
Information Sciences 295 (2015) 1–17
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
A fast minimum spanning tree algorithm based on K-means
http://dx.doi.org/10.1016/j.ins.2014.10.012
0020-0255/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Tel.: +86 21 69589867.
E-mail address: zhongcaiming@nbu.edu.cn (C. Zhong).
Caiming Zhong a,⇑, Mikko Malinen b, Duoqian Miao c, Pasi Fränti b

a College of Science and Technology, Ningbo University, Ningbo 315211, PR China
b School of Computing, University of Eastern Finland, P.O. Box 111, FIN-80101 Joensuu, Finland
c Department of Computer Science and Technology, Tongji University, Shanghai 201804, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 June 2014
Received in revised form 25 September 2014
Accepted 3 October 2014
Available online 14 October 2014

Keywords:
Minimum spanning tree
Clustering
Manifold learning
K-means
Minimum spanning trees (MSTs) have long been used in data mining, pattern recognition
and machine learning. However, it is difficult to apply traditional MST algorithms to a large
dataset since the time complexity of the algorithms is quadratic. In this paper, we present a
fast MST (FMST) algorithm on the complete graph of N points. The proposed algorithm
employs a divide-and-conquer scheme to produce an approximate MST with theoretical
time complexity of OðN1:5Þ, which is faster than the conventional MST algorithms with
OðN2Þ. It consists of two stages. In the first stage, called the divide-and-conquer stage, K-
means is employed to partition a dataset into

ffiffiffiffi
N
p

clusters. Then an exact MST algorithm
is applied to each cluster and the produced

ffiffiffiffi
N
p

MSTs are connected in terms of a proposed
criterion to form an approximate MST. In the second stage, called the refinement stage, the
clusters produced in the first stage form

ffiffiffiffi
N
p
� 1 neighboring pairs, and the dataset is repar-

titioned into
ffiffiffiffi
N
p
� 1 clusters with the purpose of partitioning the neighboring boundaries

of a neighboring pair into a cluster. With the
ffiffiffiffi
N
p
� 1 clusters, another approximate MST is

constructed. Finally, the two approximate MSTs are combined into a graph and a more
accurate MST is generated from it. The proposed algorithm can be regarded as a frame-
work, since any exact MST algorithm can be incorporated into the framework to reduce
its running time. Experimental results show that the proposed approximate MST algorithm
is computationally efficient, and the approximation is close to the exact MST so that in
practical applications the performance does not suffer.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

A minimum spanning tree (MST) is a spanning tree of an undirected and weighted graph such that the sum of the weights
is minimized. As it can roughly estimate the intrinsic structure of a dataset, MST has been broadly applied in image segmen-
tation [2,47], cluster analysis [46,51–53], classification [27], manifold learning [48,49], density estimation [30], diversity esti-
mation [33], and some applications of the variant problems of MST [10,36,43]. Since the pioneering algorithm of computing
an MST was proposed by Otakar Borůvka in 1926 [6], the studies of the problem have focused on finding the optimal exact
MST algorithm, fast and approximate MST algorithms, distributed MST algorithms and parallel MST algorithms.

The studies on constructing an exact MST start with Borůvka’s algorithm [6]. This algorithm begins with each vertex of a
graph being a tree. Then for each tree it iteratively selects the shortest edge connecting the tree to the rest, and combines the
edge into the forest formed by all the trees, until the forest is connected. The computational complexity of this algorithm is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.10.012&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.10.012
mailto:zhongcaiming@nbu.edu.cn
http://dx.doi.org/10.1016/j.ins.2014.10.012
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

2 C. Zhong et al. / Information Sciences 295 (2015) 1–17
OðE log VÞ, where E is the number of edges, and V is the number of vertices in the graph. Similar algorithms have been
invented by Choquet [13], Florek et al. [19] and Sollin [42], respectively.

One of the most typical examples is Prim’s algorithm, which was proposed by Jarník [26], Prim [39] and Dijkstra [15]. It
first arbitrarily selects a vertex as a tree, and then repeatedly adds the shortest edge that connects a new vertex to the tree,
until all the vertices are included. The time complexity of Prim’s algorithm is OðE log VÞ. If Fibonacci heap is employed to
implement a min-priority queue to find the shortest edge, the computational time is reduced to OðEþ V log VÞ [14].

Kruskal’s algorithm is another widely used exact MST algorithm [32]. In this algorithm, all the edges are sorted by their
weights in non-decreasing order. It starts with each vertex being a tree, and iteratively combines the trees by adding edges in
the sorted order excluding those leading to a cycle, until all the trees are combined into one tree. The running time of
Kruskal’s algorithm is OðE log VÞ.

Several fast MST algorithms have been proposed. For a sparse graph, Yao [50], and Cheriton and Tarjan [11] proposed
algorithms with OðE log log VÞ time. Fredman and Tarjan [20] proposed the Fibonacci heap as a data structure of implement-
ing the priority queue for constructing an exact MST. With the heaps, the computational complexity is reduced to OðEbðE;VÞÞ,
where bðE;VÞ ¼minfijlogðiÞV 6 E=Vg. Gabow et al. [21] incorporated the idea of Packets [22] into the Fibonacci heap, and
reduced the complexity to OðE log bðE;VÞÞ.

Recent progress on the exact MST algorithm was made by Chazelle [9]. He discovered a new heap structure, called soft
heap, to implement the priority queue, and as a result, the time complexity is reduced to OðEaðE;VÞÞ, where a is the inverse
of the Ackermann function. March et al. [35] proposed a dual-tree on a kd-tree and a dual-tree on a cover-tree for construct-
ing MST, with claimed time complexity as OðN log NaðNÞÞ � OðN log NÞ.

Distributed MST and parallel MST algorithms have also been studied in the literature. The first algorithm of the distrib-
uted MST problem was presented by Gallager et al. [23]. The algorithm supposes that a processor exits at each vertex and
knows initially only the weights of the adjacent edges. It runs in OðV log VÞ time. Several faster OðVÞ time distributed MST
algorithms have been proposed by Awerbuch [3] and Abdel-Wahab et al. [1], respectively. Peleg and Rubinovich [37] pre-
sented a lower bound of time complexity OðDþ

ffiffiffiffi
V
p

= log VÞ for constructing a distributed MST on a network, where
D ¼ Xðlog VÞ is the diameter of the network. Moreover, Khan and Pandurangan [29] proposed a distributed approximate
MST algorithm on networks and its complexity is eOðDþ LÞ, where L is the local shortest path diameter.

Chong et al. [12] presented a parallel algorithm to construct an MST in Oðlog VÞ time by employing a linear number of
processors. Pettie and Ramachandran [38] proposed a randomized parallel algorithm to compute a minimum spanning for-
est, which also runs in logarithmic time. Bader and Cong [4] presented four parallel algorithms, of which three algorithms are
variants of Borůvka’s. For different graphs, their algorithms can find MSTs four to six times faster using eight processors than
the sequential algorithms.

Several approximate MST algorithms have been proposed. The algorithms in [7,44] are composed of two steps. In the first
step, a sparse graph is extracted from the complete graph, and then in the second step, an exact MST algorithm is applied to
the extracted graph. In these algorithms, different methods for extracting sparse graphs have been employed. For example,
Vaidya [44] used a group of grids to partition a dataset into cubical boxes of identical size. For each box, a representative
point was determined. Any two representatives of two cubical boxes were connected if the corresponding edge length
was between two given thresholds. Within a cubical box, points were connected to the representative. Callahan and Kosaraju
[7] applied a well-separated pair decomposition of the dataset to extract a sparse graph.

Recent studies that focused on finding an approximate MST and applying it to clustering can be found in [34,45]. Wang
et al. [45] employed a divide-and-conquer scheme to construct an approximate MST. However, their goal was not to find the
MST but merely to detect the long edges of the MST at an early stage for clustering. An initial spanning tree is constructed by
randomly storing the dataset in a list, in which each data point is connected to its predecessor (or successor). At the same
time, the weight of each edge from a data point to its predecessor (or successor) are assigned. To optimize the spanning tree,
the dataset is divided into multiple subsets with a divisive hierarchical clustering algorithm (DHCA), and the nearest neigh-
bor of a data point within a subset is found by a brute force search. Accordingly, the spanning tree is updated. The algorithm
is performed repeatedly and the spanning tree is optimized further after each run.

Lai et al. [34] proposed an approximate MST algorithm based on Hilbert curve for clustering. It consists of two phases. The
first phase is to construct an approximate MST with the Hilbert curve, and the second phase is to partition the dataset into
subsets by measuring the densities of the points along the approximate MST with a specified density threshold. The process
of constructing an approximate MST is iterative and the number of iterations is ðdþ 1Þ, where d is the number of dimensions
of the dataset. In each iteration, an approximate MST is generated similarly as in Prim’s algorithm. The main difference is that
Lai’s method maintains a min-priority queue by considering the approximate MST produced in the last iteration and the
neighbors of the visited points determined by a Hilbert sorted linear list, while Prim’s algorithm considers all the neighbors
of a visited point. However, the accuracy of Lai’s method depends on the order of the Hilbert curve and the number of neigh-
bors of a visited point in the linear list.

In this paper, we propose an approximate and fast MST (FMST) algorithm based on the divide-and-conquer technique, of
which the preliminary version of the idea was presented in a conference paper [54]. It consists of two stages: divide-and-
conquer and refinement. In the divide-and-conquer stage, the dataset is partitioned by K-means into

ffiffiffiffi
N
p

clusters, and the
exact MSTs of all the clusters are constructed and merged. In the refinement stage, boundaries of the clusters are considered.
It runs in OðN1:5Þ time when Prim’s or Kruskal’s algorithm is used in its divide-and-conquer stage, and in practical use does
not reduce the quality compared to an exact MST.

C. Zhong et al. / Information Sciences 295 (2015) 1–17 3
The rest of this paper is organized as follows. In Section 2, the fast divide-and-conquer MST algorithm is presented. The
time complexity of the proposed method is analyzed in Section 3, and experiments on the efficiency and accuracy of the pro-
posed algorithm are given in Section 4. Finally, we conclude this work in Section 5.
2. Proposed method

2.1. Overview of the proposed method

The efficiency of constructing an MST or a K nearest neighbor graph (KNNG) is determined by the number of comparisons
of the distances between two data points. In the methods like brute force for KNNG and Kruskal’s for MST, many unnecessary
comparisons exist. For example, to find the K nearest neighbor of a point, it is not necessary to search the entire dataset but a
small local portion; to construct an MST with Kruskal’s algorithm in a complete graph, it is not necessary to sort all
NðN � 1Þ=2 edges but to find ð1þ aÞN edges with least weights, where ðN � 3Þ=2� a P �1=N. With this observation in
mind, we employ a divide-and-conquer technique to build an MST with improved efficiency.

In general, a divide-and-conquer paradigm consists of three steps according to [14]:

1. Divide step. The problem is divided into a collection of subproblems that are similar to the original problem but smaller in
size.

2. Conquer step. The subproblems are solved separately, and corresponding subresults are achieved.
3. Combine step. The subresults are combined to form the final result of the problem.

Following this divide-and-conquer paradigm, we constructed a two-stage fast approximate MST method as follows:

1. Divide-and-conquer stage
1.1 Divide step. For a given dataset of N data points, K-means is applied to partition the dataset into

ffiffiffiffi
N
p

subsets.
1.2 Conquer step. An exact MST algorithm such as Kruskal’s or Prim’s algorithm is employed to construct an exact MST

for each subset.
1.3 Combine step.

ffiffiffiffi
N
p

MSTs are combined using a connection criterion to form a primary approximate MST.
2. Refinement stage

2.1 Partitions focused on borders of the clusters produced in the previous stage are constructed.
2.2 A secondary approximate MST is constructed with the conquer and combine steps in the previous stage.
2.3 The two approximate MSTs are merged and a new more accurate is obtained by using an exact MST algorithm.

The process is illustrated in Fig. 1. In the first stage, an approximate MST is produced. However, its accuracy is insufficient
compared to the corresponding exact MST, because many of the data points that are located on the boundaries of the subsets
are connected incorrectly in the MST. This is because an exact MST algorithm is applied only to data points within a subset
but not to those crossing the boundaries of the subsets. To compensate for the drawback, a refinement stage is designed.

In the refinement stage, we re-partition the dataset so that the neighboring data points from different subsets will belong
to the same partition. After this, the two approximate MSTs are merged, and the number of edges in the combined graph is at
most 2ðN � 1Þ. The final MST is built from this graph by an exact MST algorithm. The details of the method will be described
in the following subsections.
2.2. Partition dataset with K-means

For two points connected by an edge in an MST, at least one is the nearest neighbor of the other, which implies that the
connections have a locality property. Therefore, in the divide step, it is expected that the subsets preserve this locality. As K-
means can partition some of local neighboring data points into the same group, we employ K-means to partition the dataset.

K-means requires the number of clusters to be known and the initial center points to be determined, and we will discuss
these two problems below.
2.2.1. The number of clusters K
In this study, we set the number of clusters K to

ffiffiffiffi
N
p

based on the following two reasons. One is that the maximum num-
ber of clusters in some clustering algorithms is often set to

ffiffiffiffi
N
p

as a rule of thumb [5,41]. That means if a dataset is parti-
tioned into

ffiffiffiffi
N
p

subsets, each subset may consist of data points coming from an identical genuine cluster so that the
requirement of the locality property when constructing an MST is met.

The other reason is that the overall time complexity of the proposed approximate MST algorithm is minimized if K is set
to

ffiffiffiffi
N
p

, assuming that the data points are equally divided into the clusters. This choice will be theoretically and experimen-
tally studied in more detail in Sections 3 and 4, respectively.

(a) Data set (b) Partitions by K-means (c) MSTs of the subsets (d) Connected MSTs

(e) Partitions on borders (f) MSTs of the subsets (g) Connected MSTs (h) Approximate MST

Divide-and-conquer stage:

Refinement stage:

Fig. 1. The scheme of the proposed FMST algorithm. (a) A given dataset. (b) The dataset is partitioned into
ffiffiffiffi
N
p

subsets by K-means. The dashed lines form
the corresponding Voronoi graph with respect to cluster centers (the big gray circles). (c) An exact MST algorithm is applied to each subset. (d) MSTs of the
subsets are connected. (e) The dataset is partitioned again so that the neighboring data points in different subsets of (b) are partitioned into identical
partitions. (f) An exact MST algorithm such as Prim’s algorithm is used again on the secondary partition. (g) MSTs of the subsets are connected. (h) A more
accurate approximate MST is produced by merging the two approximate MSTs in (d) and (g) respectively.

4 C. Zhong et al. / Information Sciences 295 (2015) 1–17
2.2.2. Initialization of K-means
Clustering results of K-means are sensitive to the initial cluster centers. A bad selection of the initial cluster centers may

have negative effects on the time complexity and accuracy of the proposed method. However, we still randomly select the
initial centers due to the following considerations.

First, although a random selection may lead to a skewed partition, such as a linear partition, the time complexity of the
proposed method is still OðN1:5Þ, see Theorem 2 in Section 4. Second, in the proposed method, a refinement stage is designed
to cope with the data points on the cluster boundaries. This process makes the accuracy relatively stable, and random selec-
tion of initial cluster centers is reasonable.

2.2.3. Divide-and-conquer algorithm
After the dataset has been divided into

ffiffiffiffi
N
p

subsets by K-means, the MSTs of the subsets are constructed with an exact
MST algorithm, such as Prim’s or Kruskal’s. This corresponds to the conquer step in the divide and conquer scheme, it is triv-
ial and illustrated in Fig. 1(c). The algorithm of K-means based on divide and conquer is described as follows:
Divide and Conquer Using K-means (DAC)
Input: Dataset X;
Output: MSTs of the subsets partitioned from X

Step 1. Set the number of subsets K ¼
ffiffiffiffi
N
p

.

Step 2. A
pply K-means to X to achieve K subsets S ¼ fS1; . . . ; SKg, where the initial centers are randomly selected.

Step 3. A
pply an exact MST algorithm to each subset in S, and an MST of Si, denoted by MSTðSiÞ, is obtained,

here 1 6 i 6 K.
w

The next step is to combine the MSTs of the K subsets into a whole MST.

2.3. Combine MSTs of the K subsets

An intuitive solution to combining MSTs is brute force: For the MST of a cluster, the shortest edge between it and the
MSTs of other clusters is computed. But this solution is time consuming, and therefore a fast MST-based effective solution
is also presented. The two solutions are discussed below.

C. Zhong et al. / Information Sciences 295 (2015) 1–17 5
2.3.1. Brute force solution
Suppose we combine a subset Sl with another subset, where 1 6 l 6 K. Let xi; xj be data points and xi 2 Sl; xj 2 X � Sl. The

edge that connects Sl to another subset can be found by brute force:
Fig. 2.
constru
e ¼ arg min
ei2El

qðeiÞ ð1Þ
where El ¼ feðxi; xjÞjxi 2 Sl ^ xj 2 X � Slg; eðxi; xjÞ is the edge between vertices xi and xj;qðeiÞ is the weight of edge ei. The whole
MST is obtained by iteratively adding e into the MSTs and finding the new connecting edge between the merged subset and
the remaining part. This process is similar to single-link clustering [21].

However, the computational cost of the brute force method is high. Suppose that each subset has an equal size of N=K ,
and K is an even number. The running time Tc of combining the K trees into the whole MST is:
Tc ¼ 2� N
K
� ðK � 1Þ � N

K
þ 2� N

K
� ðK � 2Þ � N

K
þ � � � þ ðK=2Þ � N

K
� ðK=2Þ � N

K

� �
¼ K2

6
þ K

4
� 1

6

 !
� N2

K

¼ OðKN2Þ ¼ OðN2:5Þ ð2Þ
Consequently, a more efficient combining method is needed.

2.3.2. MST-based solution
The efficiency of the combining process can be improved in two aspects. First, in each combining iteration only one pair of

neighboring subsets is considered in finding the connecting edge. Intuitively, it is not necessary to take into account subsets
that are far from each other, because no edge in an exact MST connects the subsets. This consideration will save some com-
putations. Second, to determine the connecting edge of a pair of neighboring subsets, the data points in the two subsets will
be scanned only once. The implementation of the two techniques is discussed in detail.

Determine the neighboring subsets. As the aforementioned brute force solution runs in the same way as single-link clus-
tering [24] and all the information required by single-link can be provided by the corresponding MST of the same data,
we make use of the MST to determine the neighboring subsets and improve the efficiency of the combination process.

If each subset has one representative, an MST of the representatives of the K subsets can roughly indicate which pairs of
subsets could be connected. For simplicity, the mean point, called the center, of a subset is selected as its representative.
After an MST of the centers (MSTcen) is constructed, each pair of subsets whose centers are connected by an edge of
MSTcen is combined. Although not all of the neighboring subsets can be discovered by MSTcen, the dedicated refinement stage
could remedy this drawback to some extent.

The centers of the subsets in Fig. 1(c) are illustrated as the solid points in Fig. 2(a), and MSTcen is composed of the dashed
edges in Fig. 2(b).

Determine the connecting edges. To combine MSTs of a pair of neighboring subsets, an intuitive way is to find the shortest
edge between the two subsets and connect the MSTs by this edge. Under the condition of an average partition, finding the
shortest edge between two subsets takes N steps, and therefore, the time complexity of the whole connection process is
OðN1:5Þ. Although this does not increase the total time complexity of the proposed method, the absolute running time is still
somewhat high.

To make the connecting process faster, a novel way to detect the connecting edges is illustrated in Fig. 3. Here, c2 and c4

are the centers of the subset S2 and S4, respectively. Suppose a is the nearest point to c4 from S2, and b is the nearest point to
c2 from S4. The edge eða; bÞ is selected as the connecting edge between S2 and S4. The computational cost of this is low.
Although the edges found are not always optimal, this can be compensated by the refinement stage.
sdiortnec fo TSM)b(stesbus fo sdiortneC)a((c) Connected subsets

c8

c5 c6
c7

c3
c4

c2c1

c8

c5 c6
c7

c3
c4

c2c1

c8

c5 c6
c7

c3
c4

c2c1

The combine step of MSTs of the proposed algorithm. In (a), centers of the partitions (c1, . . . , c8) are calculated. In (b), a MST of the centers, MSTcen , is
cted with an exact MST algorithm. In (c), each pair of subsets whose centers are neighbors with respect to MSTcen in (b) is connected.

a

b

c8

c5 c6
c7

c3
c4

c2c1

S4

S2

Fig. 3. Detecting the connecting edge between S4 and S2.

6 C. Zhong et al. / Information Sciences 295 (2015) 1–17
Consequently, the algorithm for combining the MSTs of the subsets is summarized as follows:

Combine Algorithm (CA)
Input: MSTs of the subsets partitioned from X : MSTðS1Þ; . . . ;MSTðSKÞ.
Output: Approximate MST of X, denoted by MST1, and MST of the centers of S1; . . . ; SK , denoted by MSTcen;
Step 1.
 Compute the center ci of subset Si;1 6 i 6 K.

Step 2.
 Construct an MST, MSTcen, of c1; . . . ; cK by an exact MST algorithm.

Step 3.
 For each pair of subsets ðSi; SjÞ that their centers ci and cj are connected by an edge e 2 MSTcen, discover the edge

by DCE (Detect the Connecting Edge) that connects MSTðSiÞ and MSTðSjÞ.

Step 4.
 Add all the connecting edges discovered in Step 3 to MSTðS1Þ; . . . ;MSTðSKÞ, and MST1 is achieved.
Detect the Connecting Edge (DCE)
Input: A pair of subsets to be connected, ðSi; SjÞ;
Output: The edge connecting MSTðSiÞ and MSTðSjÞ;

Step 1. Find the data point a 2 S such that the distance between a and the center of S is minimized.
i j
Step 2.
 Find the data point b 2 Sj such that the distance between b and the center of Si is minimized.

Step 3.
 Select edge eða; bÞ as the connecting edge.
2.4. Refine the MST focusing on boundaries

However, the accuracy of the approximate MST achieved so far is far from the exact MST. The reason is that, when the
MST of a subset is built, the data points that lie in the boundary of the subset are considered only within the subset, but
not across the boundaries. In Fig. 4, subsets S6 and S3 have a common boundary, and their MSTs are constructed indepen-
dently. In the MST of S3, point a and b are connected to each other. But in the exact MST they are connected to the points
in S6 rather than in S3. Therefore, data points located on the boundaries are prone to be misconnected. Based on this obser-
vation, the refinement stage is designed.

2.4.1. Partition dataset focusing on boundaries
In this step, another complimentary partition is constructed so that the clusters would locate at the boundary areas of the

previous K-means partition. We first calculate the midpoints of each edge of MSTcen. These midpoints generally lie near the
boundaries, and are therefore employed as the initial cluster centers. The dataset is then partitioned by K-means. The par-
tition process of this stage is different from that of the first stage. In this stage, the initial cluster centers are specified and the
maximum number of iterations is set to 1 for the purpose of focusing on the boundaries. Since MSTcen has

ffiffiffiffi
N
p
� 1 edges,

there will be
ffiffiffiffi
N
p
� 1 clusters in this stage. The process is illustrated in Fig. 5.

In Fig. 5(a), the midpoints of the edges of MSTcen are computed as m1; . . . ;m7. In Fig. 5(b), the dataset is partitioned with
respect to these seven midpoints.

2.4.2. Build secondary approximate MST
After the dataset has been re-partitioned, the conquer and combine steps are similar to those used for producing the

primary approximate MST. The algorithm is summarized as follows:

Subset MST edges on border Exact MST edges

a b

c

S3

S6

d

S3

S6

a b
c d

Fig. 4. The data points on the subset boundaries are prone to be misconnected.

(a) Midpoints between
 centers

m7

m4
m5

m6

m3

m1

m2

(b) Partitions on borders

c8

c5 c6

c7

c3
c4

c2

c1

Fig. 5. Boundary-based partition. In (a), the black solid points, m1; . . . ;m7, are the midpoints of the edges of MSTcen . In (b), each data point is assigned to its
nearest midpoint, and the dataset is partitioned by the midpoints. The corresponding Voronoi graph is with respect to the midpoints.

C. Zhong et al. / Information Sciences 295 (2015) 1–17 7
Secondary Approximate MST (SAM)
Input: MST of the subset centers MSTcen, dataset X;
Output: Approximate MST of X;MST2;
Step 1.
 Compute the midpoint mi of an edge ei 2 MSTcen, where 1 6 i 6 K � 1.

Step 2.
 Partition dataset X into K � 1 subsets, S01; . . . ; S0K�1, by assigning each point to its nearest point from m1; . . . ;mK�1.� � � �

Step 3.
 Build MSTs, MST S01 ; . . . ;MST S0K�1 , with an exact MST algorithm.

Step 4.
 Combine the K � 1 MSTs with CA to produce an approximate MST MST2.
2.5. Combine two rounds of approximate MSTs

So far we have two approximate MSTs on dataset X;MST1 and MST2. To produce the final approximate MST, we first
merge the two approximate MSTs to produce a graph, which has no more than 2ðN � 1Þ edges, and then apply an exact
MST algorithm to this graph to achieve the final approximate MST of X.

Finally, the overall algorithm of the proposed method is summarized as follows:

Fast MST (FMST)
Input: Dataset X;
Output: Approximate MST of X;

(continued on next page)

8 C. Zhong et al. / Information Sciences 295 (2015) 1–17
Step 1.
 Apply DAC to X to produce the K MSTs.

Step 2.
 Apply CA to the K MSTs to produce the first approximate MST, MST1, and the MST of the subset centers, MSTcen.

Step 3.
 Apply SAM to MSTcen and X to generate the secondary approximate MST, MST2.

Step 4.
 Merge MST1 and MST2 into a graph G.

Step 5.
 Apply an exact MST algorithm to G, and the final approximate MST is achieved.
3. Complexity and accuracy analysis

3.1. Complexity analysis

The overall time complexity of the proposed algorithm FMST, TFMST , can be evaluated as:
TFMST ¼ TDAC þ TCA þ TSAM þ TCOM ð3Þ
where TDAC ; TCA and TSAM are the time complexities of the algorithms DAC, CA and SAM, respectively, and TCOM is the running
time of an exact MST algorithm on the combination of MST1 and MST2.

DAC consists of two operations: partitioning the dataset X with K-means and constructing the MSTs of the subsets with an
exact MST algorithm. Now we consider the time complexity of DAC by the following theorems.

Theorem 1. Suppose a dataset with N points is equally partitioned into K subsets by K-means, and an MST of each subset is
produced by an exact algorithm. If the total running time for partitioning the dataset and constructing MSTs of the K subsets is T,
then arg minK T ¼

ffiffiffiffi
N
p

.

Proof. Suppose the dataset is partitioned into K clusters equally so that the number of data points in each cluster equals
N=K. The time complexity of partitioning the dataset and constructing the MSTs of K subsets are T1 ¼ NKId and

T2 ¼ KðN=KÞ2, respectively, where I is the number of iterations of K-means and d is the dimension of the dataset. The total
complexity is T ¼ T1 þ T2 ¼ NKIdþ N2=K. To find the optimal K corresponding to the minimum T, we solve
@T=@K ¼ NId� N2=K2 ¼ 0 which results in K ¼

ffiffiffiffiffiffiffiffiffiffi
N=Id

p
. Therefore, K ¼

ffiffiffiffi
N
p

and T ¼ OðN1:5Þ under the assumption that
I� N and d� N. Because convergence of K-means is not necessary in our method, we set I to 20 in all of our experiments.
For very high dimensional datasets, d� N may not hold, but for modern large datasets it may hold. The situation for high
dimensional datasets is discussed in Section 4.5. h

Although the above theorem holds under the ideal condition of average partition, it can be supported by more evidence
when the condition is not satisfied, for example, linear partition and multinomial partition.

Theorem 2. Suppose a dataset is linearly partitioned into K subsets. If K ¼
ffiffiffiffi
N
p

, then the time complexity is OðN1:5Þ.
Proof. Let n1;n2; . . . ;nK be the numbers of data points of the K clusters. The K numbers form an arithmetic series, namely,
ni � ni�1 ¼ c, where n1 ¼ 0 and c is a constant. The arithmetic series sums up to sum ¼ K � nK=2 ¼ N, and thus, we have
nK ¼ 2N=K and c ¼ 2N=½KðK � 1Þ	. The time complexity of constructing MSTs of the subsets is then:
T2 ¼ n2
1 þ n2

2 þ � � � þ n2
K�1 ¼ c2 þ ð2cÞ2 þ � � � þ ½ðK � 1Þc	2 ¼ c2 � ðK � 1ÞKð2K � 1Þ

6

¼ 2N
ðK � 1ÞK

� �2

� ðK � 1ÞKð2K � 1Þ
6

¼ 2
3
� ð2K � 1ÞN2

KðK � 1Þ ð4Þ
If K ¼
ffiffiffiffi
N
p

, then T2 ¼ 4
3 N1:5 þ 2

3
N1:5

N0:5�1
¼ OðN1:5Þ. Therefore, T ¼ T1 þ T2 ¼ OðN1:5Þ holds. h
Theorem 3. Suppose a dataset is partitioned into K subsets, and the sizes of the K subsets follow a multinomial distribution. If
K ¼

ffiffiffiffi
N
p

, then the time complexity is OðN1:5Þ.
Proof. Let n1;n2; . . . ;nK be the numbers of data points of the K clusters. Suppose the data points are randomly assigned into
the K clusters, and n1;n2; . . . ;nK
 Multinomial N; 1

K ; . . . ; 1
K

� �
. We have ExðniÞ ¼ N=K and VarðniÞ ¼ ðN=KÞ � ð1� 1=KÞ. Since

Ex n2
i

� �
¼ ½ExðniÞ	2 þ VarðniÞ ¼ N2=K2 þ N � ðK � 1Þ=K2, the expected complexity of constructing MSTs is T2 ¼

PK
i¼1n2

i ¼
K � Ex n2

i

� �
¼ N2=K þ N � ðK � 1Þ=K , if K ¼

ffiffiffiffi
N
p

, then T2 ¼ OðN1:5Þ. Therefore T ¼ T1 þ T2 ¼ OðN1:5Þ holds. h

According to the above theorems, we have TDAC ¼ OðN1:5Þ.
In CA, the time complexity of computing the mean points of the subsets is OðNÞ, as one scan of the dataset is enough.

Constructing MST of the K mean points by an exact MST algorithm takes only OðNÞ time. In Step 3, the number of subset

C. Zhong et al. / Information Sciences 295 (2015) 1–17 9
pairs is K � 1, and for each pair, determining the connecting edge by DCE requires one scan on the two subsets, respectively.
Thus, the time complexity of Step 3 is Oð2N � ðK � 1Þ=KÞ, which equals OðNÞ. The total computational cost of CA is therefore
OðNÞ.

In SAM, Step 1 computes K � 1 midpoints, which takes OðN0:5Þ time. Step 2 takes OðN � ðK � 1ÞÞ to partition the dataset.
The running time of Step 3 is OððK � 1Þ � N2=ðK � 1Þ2Þ ¼ OðN2=ðK � 1ÞÞ. Step 4 is to call CA and has the time complexity of
OðNÞ. Therefore, the time complexity of SAM is OðN1:5Þ.

The number of edges in the graph that is formed by combining MST1 and MST2 is at most 2ðN � 1Þ. The time complexity of
applying an exact MST algorithm to this graph is only Oð2ðN � 1Þ log NÞ. Thus, TCOM ¼ OðN log NÞ.

To sum up, the time cost of the proposed algorithm is ðc1N1:5 þ c2N log N þ c3N þ N0:5Þ ¼ OðN1:5Þ. The hidden constants
are not remarkable; according to our experiments we estimate them as c1 ¼ 3þ d � I; c2 ¼ 2; c3 ¼ 5. The space complexity
of the algorithm is the same as that of K-means and Prim, which are OðNÞ if a Fibonacci heap is used within Prim’s algorithm.

3.2. Accuracy analysis

Most inaccuracies originate from points that are in the boundary regions of the partitions of K-means. The secondary par-
tition is generated in order to capture these problematic points into the same clusters. Inaccuracies after the refinement
stage can, therefore, originate only if two points should be connected by the exact MST, but are partitioned into different
clusters both in the primary and in the secondary partition, and neither of the two conquer stages will be able to connect
these points. In Fig. 6, few such pair of points are shown that belong to different clusters in both partitions. For example,
point a and b belong to different clusters of the first partition, but are in the same cluster of the second.

Since partitions generated by K-means form a Voronoi graph [16], the analysis of the inaccuracy can be related to the
degree by which the secondary Voronoi edges overlap that of the Voronoi edges of the primary partition. Let jEj denote
the number of edges of a Voronoi graph, in two-dimensional space, jEj is bounded by K � 1 6 jEj � 3K � 6, where K is the
number of clusters (the Voronoi regions). In a higher dimensional case it is more difficult to analyze.

A favorable case is demonstrated in Fig. 7. The first row is a dataset which consists of 400 points and is randomly distrib-
uted. In the second row, the dataset is partitioned into six clusters by K-means, and a collinear Voronoi graph is achieved. In
the third row, the secondary partition has five clusters, each of which completely cover one boundary region in the second
row. An exact MST is produced in the last row.
4. Experiments

In this section, experimental results are presented to illustrate the efficiency and the accuracy of the proposed fast
approximate MST algorithm. The accuracy of FMST is tested with both synthetic datasets and real applications. As a frame-
work, the proposed algorithm can be incorporated with any exact or even approximate MST algorithm, of which the running
time is definitely reduced. Here we only take into account Kruskal’s and Prim’s algorithms because of their popularity. As in
Kruskal’s algorithm, all the edges need to be sorted into nondecreasing order, it is difficult to apply the algorithm to large
datasets. Furthermore, as Prim’s algorithm may employ a Fibonacci heap to reduce the running time, we therefore use it
rather than Kruskal’s algorithm in our experiments as the exact MST algorithm.

Experiments were conducted on a PC with an Intel Core2 2.4 GHz CPU and 4 GB memory running Windows 7. The algo-
rithm for testing the running time is implemented in C++, while the other tests are performed in Matlab (R2009b).

4.1. Running time

4.1.1. Running time on different datasets
We first perform experiments on four typical datasets with different sizes and dimensions to test the running time. The

four datasets are described as Table 1.
Dataset t4.8k1 is designed to test the CHAMELEON clustering algorithm in [28]. MNIST2 is a dataset of ten handwriting digits

and contains 60,000 training patterns and 10,000 test patterns of 784 dimensions, we use just the test set. The last two sets are
from the UCI machine learning repository.3 ConfLongDemo has eight attributes, of which only three numerical attributes are
used here.

From each dataset, subsets with different sizes are randomly selected to test the running time as a function of data size.
The subset sizes of the first two datasets gradually increase with step 20, the third with step 100 and the last with step 1000.

In general, the running time for constructing an MST of a dataset depends on the size of the dataset but not on the under-
lying structure of the dataset. In our FMST method, K-means is employed to partition a dataset, and the size of the subsets
depends on the initialization of K-means and the distributions of the datasets, which leads to different time costs. We there-
fore perform FMST ten times on each dataset to alleviate the effects of the random initialization of K-means.
1 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
2 http://yann.lecun.com/exdb/mnist.
3 http://archive.ics.uci.edu/ml/.

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
http://yann.lecun.com/exdb/mnist
http://archive.ics.uci.edu/ml/

ba

Fig. 6. Merge of two Voronoi graphs. Voronoi graph in solid line is corresponding to the first partition, and that in dashed line corresponding to the
secondary partition. Only the first partition is illustrated.

Original dataset

First partition

Second partition

Final result

Fig. 7. The collinear Voronoi graph case.

Table 1
The description of four datasets.

t4.8k MNIST ConfLongDemo MiniBooNE

Data size 8000 10,000 164,860 130,065
Dimension 2 784 3 50

10 C. Zhong et al. / Information Sciences 295 (2015) 1–17
The running time of FMST and Prim’s algorithm on the four datasets is illustrated in the first row of Fig. 8. From the
results, we can see that FMST is computationally more efficient than Prim’s algorithm, especially for the large datasets Conf-
LongDemo and MiniBooNE. The efficiency for MiniBooNE shown in the rightmost of the second and third row in Fig. 8, how-
ever, deteriorates because of the high dimensionality.

Although the complexity analysis indicates that the time complexity of the proposed FMST is OðN1:5Þ, the actual running
time can be different. We analyzed the actual processing time by fitting an exponential function T ¼ aNb, where T is the run-
ning time and N is the number of data points. The results are shown in Table 2.
4.1.2. Running time with different Ks
We have discussed the number of clusters K and set it to

ffiffiffiffi
N
p

in Section 2.2.1, and have also presented some supporting
theorems in Section 3. In practical applications, however, the value is slightly small. Some experiments were performed on

N

Fig. 8. The results of the test on the four datasets. FMST-Prime denotes the proposed method based on Prim’s algorithm. The first row shows the running
time of t4.8k, ConfLongDemo, MNIST and MiniBooNE, respectively. The second row shows corresponding edge error rates. The third row shows
corresponding weight error rates.

C. Zhong et al. / Information Sciences 295 (2015) 1–17 11
dataset t4.8k and ConfLongDemo to study the effect of different Ks on running time. The experimental results are illustrated
in Fig. 9, from which we find that if K is set to 38 for t4.8k and 120 for ConfLongDemo, the running time will be minimum. But
according to the previous analysis, K would be set to

ffiffiffiffi
N
p

, namely 89 and 406 for the two datasets, respectively. Therefore, K is
practically set to

ffiffiffi
N
p

C , where C > 1. For dataset t4.8k and ConfLongDemo, C is approximately 3. The phenomenon is explained
as follows.

From the analysis of the time complexity in Section 3, we can see that the main computational cost comes from K-means, in
which a large K leads to a high cost. If partitions produced by K-means have the same size, when K is set to

ffiffiffiffi
N
p

, the time com-
plexity is minimized. However, the partitions practically have unbalanced sizes. From the viewpoint of divide-and-conquer, the
proposed method with a large K will have a small time cost for constructing the meta-MSTs, but the unbalanced partitions can
reduce this gain, and the large K only increases the time cost of K-means. Therefore, before K is increased to

ffiffiffiffi
N
p

, the minimum
time cost can be achieved.

4.2. Accuracy on synthetic datasets

4.2.1. Measures by edge error rate and weight error rate
The accuracy is another important aspect of FMST. Two accuracy rates are defined: edge error rate ERedge and weight error

rate ERweight . Before ERedge is defined, we present the notation of an equivalent edge of an MST, because the MST may not be
unique. The equivalence property is described as:

Equivalence Property. Let T and T 0 be the two different MSTs of a dataset. For any edge e 2 ðT n T 0Þ, there must exist
another edge e0 2 ðT 0 n TÞ such that ðT 0 n fe0gÞ [feg is also an MST. We call e and e0 a pair of equivalent edges.

Proof. The equivalency property can be operationally restated as: Let T and T 0 be the two different MSTs of a dataset, for any
edge e 2 ðT n T 0Þ, there must exist another edge e0 2 ðT 0 n TÞ such that wðeÞ ¼ wðe0Þ and e connects T 01 and T 02, where T 01 and T 02
are the two subtrees generated by removing e0 from T 0;wðeÞ is the weight of e.

Let G be the cycle formed by feg [T 0, we have:
8e0 2 ðG n feg n ðT \ T 0ÞÞ;wðeÞP wðe0Þ ð5Þ
Otherwise, an edge in G n feg n ðT \ T 0Þ should be replaced by e when constructing T 0.

Table 2
The exponent bs obtained by fitting T ¼ aNb . FMST denotes the proposed method.

b

t4.8k MNIST ConfLongDemo MiniBooNE

FMST 1.57 1.62 1.54 1.44
Prim’s alg. 1.88 2.01 1.99 2.00

50

100

150

200

250

300

350

400

450

500

0

1

2

3

4

5

6
Weight error rate
Running time

n
u

R
it

g
ni

n
s(

e
m

)s
d

noce

W
ei

r
orr e

t
h

g
%(

et ar
)

K

R
u
n
n
in

g
 t

im
e

(s
ec

on
d
s)

W
ei

r orr e
t

h
g

et ar
(%

)

K

T4.8K ConfLongDemo

0 200 400 600 800 10000 50 100 150 200
0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Weight error rate
Running time

k=89k=38 k=406k=120

Fig. 9. Performances (running time and weight error rate) as a function of K. The left shows the running time and weight error rate of FMST on t4.8k, and the
right on ConfLongDemo.

12 C. Zhong et al. / Information Sciences 295 (2015) 1–17
Furthermore, the following claim holds: there must exist at least one edge e0 2 ðG n feg n ðT \ T 0ÞÞ, such that the cycle
formed by fe0g [T contains e. We prove this claim by contradiction.

Assuming that all the cycles G0j formed by e0j
n o

[T do not contain e, where e0j 2 ðG n feg n ðT \ T 0ÞÞ;

1 6 j 6 jG n feg n ðT \ T 0Þj, let Gunion ¼ G01 n e01
	
� �

[� � � [G0l n e0l
	
� �

, where l ¼ jG n feg n ðT \ T 0Þj. G can be expressed as
feg [e01

	

[� � � [e0l

	

[Gdelta, where Gdelta � ðT \ T 0Þ. As G is a cycle, Gunion [feg [Gdelta must also be a cycle, this is

contradictory because Gunion � T;Gdelta � T and e 2 T . Therefore the claim is correct.
As a result, there must exist at least one edge e0 2 ðG n feg n ðT \ T 0ÞÞ such that wðe0ÞP wðeÞ.
Combining this result with (5), we have the following: for e 2 ðT n T 0Þ, there must exist an edge e0 2 ðT 0 n TÞ such that

wðeÞ ¼ wðe0Þ. Furthermore, as e and e0 are in the same cycle G; ðT 0 n fe0gÞ [feg is still an MST. h

According to the equivalency property, we define a criterion to determine whether an edge belongs to an MST:
Let T be an MST and e be an edge of a graph. If there exists an edge e0 2 T such that jej ¼ je0j and e connects T1 and T2,

where T1 and T2 are the two subtrees achieved by removing e0 from T, then e is a correct edge, i.e., belongs to an MST.
Suppose Eappr is the set of the correct edges in an approximate MST, the edge error rate ERedge is defined as:
ERedge ¼
N � jEapprj � 1

N � 1
ð6Þ
The second measure is defined as the difference of the sum of the weights in FMST and the exact MST, which is called the
weight error rate ERweight:
ERweight ¼
Wappr �Wexact

Wexact
ð7Þ
where Wexact and Wappr are the sum of the weights of the exact MST and FMST, respectively.
The edge error rates and weight error rates of the four datasets are shown in the third row of Fig. 8. We can see that both

the edge error rate and the weight error rate decrease with the increase in data size. For datasets with high dimensions, the
edge error rates are greater, for example, the maximum edge error rates of MNIST are approximately 18.5%, while those of
t4.8k and ConfLongDemo are less than 3.2%. In contrast, the weight error rates decrease when the dimensionality increases.
For instance, the weight error rates of MNIST are less than 3.9%. This is the phenomenon of the curse of dimensionality. The
high dimensional case will be discussed further in Section 4.5.

C. Zhong et al. / Information Sciences 295 (2015) 1–17 13
4.2.2. Accuracy with different Ks
Globally, the edge and weight error rates increase with K. This is because the greater the K, the greater the number of split

boundaries, from which the error edges come. But when K is small, the error rates increase slowly with K. In Fig. 9, we can see
that the weight error rates are still low when K is set to approximate

ffiffiffi
N
p

3 .

4.2.3. Comparison to other approaches
We first compare the proposed FMST with the approach in [34]. The approach in [34] is designed to detect the clusters

efficiently by removing the longer edges of the MST, and an approximate MST is generated in the first stage.
The accuracy of the approximate MST produced in [34] is relevant to a parameter: the number of the nearest neighbors of

a data point. This parameter is used to update the priority queue when an algorithm like Prim’s is employed to construct an
MST. In general, the larger the number, the more accurate the approximate MST. However, this parameter is also relevant to
the computational cost of the approximate MST, which is OðdNðbþ kþ k log NÞÞ, where k is the number of nearest neighbors
and b is the number bits of a Hilbert number. Here we only focus on the accuracy of the method, and the number of nearest
neighbors is set to N � 0:05;N � 0:10;N � 0:15, respectively. The accuracy is tested on t4k.8k, and the result is shown in Fig. 10.
From the result, the edge error rates are more than 22%, and much higher than that of FMST, even if the number of nearest
neighbors is set to N � 0:15, which leads to a loss in the computational efficiency of the method.

We then compare FMST with two other methods: MST using cover-tree by March et al. [35] and the divide-and-conquer
approach by Wang et al. [45] on the following datasets: MNIST, ConfLongDemo, MiniBooNE and ConfLongDemo � 6. To com-
pare the performances on a large data set, ConfLongDemo � 6 is generated. It has 989,160 data points, and is achieved as
follows: Move two copies of ConfLongDemo to the right of the dataset along the first coordinate axis, and then copy the
whole data and move the copy to the right along the second coordinate axis.

The results measured by running time (RT) and weight error rate in Table 3 confirm that Wang’s approach is faster due to
the recursive dividing of the data, but suffers from lower quality results, especially with the ConfLongDemo dataset, this is
because the approach focuses on finding the longest edges of an MST in the early stage for efficient clustering but does not
focus on constructing a high quality approximate MST. The method by March et al. is different and produces exact MSTs. It
works very fast on lower dimensional datasets, but inefficiently on high dimensional data such as MNIST and MiniBooNE.
FMST is slower than Wang’s approach on all of the tested datasets, but has better quality. In [35], kd-tree and similar struc-
tures are used, which are known to work well with low-dimensional data. The proposed method is slower than March’s
method for lower dimensional datasets, but faster for the higher dimensional.

4.3. Accuracy on clustering

In this subsection, the accuracy of FMST is tested on a clustering application. Path-based clustering employs the minimax
distance metric to measure the dissimilarities of data points [17,18]. For a pair of data points xi; xj, the minimax distance Dij is
defined as:
Dij ¼min
Pk

ij

max
ðxp ;xpþ1Þ2Pk

ij

dðxp; xpþ1Þ
()

ð8Þ
where Pk
ij denotes all possible paths between xi and xj and k is an index to enumerate the paths, and dðxp; xpþ1Þ is the Euclid-

ean distance between xp and xpþ1.
1000 2000 3000 4000 5000 6000 7000 8000
22

23

24

25

26

27

28

29

k=0.15*N
k=0.10*N
k=0.05*N

e egd
E

ar r orr
%(et

)

Data size

Fig. 10. The edge error rate of Lai’s method on t4.8k.

Table 3
The proposed method FMST is compared to MST-Wang [45] and MST-March [35] methods.

Methods MNIST MiniBooNE ConfLongDemo ConfLong Demo � 6

RT(S) ERweight (%) RT(S) ERweight (%) RT(S) ERweight (%) RT(S) ERweight (%)

FMST 164 3.3 781 0.3 174 0.5 16,201 0.2
MST-Wang 26 43.4 64 40.5 51 38.2 5262 46.8
MST-March 1135 0 2181 0 18 0 133 0

Prim’s Algorithm based clustering on
Pathbased data

Prim’s Algorithm based clustering on
Compound data

Prim’s Algorithm based clustering on
S1 data

The proposed FMST based clustering on
Pathbased data

The proposed FMST based clustering on
Compound data

The proposed FMST based clustering on
S1 data

Fig. 11. Prim’s algorithm and the proposed FMST based clustering results.

Table 4
The quantitative measures of clustering results. FMST denotes the proposed method.

Datasets FMST Prim’s algorithm

Rand AR Jac FM Rand AR Jac FM

Pathbased 0.937 0.859 0.829 0.906 0.942 0.870 0.841 0.913
Compound 0.993 0.982 0.973 0.986 0.994 0.984 0.977 0.988
S1 0.995 0.964 0.936 0.967 0.995 0.964 0.935 0.966

14 C. Zhong et al. / Information Sciences 295 (2015) 1–17
The minimax distance can be computed by an all-pair shortest path algorithm, such as the Floyd Warshall algorithm.
However, this algorithm runs in time OðN3Þ. An MST can be used to compute the minimax distance more efficiently in
[31]. To make the path-based clustering robust to outliers, Chang and Yeung [8] improved the minimax distance and incor-
porated it into spectral clustering. We tested the FMST within this method on three synthetic datasets (Pathbased, Com-
pound and S1).4

For computing the minimax distances, Prim’s algorithm and FMST are used. In Fig. 11, one can see that the clustering
results on three datasets are almost the same. The quantitative measures are given in Table 4, which contains four validity
4 http://cs.joensuu.fi/sipu/datasets/.

http://cs.joensuu.fi/sipu/datasets/

−60
−30

−20

−10

0

10

20

30

(a) Two−dimensional Isomap embedding
 with 3-exact-MST graph

−40 −20 0 20 40 60 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
es

id
ua

l v
ar

ia
nc

e

(b) Isomap dimensionality

−30

−20

−10

0

10

20

30

(c) Two−dimensional Isomap embedding
 with 3-FMST graph

−60 −40 −20 0 20 40 60 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
es

id
ua

l v
ar

ia
nc

e

(d) Isomap dimensionality

Fig. 12. Two 3-MST graph based ISOMAP results using exact MST (Prim’s algorithm) and FMST, respectively. In (a) and (c), the two dimensional embedding
is illustrated. (b) and (d) are corresponding resolutions.

C. Zhong et al. / Information Sciences 295 (2015) 1–17 15
indexes and indicates that the results on the first two datasets of Prim’s algorithm-based clustering are slightly better than
those of the FMST-based clustering.
4.4. Accuracy on manifold learning

MST has been used for manifold learning [48,49]. For a KNN based neighborhood graph, an improperly selected k may
lead to a disconnected graph, and degrade the performance of manifold learning. To address this problem, Yang [48] used
MSTs to construct a k-edge connected neighborhood graph. We implement the method of [48], with exact MST and FMST
respectively, to reduce the dimensionality of a manifold.

The FMST-based and the exact MST-based dimensionality reduction were performed on the dataset Swiss-roll, which has
20,000 data points. In experiments, we selected the first 10,000 data points because of the memory requirement, and set
k ¼ 3. The accuracy of the FMST-based dimensionality reduction is compared with that of an exact MST-based dimension-
ality reduction in Fig. 12. The intrinsic dimensionality of Swiss-roll can be detected by the ‘‘elbow’’ of the curves in (b) and
(d). Obviously, the MST graph based method and the FMST graph based method have almost identical residual variance, and
both indicate the intrinsic dimensionality is 2. Furthermore, Fig. 12(a) and (c) shows that the two methods have similar two-
dimensional embedding results.
4.5. Discussion on high dimensional datasets

As described in the experiments, the performances of both computation and accuracy of the proposed method are
reduced when applied to high-dimensional datasets. Since the time complexity of FMST is OðN1:5Þ under the condition of
d� N, when the number of dimensions d is becoming large and even approximate to N, the computational cost will degrade
to OðN2:5Þ. However, it is still more efficient than the corresponding Kruskal’s or Prim’s algorithms.

The accuracy of FMST is reduced because of the curse of dimensionality, which includes distance concentration phenom-
enon and the hubness phenomenon [40]. The distance concentration phenomenon is that the distances between all pairs of
data points from a high dimensional dataset are almost equal, in other words, the traditional distance measures become inef-
fective, and the distances computed with the measures become unstable [25]. For constructing an MST in terms of these dis-
tances, the results of Kruskal’s or Prim’s algorithm are meaningless, so is the accuracy of the proposed FMST. Furthermore,
the hubness phenomenon in a high-dimensional dataset, which implies some data points may appear in many more KNN

16 C. Zhong et al. / Information Sciences 295 (2015) 1–17
lists than other data points, shows that the nearest neighbors also become meaningless. Obviously, hubness affects the con-
struction of an MST in the same way.

The intuitive way to address the above problems caused by the curse of dimensionality is to employ dimensionality
reduction methods, such as ISOMAP, LLE, or subspace based methods for a concrete task in machine learning, such as sub-
space based clustering. Similarly, for constructing an MST of a high dimensional dataset, one may preprocess the dataset
with dimensionality reduction or subspace based methods for the purpose of getting more meaningful MSTs.

5. Conclusion

In this paper, we have proposed a fast MST algorithm with a divide-and-conquer scheme. Under the assumption that the
dataset is partitioned into equal sized subsets in the divide step, the time complexity of the proposed algorithm is theoret-
ically OðN1:5Þ. Although this assumption may not hold practically, the complexity is still approximately OðN1:5Þ. The accuracy
of the FMST was analyzed experimentally using edge error rate and weight error rate. Furthermore, two practical applica-
tions were considered, and the experiments indicate that the proposed FMST can be applied to large datasets.

Acknowledgments

This work was partially supported by the Natural Science Foundation of China (No. 61175054), the Center for Interna-
tional Mobility (CIMO), and sponsored by K.C. Wong Magna Fund in Ningbo University.

References

[1] H. Abdel-Wahab, I. Stoica, F. Sultan, K. Wilson, A simple algorithm for computing minimum spanning trees in the internet, Inform. Sci. 101 (1997) 47–69.
[2] L. An, Q.S. Xiang, S. Chavez, A fast implementation of the minimum spanning tree method for phase unwrapping, IEEE Trans. Med. Imag. 19 (2000) 805–808.
[3] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems, in: Proceedings of

the 19th ACM Symposium on Theory of Computing, 1987.
[4] D.A. Bader, G. Cong, Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs, J. Paral. Distrib. Comput. 66 (2006)

1366–1378.
[5] J.C. Bezdek, N.R. Pal, Some new indexes of cluster validity, IEEE Trans. Syst., Man Cybernet., Part B 28 (1998) 301–315.
[6] O. Borůvka, O jistém problému minimálním (About a Certain Minimal Problem), Práce moravské přírodovědecké společnosti v Brně III (1926) 37–58 (in

Czech with German summary).
[7] P.B. Callahan, S.R. Kosaraju, Faster algorithms for some geometric graph problems in higher dimensions, in: Proceedings of the Fourth

Annual ACM-SIAM Symposium on Discrete algorithms, 1993.
[8] H. Chang, D.Y. Yeung, Robust path-based spectral clustering, Patt. Recog. 41 (2008) 191–203.
[9] B. Chazelle, A minimum spanning tree algorithm with inverse-Ackermann type complexity, J. ACM 47 (2000) 1028–1047.

[10] G. Chen et al, The multi-criteria minimum spanning tree problem based genetic algorithm, Inform. Sci. 177 (2007) 5050–5063.
[11] D. Cheriton, R.E. Tarjan, Finding minimum spanning trees, SIAM J. Comput. 5 (1976) 24–742.
[12] K.W. Chong, Y. Han, T.W. Lam, Concurrent threads and optimal parallel minimum spanning trees algorithm, J. ACM 48 (2001) 297–323.
[13] G. Choquet, Etude de certains réseaux de routes, Comptesrendus de l’Acadmie des Sciences 206 (1938) 310 (in French).
[14] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, second ed., The MIT Press, 2001.
[15] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269–271.
[16] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms, SIAM Rev. 41 (1999) 637–676.
[17] B. Fischer, J.M. Buhmann, Path-based clustering for grouping of smooth curves and texture segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 25

(2003) 513–518.
[18] B. Fischer, J.M. Buhmann, Bagging for path-based clustering, IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 1411–1415.
[19] K. Florek, J. Łkaszewicz, H. Perkal, H. Steinhaus, S. Zubrzycki, Sur la liaison et la division des points d’un ensemble fini, Colloq. Mathemat. 2 (1951) 282–285.
[20] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. ACM 34 (1987) 596–615.
[21] H.N. Gabow, Z. Galil, T.H. Spencer, R.E. Tarjan, Efficient algorithms for finding minimum spanning trees in undirected and directed graphs,

Combinatorica 6 (1986) 109–122.
[22] H.N. Gabow, Z. Galil, T.H. Spencer, Efficient implementation of graph algorithms using contraction, J. ACM 36 (1989) 540–572.
[23] R.G. Gallager, P.A. Humblet, P.M. Spira, A distributed algorithm for minimum-weight spanning trees, ACM Trans. Program. Lang. Syst. 5 (1983) 66–77.
[24] J.C. Gower, G.J.S. Ross, Minimum spanning trees and single linkage cluster analysis, J. R. Statist. Soc., Ser. C (Appl. Statist.) 18 (1969) 54–64.
[25] C.M. Hsu, M.S. Chen, On the design and applicability of distance functions in high-dimensional data space, IEEE Trans. Knowl. Data Eng. 21 (2009) 523–536.
[26] V. Jarník, O jistém problému minimálním (About a certain minimal problem), Práce moravské přírodovědecké společnosti v Brně VI (1930) 57–63 (in

Czech).
[27] P. Juszczak, D.M.J. Tax, E. Pe�kalska, R.P.W. Duin, Minimum spanning tree based one-class classifier, Neurocomputing 72 (2009) 1859–1869.
[28] G. Karypis, E.H. Han, V. Kumar, CHAMELEON: a hierarchical clustering algorithm using dynamic modeling, IEEE Trans. Comput. 32 (1999) 68–75.
[29] M. Khan, G. Pandurangan, A fast distributed approximation algorithm for minimum spanning trees, Distrib. Comput. 20 (2008) 391–402.
[30] K. Li, S. Kwong, J. Cao, M. Li, J. Zheng, R. Shen, Achieving balance between proximity and diversity in multi-objective evolutionary algorithm, Inform.

Sci. 182 (2012) 220–242.
[31] K.H. Kim, S. Choi, Neighbor search with global geometry: a minimax message passing algorithm, in: Proceedings of the 24th International Conference

on Machine Learning, 2007, pp. 401–408.
[32] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc. 7 (1956) 48–50.
[33] B. Lacevic, E. Amaldi, Ectropy of diversity measures for populations in Euclidean space, Inform. Sci. 181 (2011) 2316–2339.
[34] C. Lai, T. Rafa, D.E. Nelson, Approximate minimum spanning tree clustering in high-dimensional space, Intell. Data Anal. 13 (2009) 575–597.
[35] W.B. March, P. Ram, A.G. Gray, Fast euclidean minimum spanning tree: algorithm, analysis, and applications, in: Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, 2010.
[36] T. Öncan, Design of capacitated minimum spanning tree with uncertain cost and demand parameters, Inform. Sci. 177 (2007) 4354–4367.
[37] D. Peleg, V. Rubinovich, A near tight lower bound on the time complexity of distributed minimum spanning tree construction, SIAM J. Comput. 30

(2000) 1427–1442.
[38] S. Pettie, V. Ramachandran, A randomized time-work optimal parallel algorithm for finding a minimum spanning forest, SIAM J. Comput. 31 (2000)

1879–1895.
[39] R.C. Prim, Shortest connection networks and some generalizations, Bell Syst. Tech. J. 36 (1957) 567–574.

http://refhub.elsevier.com/S0020-0255(14)00994-3/h0005
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0010
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0020
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0020
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0025
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0030
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0030
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0040
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0045
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0050
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0055
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0060
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0065
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0070
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0070
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0075
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0080
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0085
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0085
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0090
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0095
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0095
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0100
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0105
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0105
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0110
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0115
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0120
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0125
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0130
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0130
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0135
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0135
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0140
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0145
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0150
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0150
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0160
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0165
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0170
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0175
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0175
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0175
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0180
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0185
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0185
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0190
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0190
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0195

C. Zhong et al. / Information Sciences 295 (2015) 1–17 17
[40] M. Radovanovic, A. Nanopoulos, M. Ivanovic, Hubs in space: popular nearest neighbors in high-dimensional data, J. Mach. Learn. Res. 11 (2010) 2487–2531.
[41] M.R. Rezaee, B.P.F. Lelieveldt, J.H.C. Reiber, A new cluster validity index for the fuzzy c-mean, Patt. Recog. Lett. 19 (1998) 237–246.
[42] M. Sollin, Le trace de canalisation, in: C. Berge, A. Ghouilla-Houri (Eds.), Programming, Games, and Transportation Networks, Wiley, New York, 1965

(in French).
[43] S. Sundar, A. Singh, A swarm intelligence approach to the quadratic minimum spanning tree problem, Inform. Sci. 180 (2010) 3182–3191.
[44] P.M. Vaidya, Minimum spanning trees in k-dimensional space, SIAM J. Comput. 17 (1988) 572–582.
[45] X. Wang, X. Wang, D.M. Wilkes, A divide-and-conquer approach for minimum spanning tree-based clustering, IEEE Trans. Knowl. Data Eng. 21 (2009)

945–958.
[46] Y. Xu, V. Olman, D. Xu, Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees, Bioinformatics

18 (2002) 536–545.
[47] Y. Xu, E.C. Uberbacher, 2D image segmentation using minimum spanning trees, Image Vis. Comput. 15 (1997) 47–57.
[48] L. Yang, k-Edge Connected neighborhood graph for geodesic distance estimation and nonlinear data projection, in: Proceedings of the 17th

International Conference on Pattern Recognition, ICPR’04, 2004.
[49] L. Yang, Building k edge-disjoint spanning trees of minimum total length for isometric data embedding, IEEE Trans. Patt. Anal. Mach. Intell. 27 (2005)

1680–1683.
[50] A.C. Yao, An OðjEj log log jV jÞ algorithm for finding minimum spanning trees, Inform. Process. Lett. 4 (1975) 21–23.
[51] C.T. Zahn, Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans. Comp. C20 (1971) 68–86.
[52] C. Zhong, D. Miao, R. Wang, A graph-theoretical clustering method based on two rounds of minimum spanning trees, Patt. Recog. 43 (2010) 752–766.
[53] C. Zhong, D. Miao, P. Fränti, Minimum spanning tree based split-and-merge: a hierarchical clustering method, Inform. Sci. 181 (2011) 3397–3410.
[54] C. Zhong, M. Malinen, D. Miao, P. Fränti, Fast approximate minimum spanning tree algorithm based on K-means, in: 15th International Conference on

Computer Analysis of Images and Patterns, York, UK, 2013.

http://refhub.elsevier.com/S0020-0255(14)00994-3/h0200
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0205
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0210
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0210
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0210
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0210
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0210
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0215
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0220
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0225
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0225
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0230
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0230
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0235
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0245
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0245
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0250
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0250
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0255
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0260
http://refhub.elsevier.com/S0020-0255(14)00994-3/h0265

	A fast minimum spanning tree algorithm based on K-means
	1 Introduction
	2 Proposed method
	2.1 Overview of the proposed method
	2.2 Partition dataset with K-means
	2.2.1 The number of clusters K
	2.2.2 Initialization of K-means
	2.2.3 Divide-and-conquer algorithm

	2.3 Combine MSTs of the K subsets
	2.3.1 Brute force solution
	2.3.2 MST-based solution

	2.4 Refine the MST focusing on boundaries
	2.4.1 Partition dataset focusing on boundaries
	2.4.2 Build secondary approximate MST

	2.5 Combine two rounds of approximate MSTs

	3 Complexity and accuracy analysis
	3.1 Complexity analysis
	3.2 Accuracy analysis

	4 Experiments
	4.1 Running time
	4.1.1 Running time on different datasets
	4.1.2 Running time with different Ks

	4.2 Accuracy on synthetic datasets
	4.2.1 Measures by edge error rate and weight error rate
	4.2.2 Accuracy with different Ks
	4.2.3 Comparison to other approaches

	4.3 Accuracy on clustering
	4.4 Accuracy on manifold learning
	4.5 Discussion on high dimensional datasets

	5 Conclusion
	Acknowledgments
	References

