
Fast Approximate Minimum Spanning Tree

Algorithm Based on K-Means

Caiming Zhong1,2,3, Mikko Malinen2, Duoqian Miao1, and Pasi Fränti2

1 Department of Computer Science and Technology, Tongji University,
Shanghai 201804, PR China

2 Department of Computer Science, University of Eastern Finland, P.O. Box 111,
FIN-80101 Joensuu, Finland

3 College of Science and Technology, Ningbo University, Ningbo 315211, PR China

Abstract. We present a fast approximate Minimum spanning tree(MST)
framework on the complete graph of a dataset with N points, and any ex-
act MST algorithm can be incorporated into the framework and speeded
up. It employs a divide-and-conquer scheme to produce an approximate
MST with theoretical time complexity of O(N1.5), if the incorporated ex-
act MST algorithm has the running time of O(N2). Experimental results
show that the proposed approximate MST algorithm is computational
efficient, and the accuracy is close to the true MST.

Keywords: Minimum spanning tree, divide-and-conquer, K-means.

1 Introduction

Given an undirected and weighted graph, the problem of MST is to find a span-
ning tree such that the sum of weights is minimized. Since MST can roughly
estimate the intrinsic structure of a dataset, it has been broadly applied in im-
age segmentation [1], cluster analysis [9], classification [4], manifold learning [8].
However, traditional MST algorithms such as Prim’s and Kruskal’s algorithm
have running time of O(N2) [3], and for a large dataset a fast MST algorithm
is needed.

Recent work to find an approximate MST can be found in [6][7], and the
both work apply MSTs to clustering. Wang et al. [7] employ divide-and-conquer
scheme to detect the long edges of the MST at an early stage for clustering. Ini-
tially, data points are randomly stored in a list, and each data point is connected
to its predecessor (or successor), and a spanning tree is achieved. To optimize the
spanning tree, the dataset is divided into a collection of subsets with a divisive
hierarchical clustering algorithm. The distance between any pair of data points
within a subset can be computed by a brute force nearest neighbor search, and
with the distances, the spanning tree is updated.

Lai et al. [6] proposed an approximate MST algorithm based on Hilbert curve
for clustering. It is a two-phase algorithm: the first phase is to construct an
approximate MST of a given dataset with Hilbert curve, and the second phase is
to partition the dataset into subsets by measuring the densities of points along

R. Wilson et al. (Eds.): CAIP 2013, Part I, LNCS 8047, pp. 262–269, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fast Approximate Minimum Spanning Tree Algorithm Based on K-Means 263

(a) Data set (b) Partitions by K-means (c) MSTs of the subsets (d) Connected MSTs

(e) Partitions on borders (f) MSTs of the subsets (g) Connected MSTs (h) Approximate MST

Divide-and-conquer stage:

Refinement stage:

Fig. 1. The scheme of the proposed fast MST algorithm. (a) A given dataset. (b) The
dataset is partitioned into

√
N subsets by K-means. (c) An exact MST algorithm

is applied to each subset. (d) MSTs of the subsets are connected. (e) The dataset is
partitioned again so that the neighboring data points in different subsets are partitioned
into identical partitions. (f) Exact MST algorithm is used again on the secondary
partition. (g) MSTs of the subsets are connected. (h) A more accurate approximate
MST is produced by merging the two approximate MSTs in (d) and (g) respectively.

the approximate MST with a specified density threshold. However, the accuracy
of MST depends on the order of Hilbert Curve and the number of neighbors of
a visited point in the linear list.

2 Proposed Method

2.1 Overview of the Proposed Framework

To improve the efficiency of constructing an MST is to reduce the unnecessary
comparisons. For example, in Kruskal’s algorithm, it is not necessary to sort
all N(N − 1)/2 edges of a complete graph but to find (1 + α)N edges with
least weights, where (N − 3)/2 � α ≥ −1/N . We employ a divide-and-conquer
technique to achieve the improvement. The overview of the proposed method is
illustrated in Fig. 1.

2.2 Partition Dataset with K-Means

In general, a data point in an MST is connected to its nearest neighbors, which
implies that the connections have a locality property. In the divide step, it is

264 C. Zhong et al.

therefore expected that the subsets preserve this locality. Since K-means can
partition local neighboring data points into the same group, we employ K-means
to partition the dataset.

The Number of Clusters K. In our method, the number of clusters K
is set to

√
N . There are two reasons for this determination. One is that the

maximum number of clusters in some clustering algorithms is often set to
√
N

as a rule of thumb [2]. That means if a dataset is partitioned into
√
N subsets,

each subset will consist of data points coming from an identical genuine cluster,
which satisfies the requirement of the locality property when constructing an
MST. The other reason is that the overall time complexity of the proposed
approximate MST algorithm is minimized if K is set to

√
N , assuming that the

data points are equally divided into the clusters.

Divide and Conquer Algorithm. After the dataset is divided into
√
N sub-

sets by K-means, the MSTs of the subsets are constructed with an exact MST
algorithm, such as Prim’s or Kruskal’s algorithm. The algorithm of K-means
based divide and conquer is described as follows:

Divide and Conquer Using K-Means (DAC)
Input: Dataset X ;
Output: MSTs of the subsets partitioned from X

1. Set the number of subsets K =
√
N .

2. Apply K-means to X to achieve K subsets S = {S1, . . . , SK}.
3. Apply an exact MST algorithm to Si, and its MST MST (Si) is obtained.

2.3 Combine MSTs of the K Subsets

An intuitive solution to combine MSTs is brute force: for the MST of a cluster,
the shortest edge between it and MSTs of other clusters is computed. But this
solution is time consuming, and therefore a fast MST-based effective combination
is presented.

MST-Based Combination. The neighboring subsets are determined first be-
cause the MSTSs of those far away from each other will not be connected. This
can be achieved by MST of the centers of the subsets, see Fig. 2. To connect
a pair of neighboring subsets efficiently, the nearest point of one subset to the
center of the other is selected. For example, a and b are the nearest points to
opposite centers respectively, and they are connected.

Consequently, the algorithm of combining MSTs of subsets is summarized as
follows:
Combine Algorithm (CA)
Input: MSTs of the subsets partitioned from X : MST (S1), · · · ,MST (SK).
Output: ApproximateMST ofX :MST1, andMST of the cluster centers:MSTcen;

Fast Approximate Minimum Spanning Tree Algorithm Based on K-Means 265

sdiortnec fo TSM)b(stesbus fo sdiortneC)a((c) Connected subsets

c8

c5 c6
c7

c3
c4

c2c1

c8

c5 c6
c7

c3
c4

c2c1

c8

c5 c6
c7

c3

c2c1

c4

a

b

Fig. 2. The combine step of MSTs of the proposed algorithm. In (a), centers of the
partitions (c1, ..., c8) are calculated. In (b), a MST of the centers, MSTcen, is con-
structed with an exact MST algorithm. In (c), each pair of subsets whose centers are
neighbors with respect to MSTcen in (b) is connected.

1. Compute the center ci of subset Si, 1 ≤ i ≤ K.
2. Construct an MST, MSTcen, of c1, · · · , cK by an exact MST algorithm.
3. For each pair of subsets (Si, Sj) whose centers are connected by an edge of

MSTcen, discover the edge by DCE that connects MST (Si) and MST (Sj).
4. Combine discovered edges with MST (S1), · · · ,MST (SK) to achieve MST1.

Detect the Connecting Edge (DCE)
Input: A pair of subsets to be connected, (Si, Sj);
Output: The edge connecting MST (Si) and MST (Sj);

1. Find data point a ∈ Si so that the distance between a and cj is minimized.
2. Find data point b ∈ Sj so that the distance between b and ci is minimized.
3. Select edge e(a, b) as the connecting edge.

2.4 Refine the MST Focusing on Boundaries

However, the accuracy of the approximate MST achieved so far is not enough.
The reason is that, when the MST of a subset is built, the data points that lie in
the boundary of the subset are considered only within the subset but not across
the boundaries. Based on this observation, the refinement stage is designed.

Partition Dataset Focusing on Boundaries. In this step, another compli-
mentary partition is constructed so that the clusters would locate at the bound-
ary areas of the previous K-means partition. We first calculate the midpoints of
each edge of MSTcen. In most cases, these midpoints lie near the boundaries,
and are therefore employed as the initial cluster centers. The dataset is then par-
titioned by K-means, in which only one iteration is performed for the purpose
of focusing on the boundaries. The process is illustrated in Fig. 3.

266 C. Zhong et al.

(a) Midpoints between
 centers

m7

m4
m5

m6

m3

m1

m2

(b) Partitions on borders

c8

c5 c6

c7

c3
c4

c2

c1

Fig. 3. Boundary-based partition. In (a), the black solid points, m1, · · · ,m7, are the
midpoints of the edges of MSTcen. In (b), each data point is assigned to its nearest
midpoint, and the dataset is partitioned by the midpoints. The corresponding Voronoi
graph is with respect to the midpoints.

Build Secondary Approximate MST. After the dataset has been re-
partitioned, the conquer and combine steps similar to those in first stage are
used to produce the secondary approximate MST. The algorithm is summarized
as follows:
Secondary Approximate MST (SAM)
Input: MST of the subset centers MSTcen, dataset X ;
Output: Approximate MST of X , MST2;

1. Compute the midpoint mi of an edge ei ∈ MSTcen, where 1 ≤ i ≤ K − 1.
2. Partition dataset X into K − 1 subsets, S′

1, · · · , S′
K−1, by assigning each

point to its nearest point from m1, · · · ,mK−1.
3. Build MSTs, MST (S′

1), · · · ,MST (S′
K−1), with an exact MST algorithm.

4. Combine the K−1 MSTs with CA to produce an approximate MST MST2.

2.5 Combine Two Rounds of Approximate MSTs

So far we have two approximate MSTs on dataset X , MST1 and MST2. To
produce the final approximate MST, we first merge the two approximate MSTs
to produce a graph, which has no more than 2(N − 1) edges, and then apply an
exact MST algorithm on this graph to achieve the final approximate MST of X .

3 Complexity and Accuracy Analysis

3.1 Complexity Analysis

The overall time complexity of the proposed algorithm FMST, TFMST , can be
evaluated as:

TFMST = TDAC + TCA + TSAM + TCOM (1)

Fast Approximate Minimum Spanning Tree Algorithm Based on K-Means 267

where TDAC , TCA and TSAM are the time complexities of the algorithms DAC,
CA and SAM respectively, TCOM is the running time of an exact MST algo-
rithm on the combination of MST1 and MST2.

DAC consists of two operations: partitioning the dataset X into K subsets
and constructing the MSTs of the subsets with an exact MST algorithm. Since
K =

√
N , we have TDAC = O(N1.5). In CA, computing the mean points of the

subsets and constructing MST of the K mean points take only O(N) time. For
each connected subset pair, determining the connecting edge requires O(2N ×
(K − 1)/K). The total computational cost of CA is therefore O(N).

In SAM, ComputingK−1 midpoints and partitioning the dataset takeO(N×
(K− 1)) time. The running time of Step 3 and 4 is O((K − 1)×N2/(K− 1)2) =
O(N2/(K−1)) and O(N), respectively. Therefore, the time complexity of SAM
is O(N1.5). The number of edges in the graph that is formed by combiningMST1

and MST2 is at most 2(N − 1). The time complexity of applying an exact MST
algorithm to this graph is only O(2(N − 1) logN). Thus, TCOM = O(N logN).

To sum up, the time complexity of the proposed fast algorithm is O(N1.5).

4 Experiments

In this section, experimental results are presented to illustrate the efficiency and
the accuracy of the proposed fast approximate MST algorithm. The accuracy of
FMST is tested with four datasets: t4.8k [5], MNIST [10], ConfLongDemo [11]
and MiniBooNE [11]. Experiments were conducted on a PC with an Intel Core2
2.4GHz CPU and 4GB memory running Windows 7.

4.1 Running Time

From each dataset, subsets with different size are randomly selected to test the
running time as a function of data size. The subset sizes of the first two datasets
gradually increase with step 20, the third with step 100 and the last with step
1000.

The running time of FMST and Prim’s algorithm on the four datasets is
illustrated in the first row of Fig. 4. From the results, we can see that FMST
is computationally more efficient than Prim’s algorithm, especially for the large
datasets ConfLongDemo and MiniBooNE. The efficiency for MiniBooNE shown
in the rightmost of the second and third row in Fig. 4, however, deteriorates
because of the high dimensionality. Although the complexity analysis indicates
that the time complexity of proposed FMST is O(N1.5), the actual running
time may be different because K-means can not produce clusters being of equal
size. We analyze the actual processing time by fitting an exponential function
T = aN b, where T is the running time and N is the number of data points. The
the results are shown in Table 1.

4.2 Accuracy

Suppose Eappr is the set of the correct edges in an approximate MST, the edge

error rate ERedge is defined as: ERedge =
N−|Eappr|−1

N−1 . The second measure is

268 C. Zhong et al.

N N N

E
dg

e
er

ro
r r

at
e

(%
)

e egd
E

etar rorr
)

%(

e egd
E

etar rorr
)

%(

thgie
W

)
%(etar rorre

W
ei

gh
t

)
%(etar rorre thgie

W
)

%(etar rorre thgie
W

rre
)

%(etar ro

N

e egd
E

etar rorr
)

%(

t4.8k (d=2) ConfLongDemo (d=3) MNIST (d=784) MiniBooNE (d=50)

N N NN

N N NN

Fig. 4. The results of the test on the four datasets

Table 1. The exponent bs obtained by fitting T = aNb

b

t4.8k MNIST ConfLongDemo MiniBooNE

FMST 1.57 1.62 1.54 1.44

Prim’s Alg. 1.88 2.01 1.99 2.00

defined as the differ of the sum of the weights in FMST and the exact MST,
which is called weight error rate: ERweight =

Wappr−Wexact

Wexact
, where Wexact and

Wappr are the sum of weights of the exact MST and FMST, respectively.
The edge error rates and weight error rates of the four datasets are shown

in the third row of Fig. 4. We can see that both the edge error rate and the
weight error rate decrease with the increase of the data size. For datasets with
high dimension, the edge error rates are bigger, for example, the maximum edge
error rates of MNIST are approximate to 18.5%, while those of t4.8k and Con-
fLongDemo less than 3.2%. In contrast, the weight error rates decrease when
the dimensionality increases. This is one aspect of the curse of dimensionality,
distance concentration, which means that Euclidean distances between all pairs
of points in high dimensional data are tend to be similar.

Fast Approximate Minimum Spanning Tree Algorithm Based on K-Means 269

5 Conclusion

In this paper, we have proposed a fast approximate MST algorithm with a
divide and conquer scheme. The time complexity of the proposed algorithm is
theoretically O(N1.5). Furthermore, any MST algorithm can be incorporated
into to the proposed framework to make it more efficient.

References

1. An, L., Xiang, Q.S., Chavez, S.: A fast implementation of the minimum spanning
tree method for phase unwrapping. IEEE Trans. Medical Imaging 19, 805–808
(2000)

2. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Systems,
Man and Cybernetics, Part B 28, 301–315 (1998)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press (2001)

4. Juszczak, P., Tax, D.M.J., Pȩkalska, E., Duin, R.P.W.: Minimum spanning tree
based one-class classifier. Neurocomputing 72, 1859–1869 (2009)

5. Karypis, G., Han, E.H., Kumar, V.: CHAMELEON: A hierarchical clustering al-
gorithm using dynamic modeling. IEEE Trans. Comput. 32, 68–75 (1999)

6. Lai, C., Rafa, T., Nelson, D.E.: Approximate minimum spanning tree clustering in
high-dimensional space. Intelligent Data Analysis 13, 575–597 (2009)

7. Wang, X., Wang, X., Wilkes, D.M.: A divide-and-conquer approach for minimum
spanning tree-based clustering. IEEE Trans., Knowledge and Data Engineering 21,
945–958 (2009)

8. Yang, L.: Building k edge-disjoint spanning trees of minimum total length for iso-
metric data embedding. IEEE Trans. Pattern Analysis and Machine Intelligence 27,
1680–1683 (2005)

9. Zhong, C., Miao, D., Wang, R.: A graph-theoretical clustering method based on
two rounds of minimum spanning trees. Pattern Recognition 43, 752–766 (2010)

10. http://yann.lecun.com/exdb/mnist

11. http://archive.ics.uci.edu/ml/

http://yann.lecun.com/exdb/mnist
http://archive.ics.uci.edu/ml/

	Fast Approximate Minimum Spanning Tree Algorithm Based on K-Means

	1 Introduction
	2 ProposedMethod
	2.1 Overview of the Proposed Framework
	2.2 Partition Dataset with
	2.3 Combine MSTs of the
	2.4 Refine the MST Focusing on Boundaries
	2.5 Combine Two Rounds of Approximate MSTs

	3 Complexity and Accuracy Analysis
	3.1 Complexity Analysis

	4 Experiments
	4.1 Running Time
	4.2 Accuracy

	5 Conclusion
	References

