
A similar tradeoff between the RMSE of mean and dominant
height occurred also in the evaluation with decreased echo den-
sity. This may indicate that the shape of the predicted height
distribution was inconsistent with the observed heights of the
plot.

One possible reason for this inconsistency may be the above-
mentioned problems related to the estimation of true height.
Another reason, which we regard as the most important, is
that the model may not include all necessary components, or
that they are not parameterized flexibly enough. Alternatives
for improvements are, e.g., allowing randomness to the crown
shape and penetration. We have already outlined the devel-
opment of the model to this direction [16]. However, such
formulation introduces a bunch of computational problems into
the estimation, and the solution might be possible only by using
approximate bayesian methods [35]. A third possible problem



1440 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 4, APRIL 2015

TABLE V
EFFECT OF DECREASED ECHO DENSITY ON THE ACCURACY OF HEIGHT PREDICTION WITH METHODS BASIC AND NOFIELD

is that the estimation in current form is just too instable. A
Bayesian estimation with highly informative priors has also
been used as the solution to a similar problem [36]; however
such informative prior information was not availablle on the
Eucalyptus trees of this study. A fourth possible reason may be
the assumption that trees are seen directly from above, which
was quite badly violated for some sample plots in our dataset
where the field of view was 30◦. Taking into account the scan-
ning angle in the approach would require a new definition for
the whole concept of crown envelope, where the cross section
of observable tree canopy is assumed to increase monotonically
toward the ground.

The dataset of this study was an even-aged eucalyptus for-
est plantation. Such data were expected to be an easy dataset
because of the known spacing and stand density. However, the
results of this study were a disappointment in this respect. In
most practical situations, the spatial pattern varies among plots
and stand density is unknown. These issues provide additional
difficulties in applications. On the other hand, the crowns of
eucalyptus may actually be more variable and porous than, e.g.,
slowly growing ever-green conifer crowns, for which very good
results were reported for one old-growth Norway spruce sam-
ple plot [23]. In addition, another apporach based on stochastic
geometry showed promise in a recent study [37] for Scots
pine stands with canopy cover below 0.9. That approach uses
only two-dimensional (2-D) data of crown segments and has,
therefore, no assumptions on the vertical profile of tree crowns.

To summarize, this paper described the main principles on
how an area-based approach for estimation of forest attributes
could be formulated, starting from a stochastic geometric 3-D
model that treats forest canopy as the union of tree crowns. The
approach allowed estimation of tree height distribution using
low-density ALS data even in the absence of field measure-
ments. Even though the approach is intuitive and appealing,
the empirical results were unsatisfactory. Therefore, and as out-
lined in the text above, further development of the model and
estimation methods is needed before the method can be used in
practice.
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