Fast random pair divisive construction of kNN graph
using generic distance measures

Sami Sieranoja
School of Computing
University of Eastern Finland

sami.sieranoja@uef.fi

ABSTRACT

We introduce a fast hierarchical method algorithm to construct an
approximate kNN-graph. The method is simple to implement and
generic, as it works with any type of data for which a symmetric
distance function can be provided. We tested the method with text
data of 466,544 English words and an image dataset with one
million features. Compared to the O(N?) brute force, the method
achieves 140:1 speed-up ratio, on average, and is about twice as
fast as the previous state-of-the-art.

CCS Concepts

 Information systems applications — Data mining — Nearest
neighbor searches * Theory of computation — Design and
analysis of algorithms — Streaming, sublinear and near linear
time algorithms — Nearest neighbor algorithms

Keywords
k-nearest neighbor graph; approximate k-NN.

1. INTRODUCTION

Given a data set of N data objects X = {X, X, ..., Xy}, K-nearest
neighbors are defined as the Kk other objects that are the closest
according to some distance function d. By collecting the k nearest
neighbors for every data objects X, we can construct KNN graph. In
this graph, every object (node) is connected by edges to its k
nearest neighbors. The weights of the edges are the corresponding
distances.

KNN graph can be used for efficient search structure and for
modeling the data. Applications include fast nearest neighbor
search [1], density estimation [2], outlier detection [3], and fast
agglomerative clustering [4].

A brute force approach to construct KNN graph takes O(N?) time
because the need to calculate all pairwise distances. This can be
acceptable for smaller datasets but it becomes a bottleneck in
analyzing big data. Many exact [5] and approximation methods
have therefore been proposed that compromise accuracy for speed
[6, 7, 8, 9]. The best methods achieve speed-up factors of about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ICBDC '18, April 28-30, 2018, Shenzhen, China

© 2018 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-6426-3/18/04...$15.00

https://doi.org/10.1145/3220199.3220215

95

Pasi Franti
School of Computing
University of Eastern Finland

pasi.franti@uef.fi

100:1 with 90% accuracy [9, 10].

Most of the existing methods operate by dividing the data into
subsets and using brute force for each subset [6, 8, 9]. One
approach is to calculate principal component axis (PCA), and to
split the data iteratively along this projection [6, 9]. Locality
sensitive hashing (LSH) with random linear projection was used
in [8]. However, these approaches are not generic as the
calculation of the projection axis requires the data to be numeric.

The only generic method we are aware of is the neighborhood
propagation method called NN-Descent [7]. It takes a random
graph as an input and improves by finding better neighbor
candidates by exploring neighbors of the neighbors. It is generic
because it can be applied to any type of data as long as a distance
function can be provided. Also the LSH method in [8] can be
potentially used for other types of data. However, it requires
a hash function, which is specific to the data type.

In this paper, we propose a simple but generic approach to
perform the splitting. Our method is similar to that of [9], but
instead of using PCA, we select a random pair of points, and
subdivide the data into groups based on which point is nearest.
This process is the repeated several times to update the previous
graph. The resulting solutions will also be improved using
neighborhood propagation. Besides the speed, the main benefit of
the method is that it does not require any numeric computation
other than that required by the generic distance function. It is
therefore directly applicable to other types of data. As a case study,
we apply it for words using edit distance and Dice coefficient.

We show that the proposed method is competitive and
outperforms compared methods. Because the method uses only
distance calculations in the splitting stage, its behavior changes
based on the distance measure, unlike e.g. methods that use PCA.
Therefore, we expect it to adapt better to wider variety of distance
measures.

2. RANDOM PAIR SPLITTING

We present next our new algorithm to construct an approximate
kNN graph for generic distance measures. The algorithm has two
parts. In the first part (Algorithm 1), we generate a crude
approximation of the graph by subdividing the dataset until each
subset reaches a given maximum size W. In the second part
(Algorithm 2), this approximation is iteratively fine-tuned by
combining Algorithm 1 with the NN-descent method.

2.1 Divide-and-conquer stage

The dividing is done simply by selecting two random points
(aand b). The dataset is then divided into two subsets (A and B)
based on the generic distance function. For every point X, we
calculate its distance both to a and b, and assign it to the subset it
is closer to. The dividing is recursively continued until the subset
reaches a maximum allowed size W. In this paper, we use the

value W=2.5-k. Pseudo code is shown below, and an example
given in Figure 1.

Algorithm 1: RandomPairDivision(X,kNN,Size)

IF size(X) < Size THEN
BruteForce(X,kNN) ;
return;

ELSE
a = X[random(1,N)];

b = X[random(1,N)];
FOR i=1 TO N DO
IF d(x,a) < d(x,b) THEN
A=AuUX
ELSE
B =B u X;
RandomPairDivision(A);
RandomPairDivision(B);

Second solution: Combined:

Original dataset: First split:

37

.b
a x
-x N
Second split: Result after stage 1:
brute force
brute
force

brute
force

Q&/%

Figure 1. Example of the dividing stage.

2.2 Repeating Divide-and-conquer

This divisive approximation step is then tuned. We combine it
with the NN-descent as follows. First, we repeat the divisive
algorithm several times. However, instead of creating a new
approximation from scratch, we update the previously obtained
graph by taking the Kk closest neighbors for every object X, see
Fig. 2 for an example. There are maximum 2K candidates: k from
the previous solution, and kK new ones. Some of them might be the
same but it does not matter.

Time bottleneck of the algorithm is the brute force which requires
O(W?). Assuming that all subsets are exactly of size W, there will
be N/W subsets. The total time complexity of single iteration of
the algorithm is then O(N/W-W?) = O(NW). Using W=2.5k, and
assuming that the number of repeats (r) is a small constant, this
leads to linear O(rkN) time algorithm.

Figure 2. Effect of two repeats of the divisive algorithm.

2.3 Fine-tuning by NN-descent

In the second part, we improve the result of the divisive part by
using neighborhood propagation [7]. In practice, we interleave the
two parts so that, first, we iterate the divisive part (Algorithm 1)
until the portion of changed edges in last iteration drops below
10%.

After that, we start to involve NN-Descent algorithm in the
process. Basically the second part works the same as repeating the
divisive algorithm so that the new approximation merely updates
the previous solution. In other words, whenever closer neighbors
are found, the graph is updated accordingly. The only difference is
that the result is tuned by one iteration of NN-descent algorithm.

The overall process is summarized in Algorithm 2. In this paper,
we fix the stopping criterion to 0.01 %. Source code (C++) can be
found in: http://www.uef.fi/web/machine-learning/software

Algorithm 2: RandomPairNNDES(X,KkNN,W)

{

REPEAT
RandomPairDivision(X,kNN,W);
delta = Changes(kNN);

UNTIL delta < 10%

REPEAT
RandomPairDivision(X,kNN,W);
NNDES (X, kKNN) ;
delta = Changes(kNN);

UNTIL delta < StopCriterion;

}

2.4 Distance function
Any distance function should be applicable with the method. In
this paper, we consider three distance measures: Euclidean, Edit
distance [11] and Dice [12]. Euclidean distance (L) is the most
widely used for numerical data:

D
doy) =2 % =il M

Most commonly used measure for words is edit distance. It
calculates the minimum number of edit operations needed to
transform a string X to string y. The edit operations include
insertion, deletion, and substitution. The best match can be found
by dynamic programming [13].

However, measuring similarity of short text like document titles,
character-level measures might not capture all the essential
information [14]. Word-level measures have been used in this
case. We consider one such approach known as Dice coefficient
[12], which works as follows. Each string is represented as a set of

bigrams. For example, word string would become {st, tr, ri, in,
ng}. Similarity is measured as the size of the intersection divided
by the average cardinality of the two sets. We convert the
similarity to distance for convenience:

Apice (X, Y) = l—m)
X +1y]

An example of kNN graph for words is illustrated in Figure 3
using edit distance. Here only the neighbors of the three words are
shown. All distances in the graph are 2, except those marked by
number 1.

tortis 4 ortive tortie

tortoises tortile
=\

tortoise —_

aportoise porpoises corteise

forprise) i
p aportoise mortise

purprise — BOIPOE @

|
pourpris/

Surpoose purpose
porose

o A poetwise

postwise

porthouse

Figure 3. Example of nearest neighbors for the words porpoise,
tortoise and portoise. Here k=10 is used.

3. EXPERIMENTS
3.1 Datasets

We test the proposed algorithm with the four datasets summarized
in Table 1. SiftIM dataset contains 1 million Scale-invariant
feature transform (SIFT) image feature vectors of dimensionality
128. Words dataset contains 466,544 English words. Their lengths
vary from 1 to 45; average string length is 9.4 characters. A
Birkbeck corpus contains 36,133 misspellings of 6,136 words,
which constitute 39,030 unique strings. The string lengths vary
from 1 to 18; and is 7.8 characters on average. We use Euclidean
distance for SiftlM, and edit distance and Dice for Words and
Birkbeck. The number of neighbors we fix to k=20 in all tests.

Table 1. Datasets used in the experiments.

Data: Size: Dim: Distance: Type:
SiftiM! M 128 Euclidean Image
Birch2? 100,000 2 Euclidean Synthetic
Words® 466,544 9.4 char {Edit., Dice} Strings

Birkbeck® 39,030 7.8 char {Edit., Dice} Strings

3.2 Measurements

To evaluate the goodness of the resulting graph we calculate the
sum of the distances (total weight) in the graph. We measure the
quality of the approximation graph as the ratio of its total weight

! http://corpus-texmex.irisa.fr/

2 http://cs.uef. fi/sipu/datasets/

3 https://github.com/dwyl/english-words
4 https://www.dcs.bbk.ac.uk/~ROGER/corpora.html

relative to the total weight of the exact kNN graph. We call this
measure as gap:

Z\kNN(iX

Gap=—t— -1
ap Z\kNNom(ij

where kNN refers to the resulting graph, and kNN, to the exact
(optimal) graph.

Another measure commonly used is Recall [6] but it is not
suitable for string data because there are often many strings within
the same edit distance. For example, when constructing graph
with k=20 neighbors, the 20™ nearest may have edit distance of 5,
but there can be 30 other strings with the same distance. So, even
brute force can generate two different kNN graphs depending on
the order of distance calculations.

3.3 Results

The results show that the proposed RP-div provides speed-up
factors varying from 19:1 to 323:1, compared to standard O(N?)
time brute force. With all data sets, it is also roughly 50% faster
than the state-of-the-art.

Besides the faster speed, the method also provided better (or
similar to) quality than the NNDES method. In the case of Words
data set and Dice similarity, NNDES converges to 2% in 223
seconds whereas RP-Div is able to reach 1% in 100 seconds and
0.1% in 247 seconds.

The effect of the data size is demonstrated further in Figure 4. The
results show that the bigger the data, the more significant the
speed-up is. For example, with N=10000 RP-Div obtains speed-up
of 63:1 but with full size N=100,000 already 888:1 compared to
brute force. The benefit compared to NN-Descent also increases
with N reaching 5:1 when N=100,000.

Table 2. Processing time (s) to reach quality level of gap 1%.

Data: Method: Speed-

RP-div | NNDES | Bl
SiftIM (L) 351 726 113,701 | 323:1
Birch2 (Ly) 2 6 290 145:1
Words (edit) 808 1288 65,837 81:1
Birkbeck (edit) 30 61 573 19:1
Words (Dice) 100 - 9444 94:1
Birkbeck (Dice) 5 10 79 15:1

2.00 \
1.50 -
m NN-descent
Q100 +----~--"-"-"-"~"-"-—"4&~"~~"—~"—"—"—"——"————~
E
=
050 +--—-—-—-—-~<-— - -4 RB'dly ,,,,,,,,,,,,
>
0.00 -+ : : : :
0 20000 40000 60000 80000 100000

Data size (N)

Figure 4. Effect of the data size (subsets of Birch2).
Results are to reach quality level of gap 10%.

4. CONCLUSIONS

We proposed a fast approximate KNN graph construction method
called RP-div. Its main benefit is that it can operate with any
symmetric distance measures. Our experiments show that it
reaches reasonably accurate graphs (1% gap) even for very large
(~0.5M) string data. The method provides from 19:1 to 323:1
speed-up factors compared to standard O(N?) time brute force, and
outperforms the previous state-of-the-art (NNDES) method by
about 50%.

We intend to continue this work by using the graph for
agglomerative clustering [4] of string data, to allow O(N log(N))
clustering of strings. The method would also allow estimating
density using kNN graph and using this information for fast
density based clustering of strings.

5. REFERENCES

[1] Hajebi K., Abbasi-Yadkori Y., Shahbazi H., and Zhang H.
2011. Fast approximate nearest-neighbor search with k-
nearest neighbor graph. In IJCAI International Joint
Conference on Artificial Intelligence, vol. 2, 1312-1317.

YuJ., and Kim S.B. 2016. A density-based noisy graph
partitioning algorithm. Neurocomputing, 175 473-491.
Hautamaki V., Karkkéinen 1., and Franti P. 2004. Outlier

detection using k-nearest neighbour graph. In IAPR Int. Conf.
on Pattern Recognition (ICPR'04), Vol. 3, 430-433.

(2]

(3]

98

[4] Frénti P., Virmajoki O., and Hautaméki V. 2006. Fast
agglomerative clustering using a k-nearest neighbor graph,
IEEE Trans. on Pattern Analysis and Machine Intelligence,

28, 1875-1881.

Connor M. and Kumar P. 2010. Fast construction of
k-nearest neighbor graphs for point clouds. IEEE Trans. on
Visualization and Computer Graphics, 16, 599-608.

[5]

[6] Chen J., Fang H-r., and Saad Y. 2009. Fast approximate
k NN graph construction for high dimensional data via
recursive Lanczos bisection. The Journal of Machine

Learning Research. 10, 1989-2012.

Dong W., Moses C., Li K. 2011. Efficient k-nearest neighbor
graph construction for generic similarity measures. In ACM
International Conference on World wide web. ACM, 577—
586.

Zhang Y-M., Huang K., Geng G., and Liu C-L. 2013. Fast
kNN graph construction with locality sensitive hashing. In
Machine Learning and Knowledge Discovery in Databases.
Springer, 660—-674.

Wang J., Zeng G., Tu Z., Gan R., and Li S. 2012. Scalable
k-NN graph construction for visual descriptors. In IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), 1106—
1113.

[10] Sieranoja S. and Frénti P. 2018. High-dimensional kNN-
graph construction using z-order curve. ACM Journal of
Experimental Algorithmics. (in review)

[7]

(9]

[11] Levenshtein V.I. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady,
10 (8), 707-710.

[12] Brew C., McKelvie, D. 1996. Word-pair extraction for
lexicography. In International Conference on New Methods
in Language Processing, 45-55.

[13] Jimenez S., Becerra C., Gelbukh A. and Gonzalez F. 2009.
Generalized mongue-elkan method for approximate text
string comparison. In Int. Conf. on Intelligent Text
Processing and Computational Linguistics, 559-570.

[14] Gali N., Mariescu-Istodor R., Frinti P. 2016. Similarity
measures for title matching. In IAPR Int. Conf. on Pattern
Recognition (ICPR'04), 1548-1553.

