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Abstract. Centroid index is the only measure that evaluates cluster level dif-
ferences between two clustering results. It outputs an integer value of how many
clusters are differently allocated. In this paper, we apply this index to other
clustering models that do not use centroid as prototype. We apply it to centroid
model, Gaussian mixture model, and arbitrary-shape clusters.
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1 Introduction

Clustering aims at partitioning a data set of n points into k clusters. External index
measures how similar a clustering solution is to a given ground truth (if available), or
how similar two clustering solutions are. This kind of measure is needed in clustering
ensemble, measuring stability and evaluating performance of clustering algorithms.

In clustering algorithms, one of the main challenges is to solve the global allocation
of the clusters instead of just tuning the partition borders locally. Despite of this, most
external cluster validity indexes calculate only point-level differences without any
direct information about how similar the cluster-level structures are.

Rand index (RI) [1] and Adjusted Rand index (ARI) [2] count the number of pairs
of data points that are partitioned consistently in both clustering solutions (A and B); if
a pair of points is allocated in the same cluster in A, they should be allocated into the
same cluster also in B. This provides estimation of point-level similarity but does not
give much information about the similarity at cluster level.

More sophisticated methods operate at the cluster level. Mutual information
(MI) [3] and Normalized mutual information (NMI) [4] measure the amount of
information (conditional entropy) that can be obtained from a cluster in A using the
clusters in B. Set-matching based measures include Normalized van Dongen (NVD) [5]
and Criterion-H (CH) [6]. They match the clusters between A and B, and measure the
amount of overlap between the clusters, see Fig. 1. However, all of them measure
point-level differences. What is missing is a simple structural cluster-level measure.

Figure 2 demonstrates the situation with three clustering results: k-means (KM) [7],
random swap (RS) [8] and agglomerative clustering (AC) [9]. The clustering structure
of RS and AC is roughly the same, and their differences come mostly from the minor
inaccuracies of the centroids in the agglomerative clustering. The result of the k-means
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has a more significant, structural difference: one centroid is missing at the top, and there
are too many centroids at the bottom.

Some indexes (ARI, NVD, CH) indicate that RS-vs-AC in Fig. 2 are more similar
(ARI = 0.91; NVD = 0.05; CH = 0.05) than RS-vs-KM (ARI = 0.88; NVD = 0.07;
CH = 0.10), or AC-vs-KM (ARI = 0.82; NVD = 0.10; CH = 0.14) but the numbers
do not tell that their global structure is the same.
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Fig. 1. Principle of set-matching based external validity indexes. The values are the number of
overlap between the clusters. Blue indicate clusters that would be selected for matching. Sample
index values for this example would be NMI = 0.42, NVD = 0.20, CH = 0.20, CI = 0. (Color
figure online)
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RI 0.99 0.99 0.98

ARI 0.91 0.88 0.82

MI 3.64 3.64 3.48

NMI 0.93 0.94 0.90

NVD 0.05 0.07 0.10

CH 0.05 0.10 0.14

CI 0 1 1

Fig. 2. Comparing three clustering results: Random Swap (RS), Agglomerative clustering
(AC) and K-means (KM) with eight measures.
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In a recent work [10], we introduced a cluster level index called centroid index
(CI) to cope with this problem by measuring the number of clusters allocated differ-
ently. For each centroid in A, the method finds its nearest centroid in B. Then it
calculates the indegree-values for each centroid in B; how many times it was selected
as the nearest. An orphan centroid (indegree = 0) indicates that a cluster is differently
located in the clustering structure. The index value is the count of these orphans so that
CI-value indicates the number of cluster-level differences. Value CI = 0 indicates that
the clustering structures are identical, CI = 1 that one cluster mismatch, and so on.

The measure is somewhat rough as it ignores the point-level differences. A simple
point-level extension called centroid similarity index (CSI) was therefore also con-
sidered. However, the main idea to measure the cluster level differences is best captured
by the raw CI-value, or relative to the number of clusters: CI/k. In Fig. 2, CI-value
clearly tells that RS and AC have similar clustering structure (CI = 0), and that
k-means has one difference (CI = 1).

A limitation of CI is that we must have the centroids. It is possible to use other
clustering models like k-medoids [11] and k-modes [12] by finding the nearest
medoid/mode using the distances in the feature space. However, in more complex
clustering models like Gaussian mixture model (GMM), density-based or
arbitrary-shape clustering, it is not as simple.

In this paper, we show how to apply centroid index by using partitions instead of
the centroids. For every cluster in A, we first find its most similar cluster in B by
calculating the amount of overlap by Jaccard coefficient, which is the number of shared
points divided by the total number of distinctive data points in the two clusters:

J ¼ Ai \Bj

�� ��
Ai [Bj

�� �� ð1Þ

where Ai and Bj are the matching (most similar) clusters.
However, we do not sum up the overlaps but we further analyze the nearest

neighbor mapping. The cluster-to-cluster similarity is now determined at point level,
but the overall value is still measured at the cluster level. The measure is calculated as
the number of orphan clusters (indegree = 0) as in the original definition of centroid
index. Thus, the method now generalizes from the centroid-model to other clustering
models independent on how the cluster is represented: centroid, medoid, mode, or even
no prototype used at all.

For example, in Fig. 1, the topmost clusters are mapped to each other, and the
bottom-most clusters to each other. This results in mapping where all indegree = 1 for
both clusters, and CI-value becomes 0. Therefore, these two solutions have the same
clustering structure and they differ only at the point level.

2 External Cluster Validity

Existing cluster validity indexes can be divided into three categories: pair-counting,
information theoretic and set-matching based measures:
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Pair-counting measures
• RI = Rand index [1]
• ARI = Adjusted Rand index [2]
Information theoretic measures
• MI = Mutual information [3]
• NMI = Normalized Mutual information [4]
Set-matching based measures
• NVD = Normalized van Dongen [5]
• CH = Criterion H [6]
• CI = Centroid Index [10]
• CSI = Centroid Similarity Index [10]

We next briefly recall the idea of set-matching based methods [13]. The clusters are
first either paired (NVD) or matched (CH and CI). In pairing, best pair of the clusters in
A and B are found by minimizing the sum of the similarities of the paired clusters.
Hungarian [13], or greedy algorithm [6, 14] has been used to solve it.

In matching, nearest neighbour is searched. This does not always result in bijective
mapping where exactly two clusters are paired, but several clusters in A can be mapped
to the same cluster in B (or vice versa), see Fig. 3. The mapping is not symmetric, and
is usually done in both ways: A→B and B→A.

The similarities of the matched/paired clusters are then calculated by summing up
the total overlap. In [13], the values are first normalized by the maximum cluster size.
In NVD, CH and CSI, the normalization is performed after the summation by dividing
the total number of shared points by the total number of points:

S ¼ 1
N
�
Xk
i¼1

Ai \NN Aið Þj j ð2Þ

where NN(Ai) is the cluster in B that Ai is matched/paired with. Centroid index
(CI) finds the nearest centroid without any use of the partitions:
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Fig. 3. Matching of clusters using pointwise similarities.
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NN Aið Þ ¼ argmin
1� j� k

c Ai½ � � c Bj
� ��� �� ð3Þ

where c[Ai] and c[Bj] are the centroids of A and B. The other difference is that CI does
not use the point-level measure (2). Instead, it calculates the number of mappings
(indegree) made for each cluster Bj, and then sums up the number of clusters in B that
has not been mapped at all (indegree = 0). These are called orphans:

CI1ðA ! BÞ ¼
Xk
j¼1

Orphan Bj
� � ð4Þ

where Oprhan(B) has value 1 if no cluster in A is mapped to it:

Orphan Bð Þ ¼ 1 InDegree Að Þ ¼ 0
0 InDegreeðAÞ[ 0

�
ð5Þ

In order to have symmetric index, we perform mappings in both ways: A→B and
B→A. The CI-value is then defined as the maximum of these two:

CI A;Bð Þ ¼ max CI1 A ! Bð Þ;CI1 B ! Að Þf g ð6Þ

To sum up, the index is easy to calculate, and the result has clear interpretation:
how many clusters are differently allocated. An example is shown in Fig. 4.

Fig. 4. Example of Centroid index (CI). Only mapping RED→PURPLE is shown. Some purple
circles are under the red and not visible. (Color figure online)
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3 Centroid Index Using Different Clustering Models

The main limitation of the centroid index is that it requires centroids, which may not
exist in other clustering models such as k-medoids [11], k-modes [12], Gaussian
mixture model (GMM), density-based and arbitrary-shape clustering. To apply the
index to other models, we consider the following alternative approaches:

• Prototype similarity
• Partition similarity
• Model similarity

3.1 Prototype vs. Partition Similarity

K-medoids and k-modes clustering operate also in a feature space (usually Euclidean),
so generalization to them is trivial using the prototype similarity approach. We just find
the nearest prototype in the other solution using the distance in the feature space. It
does not matter whether the prototype is centroid, medoid or mode.

The second approach uses the partitions of the two clustering solutions. The
matching of each cluster is done by finding the most similar cluster in the other solution
using (1). This applies to any partition-based clustering and it can be calculated from
the contingency table in O(N�k2) time [2]. Contingency table tells how many shared
points two clusters Ai and Bj have. See Table 1 for an example.

This partition similarity approach applies also to centroid-based clustering but it
may be slower to calculate. Finding the most similar prototype takes only O(dk2),
where d is the number of dimensions. This is expected to be faster than the O(N) + O
(k2) of the partition similarity; unless if the dimensionality or the number of clusters is
very high. For S1–S4 data (http://cs.uef.fi/sipu/datasets) the estimated numbers are 450
distance calculations for the prototype similarity, and 4352 counter additions for the
partition similarity. However, observed values in Table 2 show that the calculation of
the squared distance takes so much longer that the speed benefit is practically lost.
Thus, the partition-based variant is virtually as fast already when d = 2.

Table 1. Contingency table for the clusterings presented in Fig. 3. For instance, clusters A1

shares 5 points with cluster B1, 1 point with cluster B2, and 2 points with cluster B3.

B1 B2 B3 ∑

A1 5 1 2 8
A2 1 4 0 5
A3 0 1 3 4
∑ 6 6 5 17
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It is also possible that the two approaches provide different mappings. Even then,
the resulting CI-value is expected to be mostly the same. Table 2 also reports the
number of times the two approaches give different CI-value.

The third approach is to derive the similarity of clusters directly from the proba-
bility density function of the model. Next we study this for Gaussian mixture model.

3.2 Model Similarity

Gaussian mixture model (GMM) represents every cluster by its centroid and covariance
matrix. This increases the size of the model from O(1) to O(d2) per cluster. However,
there is often not enough data to estimate the covariances reliably. A simplified variant
therefore considers the diagonal of the covariance matrix, thus, reducing the model size
to O(d). We also use this simplified variant here.

Expectation maximization (EM) [16] algorithm optimizes GMM analogous to
k-means. It iterates Expectation and Maximization steps in turn to optimize loglikeli-
hood. It also suffers the same problem as k-means: stucks into a local optimum. Better
variants include split-and-merge [17], genetic algorithm [18] and random swap [19].

For comparing two clusters (mixtures), we can use any of the three approaches.
Prototype similarity approach ignores the covariance and just finds the nearest centroid
in the other solution. Partition similarity performs hard partition by assigning each
point into the cluster with maximum likelihood, after which the partition similarity can
be calculated using the contingency table.

For the model similarity, we use here Bhattacharyya coefficient. It measures the
similarity between two probability distributions p and q, and is calculated as follows:

SBC ¼
X ffiffiffiffiffiffiffiffiffiffiffi

pi � qjp ð7Þ

For two multivariate normal distributions, it can be written as:

SBC ¼ 1
8

c Ai½ � � c Bj
� �� �T

R�1 c Ai½ � � c Bj
� �� �þ 1

2
ln

Rj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1j j R2j jp

 !
ð8Þ

where c[Ai] and c[Bj] are the means (centroids), Σ1 and Σ2 are the covariance matrices
of the two clusters Ai and Bj. and Σ is the average of Σ1 and Σ2. The first term in (8)
represents the Mahalonobis distance, which is a special case of Bhattacharyya when
the covariance matrixes of the two distributions are the same as is the case in GMM.

Table 2. Processing times for CI using prototype and partition similarity. The third row shows
how many times they provided different CI-values. Data sets S1-S4 are from [15].

S1 S2 S3 S4 Birch2

Prototype 15 ms 15 ms 15 ms 15 ms 120 ms
Partition 14 ms 14 ms 14 ms 14 ms 250 ms
Different 5.8 % 7.1 % 5.2 % 7.9 % 30 %
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Figure 5 shows an example of two GMM models by SMEM [17] and RSEM [19]
algorithms. We compare the results by calculating the various indexes from the
resulting partitions. The result of CI was calculated by all the three approaches; all
resulted into the same mapping, and gave exactly the same value CI = 2.

3.3 Arbitrary Partitions

Arbitrary-shape clustering differs from the model-based clustering in that there is no
model or prototype for the clusters. This kind of clustering problem is often solved
based on connectivity. For example, single link algorithm [20] results in a minimum
spanning forest where each cluster is represented by the minimum spanning tree of the
points in the cluster.

To compare such clustering results by CI, we use the partition similarity because it
is independent on the chosen clustering model. All what is required is that we can
access the partitions. However, in on-line clustering where huge amount of data is
processed, the original data points might not be stored but deleted immediately when
their contribution to the model is calculated. In this case, the partition-based similarity
cannot be applied but in most offline applications, we do have access to partitions.

Examples of data with arbitrary-shape clusters is shown in Fig. 6 when clustered by
k-means (left) and single link (right). K-means misses the two smaller clusters, and

Fig. 5. Centroid index for Gaussian mixture model. Only mapping SMEM→RSEM is shown.

Fig. 6. K-means result for Aggregate (left) and Single Link result for Compound (right) when
compared to the ground truth (GT). Mapping of the max value is shown (KM→GT; GT→SL).
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divides the bigger ones in the middle and on the top. Single link makes three mistakes
in total, by merging three real clusters and by creating three false clusters of size one.

4 Experiments

Here we provide numerical comparison of the centroid index (CI) against the selected
existing indexes. We use the following data sets:

• S1–S4 [15]: 5000 points in 15 clusters.
• Unbalanced [13]: 6500 points in 8 clusters
• Birch2 [23]: 100,000 points in 100 clusters
• Aggregate [24]: 788 points in 7 clusters
• Compound [25]: 399 points in 6 clusters

We apply the following algorithms: K-means (KM), K-means++ (KM++) [26],
Random Swap (RS) [8], Genetic Algorithm (GA) [27] for the data with spherical
clusters; Single Link (SL) [21], DBSCAN [21], Split-and-Merge (SAM) [22] for data
with arbitrary-shape clusters. K-means is applied for both.

Same clustering results with the corresponding validity index values are given in
Tables 3. Unbalanced is rather easy to cluster by good algorithm but k-means fails
because random initialization tends to select all centroids from the bigger clusters to the
left, and only one centroid will move to cover the five small clusters, see Fig. 7. Thus,
leaving four other clusters empty, which results in CI = 4. Most other indexes react to
this but their exact values tell very little about how severe the error is, whereas the
CI-value tells that half (4/8) of the clusters are wrongly allocated.

Table 3. Sample clustering results with validity values. CI = 0 indicates correct structure.

RI ARI MI NMI NVD CH CSI CI

Birch2
KM 1.00 0.81 6.26 0.96 0.12 0.24 0.88 18
KM ++ 1.00 0.95 6.54 0.99 0.03 0.06 0.97 4
RS 1.00 1.00 6.64 1.00 0.00 0.00 1.00 0
GA 1.00 1.00 6.64 1.00 0.00 0.00 1.00 0
S1
KM 0.98 0.82 3.57 0.93 0.09 0.17 0.83 2
KM ++ 1.00 1.00 3.90 0.98 0.00 0.00 1.00 0
RS 1.00 1.00 3.90 0.98 0.00 0.00 1.00 0
GA 1.00 1.00 3.90 0.98 0.00 0.00 1.00 0
S2
KM 0.97 0.80 3.46 0.90 0.11 0.18 0.82 2
KM ++ 1.00 0.99 3.87 0.99 0.00 0.00 1.00 0
RS 1.00 0.99 3.87 0.99 0.00 0.00 1.00 0
GA 1.00 0.99 3.87 0.99 0.00 0.00 1.00 0

(continued)
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Fig. 7. Datasets unbalance (above) and Birch2 (below) clustered by k-means.

Table 3. (continued)

RI ARI MI NMI NVD CH CSI CI

Unbalanced
KM 0.92 0.79 1.85 0.81 0.14 0.29 0.86 4
KM ++ 1.00 1.00 2.03 1.00 0.00 0.00 1.00 0
RS 1.00 1.00 2.03 1.00 0.00 0.00 1.00 0
GA 1.00 1.00 2.03 1.00 0.00 0.00 1.00 0
SL 1.00 0.99 1.91 0.97 0.02 0.05 0.98 3
DBSCAN 1.00 1.00 2.02 0.99 0.00 0.00 1.00 0
SAM 0.93 0.81 1.85 0.82 0.12 0.25 0.88 4
Aggregate
KM 0.91 0.71 2.16 0.84 0.14 0.24 0.86 2
SL 0.93 0.80 1.96 0.88 0.09 0.18 0.91 2
DBSCAN 0.99 0.98 2.41 0.98 0.01 0.01 0.99 0
SAM 1.00 1.00 2.45 1.00 0.00 0.00 1.00 0
Compound
KM 0.84 0.54 1.71 0.72 0.25 0.34 0.75 2
SL 0.89 0.74 1.54 0.80 0.13 0.26 0.87 3
DBSCAN 0.95 0.88 1.90 0.87 0.10 0.12 0.90 2
SAM 0.83 0.53 1.78 0.76 0.19 0.34 0.81 2

294 P. Fränti and M. Rezaei



The results for the data with arbitrary-shaped clusters are similar. DBSCAN and
SAM work well for the Aggregate providing perfect clustering structure (CI = 0)
although DBSCAN leaves out few points as outliers. Compound is more challenging
and all the methods make 2 or 3 errors in the clustering structure, usually merging the
leftmost clusters and creating too many on the right.

Finally, we study how the indexes react when randomness is added increasingly to
artificially created partitions (for details see [13]). Figure 8 shows that the centroid
index does not react at all for these point-level changes as long as most points keeps in
the original cluster. The values of the set-based measures (NVD, CH, Purity) decrease
linearly, which shows that they are most appropriate to measure point-level changes.

5 Conclusions

Centroid Index (CI) is the only validity index that provides cluster level measure. It
tells exactly how many clusters are differently allocated, which is more useful infor-
mation than counting point-level differences. In this paper, we applied it to other
clustering models such as Gaussian mixture and data with arbitrary-shaped clusters. Its
main advantage is that the significance of the index value can be trivially concluded:
value CI > 0 indicate that there is a significant difference in the clustering structure.
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