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Abstract - Optimal context quantizers for minimum conditional entropy can be constructed by 

dynamic programming in the probability simplex space.  The main difficulty, operationally, is the 

resulting complex quantizer mapping function in the context space in which the conditional 

entropy coding is conducted.  To overcome this difficulty we propose new algorithms for 

designing context quantizers in the context space based on multi-class Fisher discriminant and 

the kernel Fisher discriminant.  In particular, the kernel Fisher discriminant can describe 

linearly-nonseparable quantizer cells by projecting input context vectors onto a high-dimensional 

curve, in which these cells become better separable.  The new algorithms outperform the previous 

linear Fisher discriminant method for context quantization. They approach the minimum 

empirical conditional entropy context quantizer designed in the probability simplex space, but 

with a practical implementation that employs a simple scalar quantizer mapping function rather 

than a large look-up table.   
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1. Introduction and Problem Formulation 

A key and important task in compressing a discrete sequence X0, X1, X2, … is the estimation of 

conditional probabilities P(X t | X t - 1), where X  t -1 = X0, X1, X2, …  X 
t -1 is the prefix or context of 

Xt.  Given a class of source models, the model order or the number of parameters must be 

carefully chosen in the principle of minimum description length or universal source coding.  The 

pioneer solution to the problem is Rissanen’s algorithm Context [1], which dynamically selects a 

variable-order subset of the past samples in X t -1, called the context, Ct. The algorithm structures 

the contexts of different orders by a tree and it can be shown to be, under certain assumptions, 

universal in terms of approaching minimum adaptive code length for a class of finite memory 

sources.  A more recent and increasingly popular universal source coding technique is context 

tree weighting [2].  The idea is to weight the probability estimates associated with different 

branches of a context tree to obtain a better estimate of P(X t | X t - 1). 

Although the tree-based context modeling techniques have had remarkable success in text 

compression, applying them to image compression poses a great difficulty.  The context tree can 

only model a sequence not a two-dimensional signal like images.  In order to apply the context 

tree-based techniques to image coding one needs to schedule the pixels (or transform coefficients) 

of an image into a linear sequence as proposed by the authors of [3][4].   Recently, Mrak et al. 

investigated how to optimize the ordering of the context parameters within the context trees [5].  

But any linear ordering of pixels will inevitably destroy the intrinsic two-dimensional sample 

structures of an image.  This is why most image/video image compression algorithms choose a 

priori two-dimensional context model with fixed complexity, based on domain knowledge such 

as correlation structure of the pixels and typical input image size, and estimate only the model 

parameters.  For instance, the JBIG standard for binary image compression uses the contexts of a 

fixed size causal template [6]. The actual coding is implemented by sequentially applying 

arithmetic coding based on the estimated conditional probabilities.  
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Estimating the conditional probabilities P(Xt|Ct) directly using count statistics from past 

samples can incur severe context dilution problem if the number of symbols in the context is large 

or/and if the symbol alphabet is large with respect to the length of input signal, which is the case 

for image/video compression.  Context quantization is a common technique to overcome this 

difficulty [7][8][9].  For examples, the state-of-the-art lossless image compression algorithm 

CALIC [10] and the JPEG 2000 entropy coding algorithm EBCOT [11] quantize the context, Ct 

into a relatively small number M of conditioning states, and estimate P(X t|Q(Ct)), 1 ≤  Q(⋅) ≤ M, 

instead of P(X t|Ct), where Q denotes a context quantizer. 

Context quantization is a form of vector quantization because context C is a random vector in 

the d-dimensional context space Ed (i.e., the context model has order d).  Naturally, the objective 

of optimal context quantization should be minimization of the conditional entropy H(X| Q(C)).  

Although the convexity of the entropy function H implies H(X|Q(C)) ≥ H(X|C), we would like to 

make H(X|Q(C)) as close to H(X|C) as possible for a given M, or minimize the Kullback-Leibler 

distance: 

)|())(|()( CXHCQXHQD −= . (1) 
 
Note that in the above H refers to the true source entropy not actual code length which should 

include the model cost.  Although Kullback-Leiber distance (relative entropy) is not strictly a 

distance metric for its violation of symmetry and triangular inequality, the standard practice is to 

use it as a non-negative “distortion” of context quantizer Q. 

The problem of context quantization in minimizing Kullback-Leibler distance was first studied 

by Wu [7] and then by Chen [12] for the application of wavelet image compression.  Greene et al. 

also developed optimal context quantization algorithm for compression of binary images [13].  

Recently, Forchhammer et al. proposed a context quantizer design algorithm under the criterion 

of minimal adaptive code length, and applied it to lossless video coding.  A more theoretical 

treatment of the problem can be found in [8]. 
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 The existing context quantizer design algorithms can be classified into two approaches:  those 

that form coding contexts directly in the context space of conditioning events (or the feature 

space in the terminology of classification and pattern recognition) like [7] and [12], and those that 

form coding contexts in the probability simplex space [8][9][13].  In the context space one can 

apply the generalized Lloyd method [13] to design context quantizer by clustering raw contexts of 

a training set according to Kullback-Leiber distance, which was the idea in [12].  But this iterative 

approach of gradient descent can not guarantee the globally optimal solution.  If the random 

variable X to be coded is binary, then the VQ problem of context quantization can be converted to 

a scalar quantization problem in the probability simplex space of P(X).  This change of space 

makes it possible to design globally optimal context quantizer by dynamic programming 

[8][9][13].  For the sake of rigor we remind the reader that the above mentioned optimality is with 

respect to the statistics of the chosen training data.  In practice, if the statistics of an input image 

mismatches those of the training set then the coding performance becomes of course suboptimal.  

Nevertheless, designing optimal context quantizer still has practical significance because 

situations exist where suitable training set can be found.  Furthermore, an off-line optimized 

context quantizer can be used in conjunction to adaptive arithmetic coding to compensate for any 

coding loss due to the mismatch of statistics. 

Regardless of what space is chosen to design context quantizer, an input context (feature) 

vector c (a realization of the random variable C) has to be mapped to a coding state (a context 

quantizer cell) when it comes to actual context-based coding using P(X|Q(c)).    In this regard, 

both design approaches face a common operational difficulty of complex quantizer mapping 

function Q(c).  Unlike in conventional VQ, the cells (coding states) of optimal context quantizer 

are not convex or even connected in the context space.  Since the quantizer mapping function 

Q(c) is highly unstructured and complex in the context space of c, its description seems only 

possible via table look-up.  Unfortunately, the table size required by Q(c) grows exponentially in 
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the order of the context.  To circumvent this problem the previous authors resorted to 

prequantization of raw contexts c, i.e., limiting the resolution of the context space [12], or the 

technique of product quantization [13].  Another technique is the projection by linear Fisher 

discriminant [7].  However, all these techniques compromise optimality.  In this paper we 

reexamine the problem of optimal context quantization and strive to approach the minimal 

empirical conditional entropy of X under the constraint of a simple quantizer mapping function 

Q(c).  We have made a measured progress in meeting the objective by designing context 

quantizers using Kernel Fisher discriminant.   

The presentation of this paper is organized as follows.  Section 2 characterizes the structure of 

the cells of context quantizer in both probability simplex space and context space, and exposes 

the complexity of quantizer mapping function.  The main results of this research, i.e., the context 

quantizer design algorithms based on multi-class linear Fisher discriminant and kernel Fisher 

discriminant, are presented in Section 3.  The details of the design algorithm by using kernel 

Fisher discriminant are given in Section 4.  Section 5 presents some experimental results, and the 

conclusion follows in Section 6. 

2. Structure and Complexity of Quantizer Mapping  

A context quantizer Q partitions a d-dimensional context space Ed into M subsets: 

Am={c | Q(c) = m}, m =1, …, M. (2) 

 
The criterion of minimizing the Kullback-Leibler distance in context quantizer design leads to 

complex structures and shapes of quantizer cells, which are in general not convex or even 

connected [8].  However, the associated sets of probability mass functions (pmfs)  

Bm = {PX|C(⋅|c) | c∈ Am},  m =1, …, M, (3) 
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are simple convex sets in the probability simplex space of X, owing to a necessary condition for 

minimum conditional entropy quantizer Q [9]. 

If X is a binary random variable, then the probability simplex is one-dimensional.  In this case, 

the quantizer cells Bm are simple intervals. Let Z=PX|C(1|c) (the conditional probability of X = 1 as 

a function of context c) be a random variable, then the conditional entropy H(X|Q(c)) of a context 

quantizer Q can be expressed by 
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can be obtained using dynamic programming.  Greene et al. showed that the MCECQ design 

problem can be solved in O(NM) time, where N is the number of raw, i.e. unquantized contexts, 

thanks to a so-called concave Monge property of the objective function (4) [13]. 

Once Z is scalar quantized for minimal empirical conditional entropy of a training set, the 

optimal MCECQ cells Am are formed implicitly by 

]},()|1(|{ **
1| mmCXm qqPA −∈= cc  (6) 

 
However, P(X|C) is seldom known exactly in practice.  Otherwise one would directly drive an 

entropy coder with P(X|C).  Instead, a training set is used to estimate P(X|C).  Wu et al. [8] 

showed that the partition of the context space Ed  by MCECQ cells, Am, is generally very complex 

in shape and structure, resulting highly irregular quantizer mapping function Q(c).  An example 
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of the distribution of Am in the context space is given in Fig. 1.  Only when PC|X (c|X=0) and PC|X 

(c|X=1) are of Kotz-type d-dimensional elliptical distributions, the MCECQ cells Am are bounded 

by quadratic surfaces [8].  Consequently, the implementation of an arbitrary quantizer mapping 

function Q becomes an operational difficulty in using MCECQ in practice, which is the main 

issue that motivated this research.  

 

Figure 1: An example distribution of MCECQ cells Am in context space, 
for M=3 and the source of least significant bits of DPCM errors of image 
cameraman. The x and y axes represent values of the first two elements in 
raw context (the two directional gradients I(i, j-1) - I(i, j-2) and I(i-1, j) - 
I(I-2, j) as given in (20) and (21)).  The symbols ◊, +, and ο in the scatter plot 
are respectively the raw contexts of cells A1, A2, and A3 . 

 
The simplest way of implementing Q is to use a look-up table.  But since |C|, the number of all 

possible raw contexts, grows exponentially in the order of contexts, building a huge table of |C| 

entries for Q is clearly impractical.  Hashing techniques can be used to avoid excessive memory 

use of the Q table by exploiting the fact that the actual number of different raw contexts 

appearing in an input image is much smaller than |C|.   But this saving of memory is at the 

expense of increased time of quantizer mapping operation when collision in table access occurs.  

To achieve constant execution time of the quantizer mapping function the size of hashing table 

has to be larger than the number of distinct raw contexts by a sufficient factor.  In case of image 



 8

coding, the table size needs to be comparable to the image size since many raw contexts have 

very low frequency of occurrence.   

A common technique to simplify the quantizer mapping function Q is through projection.  Wu 

proposed a suboptimal context quantizer design algorithm based on Fisher’s linear discriminant 

[7].  The idea was to project the training context vectors in the direction y such that the two 

marginal posterior distributions of PC|X(y⋅c|X=0) and PC|X(y⋅c|X=1), c∈Ed, have maximum 

separation.  Then a dynamic programming algorithm was used to form a convex M-partition of 

the corresponding one-dimensional projection space to minimize the conditional entropy: 

))(|( cy ⋅QXH  (7) 
 
in which the intervals (qm-1, qm], 1 ≤ m ≤ M, define the context quantizer Q.  In this design 

approach the context quantizer Q is a scalar one in the projection direction y, i.e., a subspace of 

the original context space Ed.  Although the projection approach is suboptimal, it simplifies the 

quantizer mapping function to Q(c) = m if and only if y⋅c∈ (qm-1, qm], which has operational 

advantages in practice [7]. 

3. Improved Design Algorithms of Fisher Discriminants 

The progress made by this paper is to combine the advantages of the two MCECQ design 

approaches in the probability simplex space and in the projection context space of Fisher’s 

discriminant.  Namely, we seek to attain simultaneously the optimality of MCECQ in probability 

simplex space and the simplicity of quantizer mapping in the projection space.   

3.1 Multi-class Linear Fisher Discriminant 

In [7], a linear Fisher discriminant was used to separate the two posterior distributions of 

PC|X(c|X=0) and PC|X(c|X=1), which is a two-class clustering problem. However, the success of 

this approach is limited to cases where PC|X(c|X=0) and PC|X(c|X=1) are linearly separable to 
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certain degree.  But for more difficult, linearly non-separable shapes of context cells a departure 

from [7] is needed.  We seek to separate the M optimal MCECQ cells formed in the probability 

simplex space via a suitable, non-linear projection of the context space.  The goal is to apply the 

discriminant classifier to form a convex partition in the projection subspace that best matches the 

optimal partition of Bm’s in the probability simplex space. The multi-class Fisher discriminant 

[15] lends us a tool to design a classifier that approximates the optimal partition of contexts in the 

probability simplex space by an optimized partition in a projection subspace.  The separation of 

input classes (i.e., the partition of Am’s formed by MCECQ in the context space) in projection 

direction y can be measured by the so-called F-ratio validity index, J(y), defined as the ratio of 

between-class variance versus within-class variance: 
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where π(i) is the class label of each sample xi and x  is the mean vector of all raw context samples. 

The multi-class linear Fisher discriminant is the maximization of F-ratio validity index in (8), i.e., 
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where v represents a discriminant vector in raw context space. SB and SW in (9) are the between-

class covariance matrix and the within-class covariance matrix respectively: 
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where mj and nj are the mean vector and sample size of class j in context space respectively. After 

the projection direction y is determined by (9), one can still apply dynamic programming to the 

projected samples y⋅c to optimize context quantizer the same way as in (7). 
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3.2 Kernel Fisher Discriminant 

The multi-class linear Fisher discriminant outperformed the two-class linear Fisher 

discriminant in terms of designing context quantizers of shorter code length in our experiments 

(see Section 5).  But the contexts of different MCECQ cells (input classes for the Fisher 

discriminant) are not linearly separable in the context space as shown in [8].  A superior 

alternative is to use a non-linear classifier of higher discriminating power.  Encouraged by the 

success of the kernel-based learning machines, such as support vector machine, kernel principal 

component analysis and kernel Fisher discriminant analysis (KFD) in many other classification 

and learning applications [16][17][18][19][20], we propose a new design technique of context 

quantizers by using the multi-class kernel Fisher discriminant. The multi-class kernel Fisher 

discriminant has been intensively studied as a generalization of discriminant analysis using kernel 

approach [21][22]. As an extension of Fisher discriminant, the kernel one is known for its high 

discriminating powers on the input clusters of complex structures. The kernel discriminant first 

maps the source feature vectors (or context vectors in MCECQ design) into some new feature 

space F in which different classes are better separable.  A linear discriminant is computed to 

separate input classes in F.  Implicitly, this process constructs a non-linear classifier of high 

discriminating power in the original feature space.   In our application of context quantization, the 

objective of the kernel discriminant is, given an M input partition Am={c: Q(c) = m}, 1 < m < M, 

to find a projection direction y in a new feature space F such that different Am’s are most 

separable in y.  A dynamic programming algorithm is then applied to design an MCECQ in y.  

The resulting MCECQ in F implicitly constructs a context quantizer in the context space Ed.  

Let Φ(c) be the nonlinear mapping from context space to some high-dimensional Hilbert space 

F. Our goal is to find the projection line y in F such that the F-ratio validity index J(y) 

ySy
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is maximized, where Φ
BS and Φ

WS are the between-class and within-class covariance matrices. Since 

the space F is of very high or even infinite dimensions, the function Φ(c) is infeasible.  A 

technique to overcome this difficulty is the Mercer kernel function k(x, y) = (Φ(x)⋅Φ(y)), which is 

the dot product in Hilbert feature space F.  A popular choice for the kernel function k that has 

been proved useful (e.g. in support vector machines) is the Gaussian RBF (radial basis function), 

k(x,y) = exp(-||x-y||2/2σ). It is known that under some mild assumptions on Φ
BS  and Φ

WS , any 

solution y∈F maximizing (11) can be written as the linear span of all mapped context samples 

[19]: 
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As a result, the F-ratio J(y) can be reformulated as: 
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where A and B are N×N matrices: 
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where K is the kernel matrix, Kij=Φ(ci)⋅Φ(cj), jjj n/1Kµ ⋅= , N/1Kµ ⋅= , 1j∈(0,1)N are 

membership vectors corresponding to class labels, and 1 is the vector of all ones. The projection 

of a test context c onto the discriminant is given by the inner product 

∑
=

=
N

j
jjkΦ

1

),())(,( cccy α  (15) 

    
where k(x,y) = exp(-||x-y||2/2σ) is the RBF kernel function. The superior discriminating power of 

KFD over the linear Fisher discriminant (LFD) method of [7] for MCECQ design is illustrated in 

Fig. 2.  The plots are for the context vectors in the modeling of the least significant bit of the test 
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image cameraman.   By comparing the histograms of the projected MCECQ cells A1 and A2 from 

Cameraman image (for case of M = 2) for the two methods respectively, one can easily see that 

KFD offers significantly better separation of A1 and A2 than LFD.   Note that the projection of 

KFD is in general non-linear unlike the classic LFD. 

  

Projected A1 by KFD. Projected A2 by KFD. Projected A1 by LFD. Projected A2 by LFD. 
 
Figure 2. Comparison of the kernel and linear Fisher discriminants in the separablility of two MCECQ 
cells in the projection subspace . 

 
Computationally, the KFD problem is to find the leading eigenvector of B-1A.  As the 

dimension of F is higher than the number of source samples N, and B is a highly singular N×N 

matrix obtained from only N source samples, some form of regularization is necessary.  The 

simplest solution is to add either the identity or kernel matrix K to matrix B, namely matrix B is 

replaced by Bβ =B + βI. This makes the problem numerical more stable because the within-class 

matrix B becomes more positive definite for large β.  It is also roughly equivalent to add 

independent noises to each of the kernel bases.  

4. Implementation of KFD for Context Quantization  

In the above formulations, matrices B and A are too large in size in practice.  Maximizing  (13) 

takes O(N 3) time since it needs to solve the N×N matrix eigenvalue problem.  This complexity is 

too high for large N. More importantly in context quantization application, we are not able to use 

all the basis functions corresponding to all raw training contexts. Solving the kernel Fisher 

discriminant for two classes can be cast to a quadratic optimization problem [18][19]. However, 

this scheme can not be directly applied to estimating the multi-class kernel Fisher discriminant. 
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The possible solution applicable to any choice of A and B is to restrict the discriminator y to be in 

a subspace of F, as proposed in [19][20].  Instead of using (12), we express y in the subspace: 
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where l << N, and samples cj could be either selected from all raw training context samples or 

estimated by some clustering algorithms. Without loss of generality, if we choose each cj in (16) 

from the training set, 1 ≤  j ≤ l,   then: 
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where α(l)  is l-dimensional vector, and A(l) is an l×l matrix: 
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and B(l) is an l×l matrix: 
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with K(l) being an l×N sub-matrix of K, jjj nll /)()( 1Kµ ⋅=  and Nll /)()( 1Kµ ⋅= . 

Given the dimension l of the subspace of F, the partial expansion (16) presents a greedy 

approximation of the optimal KFD solution, which was described in [19][20] and studied 

theoretically as the reduced set method for supported vector machines in [23].  This 

approximation can be incrementally improved by adding a raw context sample or a new context 

base one at a time to the existing expansion, i.e., incrementing the dimensionality l by one at a 

time.  Such incremental expansion can be done in a greedy fashion as follows.  For each iteration 

we first randomly select a subset U of the remaining training set, then we conduct an exhaustive 

search in U, instead of in the whole remaining training set, for the training context c that 

maximizes (17) after c being added to (16).  The proper size of U was shown to be 59 in order to 

obtain nearly as good a performance as if the search was through the entire remaining training set 
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[24].  Since l<<N, incrementing the kernel expansion (16) by one base context merely takes 

O(59×N×l) time. Consequently, the approximation of the kernel discriminant in l-dimensional 

subspace of F has O(59×N×l2) time complexity, which is drastically lower than O(N 3). The 

pseudo code of this practical approximation algorithm of kernel Fisher discriminant for context 

quantization is presented in Fig. 3. 

 
input:               C = {c1, c2, …  cN}: a set of raw training contexts. 

                   lmax: the maximum number of expansion coefficients. 
                         T: stopping threshold in relative entropy. 
                         M : the number of context quantizer cells. 

output:             I : the set of bases in the linear spanning as in (16). 
                         α = {αj| 1≤ j ≤ lmax}: kernel Fisher discriminant coefficients as in (16). 
                         P(1|Q(Φ(c)⋅ y) = j), 1≤j≤M: the empirical conditional probabilities in context cells in the projection 

subspace. 
                          (qj-1, qj]: context quantizer intervals in the projection subspace. 
 
Function          ContextVQKFD (C, T,  lmax, M) 

                           Dopt(Q) ← solve the MCECQ problem by dynamic programming in probability simplex space. 
                   l ← 0; I  ← ∅; δ ←∞. 
                  while δ  > T  and l < lmax 

                         S ← randomly pick 59 elements from C \ I  
                          l ← l + 1 
                          JKFD ← initialize the KFD F-ratio as 0 
                         for  z ∈ S do 
                                I*← I ∪{ z }; 

                                            Update covariance matrices A (l) and B(l) as in (18) and (19) for I*; 
                                 α* ← leading eigenvector of matrix A-1(l)B(l); 
                                 J* ← update F-ratio of A (l) and B(l) for α*; 
                                 If J* >  JKFD then 

                              JKFD ← J*; cl ← z; α ← α* 
                           end if 

                              end for 
                              I ← I ∪ { cl }; 

                                    Cproj ← project all contexts c∈C into the projection direction by )( ,)( 1 jlj j k cccΦy ∑⋅ ≤≤= α ; 

                             obtain (qj-1, qj], P(1|Q(Φ(c)⋅ y) = j), DKFD(Q) by solving the MCECQ problem by dynamic 
programming in projection subspace Cproj ; 

                             δ   ← DKFD(Q) - Dopt(Q). 
                  end while 
                  return  I, α,  (qj-1, qj] and P(1|Q(Φ(c)⋅ y) = j). 
 

Figure 3: Pseudocode of context quantization by kernel Fisher discriminant 
 
 
We build the context quantizer in three steps. In the first step, we apply the dynamic 

programming algorithm to design MCECQ in the probability simplex space. This produces the 

MCECQ cells Bm that constitutes the input classes of KFD.  In the second step, we map Bm back 
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to Am in the context space, and use the kernel Fisher discriminant to find a projection direction in 

F (corresponding to a curve in the context space) in which MCECQ cells Am have maximum 

separation. In the final step, we compute all projection values of training contexts and put them 

into a sorted list.  Since each class in projection direction in general is not convex, in order to 

make the underlying classification problem tractable and more importantly make the quantizer 

mapping function simple, the dynamic programming is used again to construct a convex partition 

of the projection subspace that minimizes the conditional entropy H(X|y⋅Φ(c)∈ (qm-1, qm]), where 

)( ,)( 1 jlj j k cccΦy ∑⋅ ≤≤= α . 

5. Experimental Results 

We implemented the proposed context quantizers and evaluated them in DPCM predictive 

lossless coding of gray scale images.  The prediction residuals are coded by binary arithmetic 

coding that uses context states optimized by the proposed algorithms.  The binary random 

variables to be coded are the binary decisions in resolving the value of the prediction residual.  In 

particular we are interested in two binary sources: the signs of DPCM prediction errors on grey 

scale images, and the least significant bits of the DPCM prediction errors.  These binary sources 

are among the most difficult to compress with their self entropy being maximum (1 bit per 

sample), and thus present great challenges to context-based entropy coding.  Consequently, they 

serve as good, demanding test cases for the performance of different context quantizers.   

The causal context in which the current pixel I(i, j) is coded consists of three gradients in a 

local window c = (c1,c2,c2): 
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The reason for choosing (c1,c2,c2) as feature vector in context modeling is because they capture 

the variance and signal the presence of edge structure in the image signal while keeping the 

dimensionality of the feature space low.  We did not use higher order context model to avoid 

overfitting in the coding phase.   Even this three-dimensional feature space generates a very large 

number of raw contexts, namely 3512 .   A scalar prequantization scheme: 
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is used to reduce the number of raw contexts to a manageable level of (2×k +1)3  (k was chosen to 

be 6 in our experiments).  Since the gradient is the difference of adjacent samples, it obeys 

geometrical distribution for natural images.  The above scalar prequantization merges the raw 

contexts into equally probable regions. 

The training set of raw contexts was generated out of 23 images that were samples from two 

archives of benchmark gray scale images on the Internet [25][26].  The test set consisting of 

images airplane, barb, boat, cameraman, couple, crowd, girl, lena, peppers, tiffany, is disjoint 

from the training set. The model parameters (β,σ) to construct the kernel discriminants for the 

two training sets are chosen as (0.0076, 4.16) and (0.0043, 5.33) respectively, which can be 

estimated by applying the cross-validation [27][28] estimation of the minimized misclassification 

rate or desirable minimum conditional entropy. Either the encoding or decoding of each binary 

symbol by a KFD context quantizer needs projecting a context to the discriminant direction in 

O(l) time according to (16). Thus, the encoding or decoding complexity of a KFD context 

quantizer is O(l×N), where N is the length of input sequence. 

We compare three context quantizers of Fisher discriminant type reviewed and developed in 

this paper.  Namely, LFD-I: the two-class linear Fisher discriminant scheme of [7], LFD-II: the 

multi-class linear Fisher discriminant scheme discussed in Section 3.1, and KFD: the MCECQ 
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design algorithm based on kernel Fisher discriminant developed in Section 3.2 and Section 4.  All 

the three context quantizer design algorithms output convex quantizer cells in the context space 

with simple quantizer mapping functions.  As a performance benchmark we also include the ideal 

results, i.e., the conditional entropy rates of MCECQ quantizer in the probability simplex space, 

against which the testing results of the three practical methods are measured.  These rates were 

obtained by MCECQ designed for the sample statistics of each individual test image.  Clearly, 

these rates serve as a theoretical lower bound with respect to the context model in question, since 

they are the best achievable in the ideal situation when the training data and input image have 

identical statistics and as though the quantizer mapping function, regardless how complex, could 

be precisely implemented in practice.  

Figures 4 and 5 plot the average bit rates achieved by the three MCECQ design methods in the 

context space, LFD-I, LFD-II and KFD, on coding the sign and the least significant bit of DPCM 

errors for the ten test images.  The bit rates are presented as functions of the number of context 

quantizer cells.  As lower bounds for the achievable bit rates by any convex partition of the 

context space, we also include in the figures the corresponding average conditional entropy rates 

of optimal MCECQs designed in the probability simplex space as explained above.  It can be 

observed from our experimental results, as expected, that LFD-II outperforms LFD-I, and KFD 

outperforms the two variants of linear discriminant type, because KFD has higher discriminating 

power than the other two with its capability of forming more complex quantizer cells.  In fact, the 

KFD method achieves the bit rates that are less than 0.5% away from the lower bound.  
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Figure 4: Average bit rates achieved by the four context quantizers on coding the sign of DPCM error 
pixel in bits/sample. 
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Figure 5: Average bit rates achieved by the four context quantizers on coding the least significant bit of 
DPCM error pixel in bits/sample. 

 
 
We apply the three context quantizers designed from the training set to encode the signs and 

the least significant bits of DPCM errors from 10 test images outside of the training set. All three 

context quantizer have 12 cells, in other words the conditional entropy coding is carried out in 12 

coding states.  Tables 1 and 2 show the actual code lengths obtained by the three context 



 19

quantizers.   Not surprisingly, the kernel Fisher discriminant in general outperforms the two linear 

ones. 

 
     Table 1: Bit rates of signs of DPCM errors for different methods. 

Image Lower 
bound 

LFD-I LFD-II KFD 

airplane 0.903412 0.919363 0.906214 0.906678 
barb 0.903873 0.939119 0.907764 0.907621 
boat 0.925852 0.943870 0.928001 0.926753 

cameraman 0.892693 0.909089 0.896163 0.895801 
couple 0.914312 0.921110 0.916768 0.917992 
crowd 0.932237 0.948894 0.936294 0.935742 

girl 0.914502 0.945503 0.919236 0.919035 
lena 0.917931 0.944266 0.921174 0.921701 

peppers 0.957923 0.985236 0.961451 0.960999 
tiffany 0.928765 0.949091 0.932569 0.932043 

 
 

Table 2: Bit rates of least significant bits of DPCM errors for 
different methods. 

Image Lower 
bound 

LFD-I LFD-II KFD 

airplane 0.959321 0.982544 0.972848 0.968383 
barb 0.983122 0.994972 0.991413 0.987895 
boat 0.978024 0.990999 0.986999 0.980999 

cameraman 0.946543 0.971188 0.958581 0.949875 
couple 0.893815 0.909343 0.903141 0.900728 
crowd 0.953596 0.957038 0.953710 0.957381 

girl 0.979238 0.992968 0.986548 0.983537 
lena 0.986358 0.992127 0.991570 0.989302 

peppers 0.991213 0.994391 0.991873 0.993025 
tiffany 0.979252 0.991235 0.987100 0.982065 

 
 

Table 3: Bit rates of lossless image compression by different 
methods. 

Image KFD LFD-I LFD-II JPEG-LS 
airplane 4.530 4.795 4.727 4.582 

barb 4.830 5.083 5.060 4.862 
boat 4.843 5.092 5.028 4.907 

cameraman 4.244 4.519 4.450 4.314 
couple 3.603 3.730 3.701 3.658 
crowd 4.932 5.181 5.132 5.048 

girl 4.050 4.206 4.157 4.125 
lena 4.492 4.685 4.648 4.581 

peppers 4.758 4.918 4.879 4.847 
tiffany 4.350 4.504 4.486 4.435 
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Table 3 presents the lossless bit rates of the ten test images achieved by adaptive binary 

arithmetic coding that uses the modeling contexts designed by the proposed MCECQ methods for 

each binary decision.  As a reference in comparison the bit rates of the JPEG-LS lossless image 

coding standard are also listed in the table.  The comparison is fair and meaningful because 

JPEG-LS uses the same context template as in our experiments but it employs a heuristic context 

quantization scheme [29].  The proposed KFD-based context quantizer has a small improvement 

over JPEG-LS.  The small margin between the two methods indicates that the heuristic context 

quantizer of JPEG-LS is already very good compared with a heavily optimized one.  We envision 

this work to be a useful algorithmic tool to evaluate the quality of more practical context 

quantizers. 

6. Conclusions 

We proposed new algorithms for designing context quantizers toward minimum conditional 

entropy based on multi-class Fisher discriminant and the kernel Fisher discriminant. We 

succeeded in approaching the lower bound of the achievable bit rates with a practical 

implementation that employs a simple scalar quantizer mapping function rather than a large look-

up table.   
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