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Abstract. We propose mean-shift to detect outlier points. The method 
processed every point by calculating its k-nearest neighbors (k-NN), 
and then shifting the point to the mean of its neighborhood. This is 
repeated three times. The bigger the movement, the more likely the 
point is an outlier. Boundary points are expected to move more than 
inner points; outliers more than inliers. The outlier detection is then a 
simple thresholding based on standard deviation of all movements. 
Points that move more than that are detected as outliers. The method 
outperforms all compared outlier detection methods. 
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Introduction 

Outliers are points that deviate from the typical data. They can represent significant 
information that are wanted to be detected such as fraud detection, public health, and 
network intrusion [1], and they can affect statistical conclusions based on significance 
tests [2]. Outliers can also be noise points who might harm the data analysis process. 
In any case, it is desired that the outliers can be detected. 

Outlier detection approaches fall roughly into global and local outlier models [3]. 
The global methods make a binary decision whether an observation is outlier while 
local methods assign a score to each point. This score indicates how likely a point is 
an outlier. The method then retrieves the top-n rankings as outliers, which gives more 
flexibility how to interpret the data. 

However, even the local outlier models need to select the top-n parameter; how 
many points are chosen as outliers. In this paper, we propose a new local outlier 
detection method in which such parameter is not needed. We first calculate outlier 
score for all data points, and then calculate the standard deviation from the 
distribution of all outlier scores to serve as a global threshold. This can be 
automatically determined. 

The way how we calculate the outlier scores is based on the idea presented in [4]. 
The effect of the noise is reduced by applying few iterations of medoid-shifting as 
follows. First we find k-nearest neighbors (k-NN) for every data point. Then we 
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replace the original points by the mean (or medoid) value of its neighbors. This 
process is iterated few times. This iterative process is demonstrated in Figure 1. 
However, instead of replacing the original point by its shifted version as in [4], we 
merely calculate how much it was moved, i.e. the distance between the original point 
and its shifted location. This distance defines the outlier score. Example of the outlier 
scores is shown in Figure 2. 

The accuracy of the proposed method is far better than any other we tested. The 
method is robust as it provides the same result with the same global threshold 
parameter whereas all comparative methods use the a priori knowledge of the amount 
of noise. Unlike the other methods, it has only one parameter to set (the size of 
neighborhood k). The proposed method is also easy to understand and simple to 
implement. 
 

 

Figure 1. Example of the iterative process of the medoid-shift [4]. 
 
 

 
Figure 2. Outlier scores (y-axis) for S1 dataset: true data points (gray) and noise points (red).  

The results are for the proposed DOD method (using medoid). 



1 Existing work and their limitations 

Minimum covariance determinant (MCD) [5] is based on statistical test with the 
assumption that the true data objects follow a (known) distribution and occur in a high 
probability region of this model. Outliers are expected to deviate strongly from this 
distribution.  

Distance-based approaches [6, 7, 8] are based on the assumption that true data 
objects have a dense neighborhood whereas outliers lie far apart from their neighbors. 
For example, in [9] a data point is marked as an outlier if there are at most k points 
within a given distance. The method in [6] calculates the k-nearest neighbors (k-NN), 
and use the distance to the kth neighbor. A slightly modified variant in [7] uses the 
average distance to all the k neighbors. Points with largest distances are considered as 
outliers.  

However, distance-based outlier detection models have problems if the data has 
areas of varying densities. Instead of using the distance values directly, a method 
called ODIN [7] analyzes the relationship of the point. For a given point, it calculates 
how many other points consider it as their k-nearest neighbor. The smaller the value, 
the more likely the point is an outlier. 

Density-based approaches are based on analyzing the neighborhood of the points. 
Local outlier factor (LOF) [10] calculates the local density of the neighborhood. 
Points that have lower density than their neighbors are more likely outliers. LOF is 
the best method among those compared in [11], which comprises a very systematic 
set of experiments.  

Topology of the neighborhood has also been considered in recent methods. In [12], 
a point is represented by convex combination of its k-nearest neighbors. For each 
point, the negative components in its representation correspond to the boundary points 
among its affine combination of points. 

2 Mean-shift outlier detection 

In this work, we proposed a simple and effective method, which has fewer parameters 
than the existing methods. We analyze data points locally based on their 
k-neighborhoods. We propose a method called mean-shift outlier detection (MOD). 

2.1 Mean-shift process 

The idea of mean-shift is to calculate k-nearest neighbors, and then replace the point 
by the mean of its k neighbors. This forces points to move towards denser areas. 
Hence the distance of movement can be an evidence of being outlier; points with 
greater movement are more likely to be outliers. The mean-shift process is 
summarized in Algorithm 1. 

The idea is closely related to mean-shift filtering used in image processing [13], 
and mean-shift clustering algorithm [14]. The first one takes pixel value and its 
coordinates as the feature vector, and transforms each feature towards the mean of its 
neighbors. It has been used for detecting fingerprint and contamination defects in 



multicrystalline solar wafers [15]. The idea resembles also low-pass and median 
filtering used for image denoising. 

2.2 Mean-shift for outlier detection 

Mean-shift clustering [14] iterates the process until convergence. However, since we 
are not clustering the data but aim at finding outliers, we use the processing result 
merely for analysis purpose. In specific, we calculate the location of the points before 
and after the shifting. This difference is used as the outlier score, called mean-shift 
score.  

The final step is to detect the outliers. The key idea is to analyze the distribution of 
the obtained mean-shift scores. In specific, we calculate the standard deviation (SD) 
of all the scores in the dataset. This value is then used as global threshold; any point 
with bigger outlier score than SD is marked as an outlier. The pseudo code of the 
algorithm is summarized in Algorithm 2.  

Both mean and median have been used in the mean-shift clustering concept 
[14, 16]. The benefit of using mean is that it is trivial to calculate for numeric data. 
However, it can cause blurring because a very noisy point can bias the calculation of 
the mean of clean points as well. Medoid can be more robust in this sense. It is 
calculated as the point that has minimal total distance to all other points in the same 
k-NN neighborhood. We call the two variants as mean-shift outlier detection (MOD) 
and medoid-shift outlier detection (DOD). 

The method in [6] can be considered as a special case of our method with the 
following differences: (a) we iterate the process three times, (b) we calculate the 
threshold automatically, and (c) we use medoid instead of the mean. If we iterated 
only once, used mean, and did not calculate the SD then the method would equal to 
the variant of [6] except using the average distance to neighborhood [7]. The 
parameter three was chosen based on the experiments in [4]. 

 
 

Algorithm 1: Mean-shift process 

Input:  X ∈ Rdn, k 

Output:  Y ∈ Rdn 

For every point x∈X: 

Step 1:  Find its k-nearest neighbors kNN(x)  
Step 2:  Calculate the mean M of the neighbors kNN(x) 
Step 3:  Replace the point x by the mean M and save it to Y 

 
Algorithm 2: Mean-shift outlier detection (MOD) 

Input:  X ∈ Rdn, k 

Output:  N ∈ Rdn 

Step 1:  Repeat Algorithm 1 three times to get Y 

Step 2:  For every point xi∈X and its shifted version yi∈Y calculate distance Di =|xi-yi| 



Step 3:  Calculate the standard deviation (SD) of all Di 

Step 4:  For a point xi∈X if Di > SD, then xi is detected as an outlier; save it to N. 
 

3 Experiments 

We test the proposed method based on Algorithm 2 with four existing outlier 
detection algorithms summarized in Table 1. We use the 9 benchmark datasets in 
Table 2 and visualized in Figure 4. The S sets have varying level of cluster overlap. 
A sets have varying number of clusters; unbalance and XOR datasets [17] have 
clusters with different densities. We evaluate the methods by F1-measure, which is 
basically the average of precision and recall. Precision is the ability of the classifier 
not to label as positive a sample that is negative, and recall is the ability of the 
classifier to find all the positive samples. 

 
 

Table 1: Compared outlier detection algorithms; k=15 has been used in all tests. 

Algorithms Ref Type Parameters Year Publication 

LOF [9] Density-based k, top-N 2000 ACM SIGMOD 

ODIN [7] Distance-based k, top-N 2004 Int. Conf. on Pattern Recognition 

MCD [5] Statistical testing top-N 1984 J. Am. Stat. Assoc. 

NC [12] Math. optimization k, top-N 2018 IEEE-TNNLS 

MOD new Shifting-based k 2018 Int. Conf. Fuzzy Syst. Data Mining 

 

Table 2: Datasets used in the experiments. (http://cs.uef.fi/sipu/datasets/)  

Dataset: Size: Clusters: 

S1-S4 5000 15 

A1-A3 3000, 5250, 7500 20, 35, 50 

Unbalance 6500 8 

XOR 2000 4 
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Figure 4. Datasets used in the experiments. 

http://cs.uef.fi/sipu/datasets/


3.1 Noise models 

We consider two types of noise:  
1. Random noise 
2. Data-dependent noise 

In the first case, uniformly distributed random noise is added to the data. Random 
values are generated in each dimension between [xmean-2range, xmean+2range], where 
xmean is the mean of all data points, and range is the maximum distance of any point 
from the mean: range = max(|xmax- xmean|, |xmean- xmin|). The amount of noise is 7% of 
data size. In the second case, 7% of the original points are copied and moved to 
random direction. Noisy datasets are shown in Figure 5. 

 
SS11 Noise type 1Noise type 1 XORXOR

SS11 XORXORNoise type 2Noise type 2

SS33 Noise type 1Noise type 1

SS33 Noise type 2Noise type 2

Noise type 1Noise type 1

Noise type 2Noise type 2

 
Figure 5. Noisy datasets S1, S3 and XOR with noise type 1 (up) and noise type 2 (down). 

3.2 Results 

The detection results are summarized in Fig. 6. The first results (gray) are obtained 
using a priori knowledge of the amount of noise (7%). Each method selects exactly 
the same amount of outliers. The second results (red) are when no a priori parameter 
is allowed but the algorithm is forced to solve the thresholding by its own.  

Both proposed methods are better clearly better than the other methods tested (gap 
more than 4%). We can also see that the proposed method perform almost equally 
well when no threshold parameter (red results). No automatic thresholding were 
developed for the other methods, so comparative results are missing. 

All methods based on k-NN require O(N2) calculations. With our data this was not 
a problem but with bigger data it might become a bottleneck. For example, the 
running time for a dataset of size N=100,000 would be about 5 minutes. In this case, 
faster approximate like NNDES [18] or the Random pair divisive (RP-div) [19] can 
reduce the running time down to just a few seconds with only 1% gap in the accuracy. 
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Figure 6. Average detection results for the 9 datasets in Table 2 and Figure 4.  

The gray results are obtained using a priori (7%) number of outliers, and the red results  
using the number of outliers automatically determined by the method. 

4 Conclusions 

Mean-shift outlier detection (MOD) was proposed. The results show that mean-shift 
variant (DOD) is slightly more effective than the medoid-shift. For the studied noise 
patterns, the proposed approach clearly outperforms existing outlier detection 
methods: LOF, ODIN, MCD and NC. The most important property of the proposed 
method is that it does not require any threshold parameter to tune. 
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