
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000 773

Fast and Memory Efficient Implementation
of the Exact PNN

Pasi Fränti, Timo Kaukoranta, Day-Fann Shen, and Kuo-Shu Chang

Abstract—Straightforward implementation of the exact pair-
wise nearest neighbor (PNN) algorithm takes (3) time, where

is the number of training vectors. This is rather slow in prac-
tical situations. Fortunately, much faster implementation can be
obtained with rather simple modifications to the basic algorithm.
In this paper, we propose a fast (2) time implementation of
the exact PNN, where is shown to be significantly smaller than

. We give all necessary data structures and implementation de-
tails, and give time complexity of the algorithm both in the best
case and in the worst case. The proposed implementation achieves
the results of the exact PNN with the same () memory require-
ment.

Index Terms—Clustering, codebook generation, image coding,
vector quantization.

I. INTRODUCTION

WE consider the codebook generation problem involved in
the design of avector quantizer. The aim is to find

code vectors (codebook)for a given set of training vectors
(training set)by minimizing the average pairwise distance be-
tween the training vectors and their representative code vectors.
There are several known methods for generating a codebook [1].
The most cited and widely used is thegeneralized Lloyd algo-
rithm (GLA) [2]. It starts with an initial solution, which is it-
eratively improved using two optimality criteria in turn until a
local minimum is reached.

A different approach is to build the codebook hierarchically.
The iterative splitting algorithm[3], [4] starts with a codebook
of size one, where the only code vector is the centroid of the en-
tire training set. The codebook is then iteratively enlarged by a
splitting procedure until it reaches the desired size. Another hi-
erarchical algorithm, thepairwise nearest neighbor(PNN) [5],
uses an opposite, bottom-up approach to the codebook gener-
ation. It starts by initializing a codebook where each training
vector is considered as its own code vector. Two code vectors
are merged in each step of the algorithm and the process is re-
peated until the desired size of the codebook is reached.

From the two hierarchical approaches, the PNN has higher
potential because it gives better results with a simpler imple-

Manuscript received March 3, 1998; revised September 12, 1999. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Prof. Rashid Ansari.

P. Fränti is with the Department of Computer Science, University of Joensuu,
FIN-80101 Joensuu, Finland.

T. Kaukoranta is with the Turku Centre for Computer Science, Department
of Computer Science, University of Turku, FIN-20520 Turku, Finland.

D.-F. Shen and K.-S. Chang are with the Department of Electrical Engi-
neering, Yunlin University of Science and Technology, Yunlin 640, Taiwan,
R.O.C.

Publisher Item Identifier S 1057-7149(00)03563-6.

mentation. It can also be used to produce an initial codebook
for the GLA, or it can be embedded into hybrid methods such as
a genetic algorithm [7] or the iterative split-and-merge method
[6]. The greatest deficiency of the PNN, however, is its slow
speed. The method (referred as the exact PNN) uses local opti-
mization for finding the code vectors to be combined. A straight-
forward implementation of this requires an time [8],
which is rather slow for large training sets.

Several suboptimal modifications have been proposed in the
literature for speeding up the PNN algorithm. Equitz proposed
an time variant of the PNN, referred as thefast
PNN [5]. It uses - tree for localizing the search for the code
vectors, and it merges several vector pairs at the same time.
The method, however, has not gained as much popularity as the
exact PNN, probably because of its more complex implementa-
tion and suboptimal results. Another possibility is to generate a
preliminary codebook of size () using the
GLA and then apply the exact PNN until the codebook reaches
its final size [9].

In the exact PNN, most of the computation originates from
the calculation of the pairwise distances. Since only two code
vectors are changed in each step of the PNN, most of the dis-
tance calculations are unnecessary. Kurita proposed to store all
pairwise distances into a heap structure for reducing the unnec-
essary calculations [10]. Only updates are needed after
each step of the PNN, each taking time. The method
thus performs the exact PNN in time but it re-
quires memory, which is impractical for large training
sets.

In this paper, we propose a fast time implementa-
tion of the exact PNN, where is shown to be significantly
smaller than in practice. The main idea is to maintain a
nearest neighbor table, which contains the index of the nearest
cluster for each cluster. The optimal cluster pair to be merged
can be found by a linear search from the nearest neighbor
table. The proposed method achieves the result of the exact
PNN with rather simple modifications to the basic algorithm.
The method requires no complicated data structures and no
distance matrix is needed for storing the pairwise distances.
The proposed method thus performs the exact PNN using only

memory. The method has been presented independently
in [11] and [12].

The rest of the paper is organized as follows. The problem for-
mulation and the structure of the PNN are given in Section II. A
fast implementation is introduced in Section III. Data structures
and implementation details are discussed in the same section.
Simulation results for various training sets appear in Section IV,
and conclusions are drawn in Section V.

1057-7149/00$10.00 © 2000 IEEE

774 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000

Fig. 1. Structure of the exact PNN.

II. PAIRWISE NEARESTNEIGHBOR ALGORITHM

We consider a set of training vectors () in a -dimen-
sional Euclidean space. The aim is to find a codebookof
code vectors () by minimizing the average squared distance
between the training vectors and their representative code vec-
tors. The distance between two vectors is defined by their Eu-
clidean distance. Let be a codebook and the partition of the
training set. The distortion of the codebookis then defined by

distortion (1)

where is the partition index of training vector . The basic
structure of the PNN is shown in Fig. 1. The method starts by
initializing each training vector as its own code vector .
In each step of the algorithm, two nearest clusters (and)
are then searched and merged.Cluster is defined as the set of
training vectors that belong to the same partition

(2)

The distance (cost function) between two clusters is defined as
the increase in the distortion of the codebook if the clusters are
merged. It is calculated as the squared Euclidean distance of
the cluster centroids (code vectors) weighted by the number of
vectors in the two clusters [5]

(3)

The cost function is symmetric () and it can be
calculated in time, assuming that , , , and are
known. In the following, we consider as constant and thus,
the cost function can be calculated in constant time.

The exact variant of the PNN applies local optimization
strategy: all possible cluster pairs are considered and the one
increasing the distortion least (smallest cost function value)
is chosen. The clusters are then merged and the process is re-
peated until the codebook reaches the size. Straightforward
implementation of the method takes time because there
are steps in total, and in each step there are
cluster pairs to be checked.

III. FAST IMPLEMENTATION OF THE PNN

The proposed algorithm follows the basic structure of the
PNN method but the implementation of the individual steps
is slightly different. The main idea is to maintain anearest
neighbortable (), which contains the index of the nearest
cluster () for each cluster . The nearest neighbor for a

cluster is defined as clusterthat minimizes the cost function
between and any other cluster

if (4)

Note that the nearest neighbor is not symmetrical, i.e.,
does not imply . In the implementation, it is sufficient
to maintain for each cluster the code vector (), the cluster
size (), and the nearest neighbor pointer () assigned with
cost value () indicating the amount of increase in distortion
if the clusters are merged. The memory requirement of the data
structures is in total.

A. Initialization

In the initialization phase, each training vector () is set as
its own code vector (), and the sizes of the clusters () are
set to one. In order to generate the nearest neighbor table, we
need to find nearest neighbor for every cluster. This is done by
considering all other clusters as tentative neighbor and selecting
the one that minimizes (3). The nearest neighbor pointer ()
and the merge distortion () are stored in the nearest neighbor
table. There are pairs to be considered in total. Since the
cost function can be calculated in time the time complexity
of the initialization phase is .

B. Finding the Two Nearest Clusters

The clusters to be merged are the cluster pair minimizing (3).
In our method, this pair can be found by linear search from the
nearest neighbor table. The clusters are the one with the min-
imum -value and its nearest neighbor . This operation
takes time.

C. Merging the Clusters

Merging of the two clusters causes changes to all data struc-
tures. The merged clusters are denoted in the following by the
indices and . The codebook can be updated straightforwardly
using the information stored in the data structure. The code
vector of the combined cluster is the centroid of the training
vectors in the cluster and it can be calculated as the weighted
average of and

(5)

Here and are the number of training vectors in the two
clusters. The size of the merged cluster is calculated as

(6)

The above calculations can be performed in a constant time.

D. Updating the Nearest Neighbor Table

The key question of the implementation is the maintenance of
the nearest neighbor table. It is obvious that the nearest neighbor
for the merged cluster must be resolved by considering all other
clusters. This can be performed in time. The rest of the
clusters can be classified into two groups: 1) clusters whose
nearest neighbor before merge wasor , i.e., or

and 2) all other clusters.

FRÄNTI et al.: FAST AND MEMORY EFFICIENT IMPLEMENTATION OF THE EXACT PNN 775

It was shown in [13] that the cost function (3) is monotoni-
cally increasing as a function of time. Therefore, only the clus-
ters in the first group need to be updated. The update is per-
formed for a cluster by finding such cluster that is mini-
mized. This takes time for a single cluster. An important
question is therefore how many clusters belong to the first group.
We denote this number by.

E. Amount of Necessary Updates

We are interested in the question of how many clusters can
have the same cluster as their closest neighbor. This is closely
related to thekissing number problem, which asks the highest
number of -dimensional spheres that can be packed so that
they all touch one sphere [14]. Unfortunately, the cluster dis-
tance function (3) is not Euclidean and therefore the kissing
number applies, for certain, only in the initial stage of PNN, and
in cases when all cluster sizes are equal. It is thus possible that,
in the worst case, the same cluster can be the nearest neighbor
for all other clusters, and thus . This situation could
appear when there are one small cluster and all the rest are large.
Fortunately, this situation is not common in practice and the
kissing number (even as an open problem in the general case)
indicates that is a function of the vector dimension.

In a favorable case, two merged clusters are chosen randomly.
Since there is only one nearest neighbor pointer per each cluster,
a randomly chosen cluster is the nearest neighbor for one cluster
on average. The average number of the updated pointers is there-
fore because there are two clusters involved in the merge
operation. This shows that in the best case. This ap-
proximation, however, is somewhat too optimistic for the av-
erage case because the merged clusters are not chosen randomly
but they tend to be located in areas of high concentration of clus-
ters.

To sum up, the time complexity of updating the nearest
neighbor table is , which is also the time complexity of
the entire PNN step. In the best case, this is reduced to ,
but in the worst case it is still . The overall time com-
plexity of our method is therefore as there are
steps of the algorithm in total (see Table I). This compares
favorably with the original method since it is most likely that

. The time complexity of the original PNN method is
due to the time-consuming nearest neighbor search.

Kurita’s method requires time originating from
the update of the heap structure.

IV. TEST RESULTS

We generated training sets from six different images:bridge,
camera, Miss America, table tennis, airplaneand house(see
Fig. 2). The vectors in the first two sets are pixel blocks
from the image. The third and fourth sets have been obtained by
subtracting two subsequent image frames of the original video
image sequences, and then constructing spatial pixel blocks
from the residuals. Only the first two frames have been used.
The fifth and sixth data sets (airplane, house) consist of color
values of the RGB images. Applications of this kind of data set
are found in image and video image coding and in color image
quantization.

TABLE I
TIME COMPLEXITIES OF THREE VARIANTS OF THE EXACT PNN:
STRAIGHTFROWARD IMPLEMENTATION OF THE PNN WITHOUT

ANY EXTRA DATA STRUCTURES(ORIGINAL M ETHOD), THE METHOD

THAT STORESALL PAIRWISE DISTANCES INTO A HEAP STRUCTURE

(KURITA’S METHOD), AND THE NEW METHOD USING THE

NEARESTNEIGHBOR TABLE (OUR METHOD)

For further testing of the parametersand , we generated
subsets of size (512, 1024, 2048, 4096) frombridge by
random sampling of the original set. All sets were further pro-
cessed by eliminating one dimension of the vectors at a time, in
order to generate subsets with various length of vectors (

). In total, 60 different subsets were generated from
bridge. The number of code vectors is fixed to in
the following tests.

The number of clusters whose nearest neighbor pointer must
be updated () may vary from 0 to . We studied the number

empirically by calculating its average and maximum values
when generating codebooks from all 60 subsets ofbridge.We
observed that the average value ofis small in all cases; it varies
from 1 to 4 and is practically independent from the size of the
training set (). The average value of, on the other hand, is an
increasing function of but the growth is still rather slow (see
Fig. 3). The average and maximum number offor all training
sets are summarized in Table II.

Following the hypothesis thatis independent of , the com-
putation time of our method should be multiplied by four when
the size of training set is doubled, whereas the running time of
the original PNN should be multiplied by eight. This is verified
by the observed running times (see also Fig. 4), which are (120,
1082, 8913, 71 324) for the original PNN, and (3, 18, 78, 328)
for our PNN when . The corre-
sponding multiplication factors for (

) are (9.02, 8.32, 8.00) for the original PNN and (6.00, 4.33,
4.21) for our PNN.

Our method is compared with the Kurita’s method in Fig. 5
for subsets ofbridge with various number of . The running
times of the two methods are rather similar. Usually,is smaller
than but the difference is compensated by the fact that the
update of the heap () is faster because it does not depend
on the dimension . Our method is therefore slightly slower
in cases when is larger, and vice versa. Kurita’s method was
not applied for larger data sets because of its huge memory con-
sumption.

776 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000

Fig. 2. Sources of the training sets.The training settable tennisis constructed by random sampling only every fourth block.The imagesairplaneandhouse
are prequantized to 5 bits per each color component.

Fig. 3. Average number of� as a function ofK .

TABLE II
OBSERVEDNUMBERS OFNECESSARYUPDATES(�)

The observed running times for all training sets are summa-
rized in Table III. A major speed-up is obtained in all cases
in comparison to the original algorithm. The method is about
100–350 times faster than the original method for the tested
training sets. Since the method evidently gives asymptotic im-
provement in the average case, the speed-up is greater for large
training sets.

The exact PNN is compared in Fig. 6 with three suboptimal
variants of PNN. The GLA-PNN method by deGarridoet al.
[9] starts with an initial codebook of an intermediate size
(generated by the GLA), which is then reduced to the final size

using the exact PNN. The method is a compromise between
higher speed of the GLA and better quality of the PNN. The
method reduces back to the exact PNN when , and
to the GLA when . It is noted, that the result of the
PNN can be improved further by the application of the GLA
This method is referred as GLA-PNN- GLA in Fig. 6. We apply
here the GLA implementation introduced in [15].

Fig. 4. Comparison of running times of the original and our method as a
function ofN (for bridge).

Fig. 5. Comparison of running times of Kurita’s method and our method as a
function ofK (for a subset ofbridgewhereN = 1024).

TABLE III
SUMMARY OF THE RUNNING TIME (IN SECONDS)

V. CONCLUSIONS

A fast time implementation of the exact PNN was
proposed. The main idea is to maintain a nearest neighbor table

FRÄNTI et al.: FAST AND MEMORY EFFICIENT IMPLEMENTATION OF THE EXACT PNN 777

Fig. 6. Time-distortion performance of the suboptimal PNN variants for
bridge. In the GLA-PNN method, we apply ourO(�N) implementation
of the PNN instead of the originalO(N) time algorithm. The method is
parametrized by changing the size of the initial codebook fromM = 256
(standard GLA) toM = 4096 (exact PNN). TheK-d tree variant is
parametrized by varying the maximum bucket size from eight to 200. In all
cases, the size of the final codebook is set toM = 256.

for avoiding unnecessary distance calculations. The number of
necessary updates () depends on the nature of the data and
the dimension of the training vectors () but it is practically
independent from the size of the training set (). In practice,
the number was observed to be significantly smaller than in
all training sets, varying from 2.4 to 4.6 for the tested training
sets. A speed-up of about 100–350 was thus obtained. To sum
up, the method achieves the result of the exact PNN using only
a fraction of time required by the original algorithm.

The proposed method is also practical and rather simple to
implement. It requires no complicated data structures and no
distance matrix is needed for storing the pairwise distances. The
proposed method performs the exact PNN using only
memory, in contrary to Kurita’s method that requires
amount of memory. The running times of the two methods were
comparable but the proposed method is also applicable for large
training sets.

REFERENCES

[1] A. Gersho and R. M. Gray,Vector Quantization and Signal Compres-
sion. Dordrecht, The Netherlands: Kluwer, 1992.

[2] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,”IEEE Trans. Commun., vol. 28, pp. 84–95, Jan. 1980.

[3] X. Wu and K. Zhang, “A better tree-structured vector quantizer,” inIEEE
Proc. Data Compression Conf., Snowbird, UT, 1991, pp. 392–401.

[4] P. Fränti, T. Kaukoranta, and O. Nevalainen, “On the splitting method
for VQ codebook generation,”Opt. Eng., vol. 36, pp. 3043–3051, Nov.
1997.

[5] W. H. Equitz, “A new vector quantization clustering algorithm,”IEEE
Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1568–1575, Oct.
1989.

[6] T. Kaukoranta, P. Fränti, and O. Nevalainen, “Iterative split-and-merge
algorithm for VQ codebook generation,”Opt. Eng., vol. 37, pp.
2726–2732, Oct. 1998.

[7] P. Fränti, J. Kivijärvi, T. Kaukoranta, and O. Nevalainen, “Genetic algo-
rithms for large scale clustering problem,”Comput. J., vol. 40, no. 9, pp.
547–554, 1997.

[8] J. Shanbehzadeh and P. O. Ogunbona, “On the computational
complexity of the LBG and PNN algorithms,”IEEE Trans. Image
Processing, vol. 6, pp. 614–616, Apr. 1997.

[9] D. P. de Garrido, W. A. Pearlman, and W. A. Finamore, “A clustering
algorithm for entropy-constrained vector quantizer design with appli-
cations in coding image pyramids,”IEEE Trans. Circuits Syst. Video
Technol., vol. 5, pp. 83–95, Apr. 1995.

[10] T. Kurita, “An efficient agglomerative clustering algorithm using a
heap,”Pattern Recognit., vol. 24, pp. 205–209, Mar. 1991.

[11] D.-F. Shen and K.-S. Chang, “Fast PNN algorithm for design of VQ ini-
tial codebook,” inProc. SPIE Visual Communications Image Processing
(VCIP’98), San Jose, CA, 1998, pp. 842–850.

[12] P. Fränti and T. Kaukoranta, “Fast implementation of the optimal
PNN method,” inIEEE Int. Conf. Image Processing (ICIP‘98), vol. 3,
Chicago, IL, 1998, pp. 104–108.

[13] T. Kaukoranta, P. Fränti, and O. Nevalainen, “Vector quantization by
lazy pairwise nearest neighbor method,”Opt. Eng., vol. 38, Nov. 1999.

[14] J. H. Conway and N. J. A. Sloane,Sphere Packing, Lattices and
Groups. New York: Springer-Verlag, 1988.

[15] T. Kaukoranta, P. Fränti, and O. Nevalainen, “Reduced comparison
search for the exact GLA,” inIEEE Proc. Data Compression Conf.,
Snowbird, UT, 1999, pp. 33–41.

Pasi Fränti received the M.Sc. and Ph.D. degrees
in computer science from the University of Turku,
Turku, Finland, in 1991 and 1994, respectively.

From 1996 to 1999, he was a Postdoctoral
Researcher with the University of Joensuu, funded
by the Academy of Finland. Since 1999 he has
been Professor with the University of Joensuu. His
primary research interests are in image compression,
vector quantization, and clustering algorithms.

Timo Kaukoranta received the M.Sc. and Ph.D.
degrees in computer science from the University
of Turku, Turku, Finland, in 1994 and 2000,
respectively.

Since 1997, he has been a Researcher with the Uni-
versity of Turku. His primary research interests are in
vector quantization and image compression.

Day-Fann Shenreceived the M.Sc. degree from the
University of Cincinnati, Cincinnati, OH, in 1983 and
the Ph.D. degree from North Carolina State Univer-
sity, Raleigh, in 1992, both in electrical and computer
engineering.

From 1983 to 1986, he was with GTE Telnet
Department, Reston, VA, and from 1989 to 1992,
with IBM Communication Division, Research
Triangle Park, NC. Since 1992, he has been an
Associate Professor with the Department of Elec-
trical Engineering, Yunlin University of Science

and Technology, Taiwan, R.O.C. His current research interests are human
visual property, color science, wavelet transform, vector quantization and their
applications to image/video processing and communication.

Kuo-Shu Chang received the M.Sc. degree in elec-
trical engineering from Yunlin University of Science
and Technology, Taiwan, R.O.C., in 1997.

He is currently an Engineer with the Electronic De-
partment, Chung Shan Institute of Science and Tech-
nology, Yunlin, Taiwan. His primary interests are in
image processing and its applications to national de-
fense technology.

