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Gradual model generator for single-pass clustering
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Abstract

We present an algorithm for generating a mixture model from a data set by converting the data into a model. The method is applicable
when only part of the data fits in the main memory at the same time. The generated model is a Gaussian mixture model but the algorithm
can be adapted to other types of models, too. The user cannot specify the size of the generated model. We also introduce a post-processing
method, which can reduce the size of the model without using the original data. This will result in a more compact model with fewer
components, but with approximately the same representation accuracy as the original model. Our comparisons show that the algorithm
produces good results and is quite efficient. The whole process requires only 0.5–10% of the time spent by the expectation-maximization
algorithm.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Clustering algorithms are used to find structure in data.
The majority of the existing algorithms store all of the data
in memory, or make several passes over the data, which can
restrict their usefulness in the case of large data sets that
exceed available memory resources. Algorithms designed
specifically for very large data sets must be able to read the
data as few times as possible, preferably only once. A desired
property is to have independence of the order in which the
data are processed. Random access to the data may be costly,
and therefore, algorithms requiring it can become too slow
for practical use.

1.1. Algorithms for large data sets

Existing approaches reduce the size of the data set by
sampling, by representing several data points in alternative
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manner or by handling it in small chunks. For example,
BIRCH [1] generates a tree of clustering features or sub-
clusters using a fixed amount of memory. These can then
be clustered independently using any other algorithm.
Algorithm by Bradley et al. [2] processes the data into
summarized, retained and discarded sets that are clustered
separately. The shapes of the clusters depend on what clus-
tering algorithm is used after the data have been processed.
A hierarchical clustering method is used in Ref. [1], and
k-means is used in Ref. [2].

Random sampling has been used to speed up clustering
in CURE [3] and CLARANS [4]. This requires random ac-
cess to the data being clustered, and relies on the sample
being large enough to represent the data well. Density-based
methods such as DBSCAN [5] identify dense areas as clus-
ters. Data can also be ordered so that the cluster structure
will be more visible, as in Ref. [6]. Density-based meth-
ods can find arbitrary-shaped clusters. Some of the density-
based approaches require an indexing structure to perform
k nearest neighbor searches to obtain the density estimate.
The problem of finding clusters in subspaces is discussed in
Refs. [7,8].
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These approaches produce either a partition of the data or
they use a centroid model to represent the data.

1.2. Algorithms that generate GMM

There are a few algorithms that generate a Gaussian mix-
ture model from a large data set. The Online EM algorithm
by Sato and Ishii is described in Ref. [9]. It starts with an
initial solution and then updates the existing components,
deletes them or adds new ones if necessary. The aim is to
model the recent data by giving priority to newer events and
gradually forgetting the older ones. Components that do not
include any newer data points may be eventually deleted,
and if a data point appears at a region where there are no
components, a new component can be generated using in-
formation from existing components. In our case, we want
to model the entire data set, and, therefore, we apply the
Online EM so that we only modify the initial solution with-
out adding or removing components.

Scalable EM by Bradley et al. [10] has been modified
from the EM algorithm [11,12] to operate with summarized
data along with normal data as in Ref. [2]. The algorithm
consists of the EM algorithm, k-means and agglomerative
clustering algorithm run on the summarized data set. Small,
tight subsets of the data are found by k-means, which are
then summarized. This reduces the number of distinct data
points. The authors refer to this as secondary summariza-
tion. Joining nearest neighbors further decreases the amount
of data as long as the variances of the clusters do not ex-
ceed a given limit. The Scalable EM algorithm iterates EM,
k-means and the agglomerative clustering algorithm until
all data have been read and the final model is produced. The
authors also perform primary summarization using the
GMM produced after each run of the EM algorithm, but this
relies on the GMM being a well-fitting model for the data.
We omit this step, as there is no guarantee that the summa-
rization of the data using the points close to the component
centers would produce good results. Specifically in cases
where a component spans several clusters the summarized
component will be quite harmful for the final result.

Some other work has also been done to speed up the
EM algorithm by performing the model update step several
times per pass [13], but several updates do not eliminate the
need to perform several passes over the data. The modified
and the standard EM algorithm need to store all the data
or read them into memory once per iteration, so in practice
they are not suitable for data sets larger than the available
memory.

In this paper the aim of modeling the data vectors xi ,
i = 1, . . . , N , using a Gaussian mixture model is to ob-
tain a model of K components consisting of mean vec-
tors mj , covariance matrices cj and the component weights
wj , j =1, . . . , K . The goodness-of-fit of the model is mea-
sured by the average log-likelihood of the data [12,14]. Given
the probability density of a point xi with respect to com-
ponent j, Pij (xi |wj , mj , cj ), the average log-likelihood is

computed as

L = 1

N

∑
i

log

⎛
⎝∑

j

Pij (xi |wj , mj , cj )

⎞
⎠ . (1)

1.3. Our contribution

In this paper, we propose an algorithm that converts the
data into a mixture of multivariate Gaussian distributions
by selecting small, compact subsets of the data. Data that
lie close to the generated Gaussians are used to update the
model. The main idea is that the model is generated from
the data, instead of modifying an initial model to fit the data.
The results indicate that the proposed method reaches vir-
tually the same clustering performance as the standard EM
algorithm in terms of log-likelihood, but uses only 0.5–10%
of the time that the EM algorithm uses. Furthermore, our
method requires that only a small part of the data needs to
be stored at once and that every point needs to be read only
once, so it can be used on data sets that are larger than the
available memory. Also, as shown in Section 3, we found
that the algorithm is robust in regard to the order in which
the data points are read. Hence the data can be passed to the
algorithm in the order in which it is stored, and no random
access to the data is necessary. It is therefore highly useful
for single-pass clustering of large data sets.

2. Gradual model generator algorithm

The proposed algorithm consists of two stages: (1) single-
pass model generation, and (2) model simplification as a
post-processing step. First, a model is generated from the
data by the single-pass algorithm. The model can then be
post-processed in order to obtain a simpler representation,
if desired. The post-processing can be performed without
the original data. The result is a model that represents the
same data but with fewer components. The benefit of using
two stages is that the first stage’s model takes less time and
memory to process than the entire data set. The steps are
illustrated in Fig. 1.

The model generation algorithm does not need an initial
solution. Instead, it builds the model from scratch using
data points. Every data point is used to alter the model only
once: either to update the existing model or to create new
components. All the points that are described well enough
by the model are used to immediately update the model. The
remaining points are stored for later use. A fixed-size buffer
is maintained for this purpose. The points remain in the
buffer until they are used to generate a new component, or
are used for updating the model once the points are described
well enough by the model because of direct updates and the
new components added into the model. When the entire data
set has been read and processed and the buffer is empty, the
algorithm outputs the resulting GMM.
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Fig. 1. General outline of the single-pass clustering process.

The first stage of the algorithm tends to generate a model
that has an excessive number of components. Although this
does not affect the representation accuracy of the model, a
more compact model with a smaller number of components
could be desired for practical purposes. However, it is not
a simple task to restrict the size of the model during the
first stage without affecting the quality of the model. We
have therefore decided to let the model grow and over-fit the
data, and leave the reduction of the model size completely
to the second stage of the process. If the model grows too
large to be handled in memory, we then simply save the
current model, start a new one from scratch, and continue to
process the rest of the data. The saved models can later be
joined together by adjusting the weights of the components
in proportion to the number of points used to generate each
model.

The goal of the second stage is to find the actual clusters.
For this purpose, an ordinary clustering algorithm can be
applied to the components of the model instead of using the
original data points. We apply here a hybrid of the EM and
k-means [15] algorithms to allow us to find ellipsoid-shaped
clusters.

The second stage does not require the original data. How-
ever, if the optimal number of components must also be
solved with regard to the original data, then the original data
are most likely needed. Otherwise the user has to rely on the
differences between the models as a guideline for selecting
the model.

2.1. Generating the model

The basic idea of generating the model is to use subsets
of the data to create components of the model in regions
that have the most points in a small area. Any points that are
close to the model are used to update the components of the
model directly. Section 2.1.1 describes the process to create
new components and how the buffer is used. Section 2.1.2
describes the model update procedure and describes when a
point is used to update the model directly.

The pseudocode for the algorithm is given in Fig. 2. The
model and the data buffer are initially empty. The buffer
first fills with new points. Then the first component is cre-
ated using a subset of the points from the buffer. Once the
model has components, the fit of a new point to the model
is checked, and when there is a sufficient fit, the model is
updated accordingly and the point is discarded. If the point
does not fit, it is stored into the buffer.

GMG(data set, buffer size, points to select): GMM
Initialize data buffer and create empty model.
WHILE data points left and data buffer is not empty:

Read next point.
IF point fits into model THEN

Update model
ELSE

Insert point into data buffer.
IF data buffer is full or no data is left, THEN

Check if any points in buffer fit into model.
IF some points fit into model THEN

Update model
ELSE

Select points from buffer.
Create a new component.
Add it into the model

RETURN model.

Fig. 2. Pseudocode of the algorithm.

2.1.1. Creating new components
A new component is created by selecting a point and its

k − 1 neighborhood from the buffer so that the distance
from the point to the farthest point in the neighborhood is
minimized. The goal is to find a group of points that lie in
a small area, and therefore, are likely to belong to the same
cluster. However, enough points must be selected so that the
covariance matrix can be inverted. The selected k points are
used to generate a new component, which is then added to
the model, see Fig. 3 for an example. The selected points
are labeled with dots ( · ) and the points remaining in the
buffer are labeled with plusses (+). The ellipse shows the
location of the new component. The selected points are then
removed from the buffer.

In practice, we maintain the sum of the selected points
along with the sum of their outer products, as proposed in
[13,1]. Let uij be the weight with which the vector xi is
added to the component j. The weighted sum of the vectors
for component j is

Mj =
∑

i

uij xi . (2)

The weighted sum of the outer products for row vectors xi is

Cj =
∑

i

uij x
T
i xi . (3)

If we use only diagonal covariance matrices, it is sufficient
to store just the diagonal elements. Furthermore, we need
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Fig. 3. The data and model before (left) and after (right) adding a new component.

the sum of weights of vectors for each component:

Uj =
∑

i

uij . (4)

Vectors that are used to create the new component have
a weight of 1 for the new component and a weight of 0
for others. The mean vector mj , covariance matrix cj , and
weight wj for the component j are calculated as

mj = Mj/Uj , (5)

cj = Cj

Uj

− MT
j Mj

U2
j

, (6)

wj = Uj

/∑
j

Uj . (7)

At the end when all data points have been read, the remain-
ing points in the buffer are processed. If necessary, more
components are created. However, it may turn out that only
border points of existing clusters and possible outliers are
left and that a component formed from them would cover
several clusters. Therefore, before creating a new compo-
nent, the algorithm tests that no existing component would
lie inside the area covered by the potential new component.
If this happens, we consider the points as leftover points,
and discard them instead of making a new component out
of them.

The test involves computing the mean vector m of the
selected points. For each component mean mj , we compute
the difference vector yj between mj and m. We then compute
the scalar projections of yj to all vectors from m to the
selected points and divide them by the length of yj . If all
positive scalar projections are less than one, the selected
points are considered to be surrounding the mean vector mj

and they are discarded as leftover points.
The buffer size (b) and the number of points (k) used

to generate a new component are the parameters of the al-
gorithm. The buffer size is mainly a question of process-
ing time: we should use as large buffer size as processing

time permits. The parameter k should be small enough so
that the new components would consist of points from single
cluster. However, if k is set too small, we could create too
many components, which will result in a longer processing
time (see Section 3.4.2). A larger buffer size means k can
also be higher and that the points can still be selected from
the same cluster. According to our experiments, k = 10.15
points is a good choice for two-dimensional data. In the case
of higher-dimensional real data sets, our rule of thumb is
that k should be set to approximately two times that of the
dimensionality of the data.

2.1.2. Model update
Primarily we try to include new points to the existing

model. For every input point, we first test how well it fits into
the model. If the probability density is higher than a given
threshold determined by the GMG algorithm, the model is
updated the same way as in the EM algorithm. We com-
pute the update weight of the point with regard to every
component by normalizing the probability densities. Then
we update the weight, mean and covariance matrix of each
component in proportion to the update weight. The proba-
bility density for vector i with regard to the component j in
d-dimensional vector space is

Pij (xi |wj , mj , cj )

= wj√
(2�)d |cj |

e−1/2(xi−mj )c−1
j (xi−mj )T

. (8)

The acceptance threshold for the model updates is revised
every time a new component is created. This is done by
using the points that were selected for the new component.
We take the minimum probability density of the selected
points with respect to the entire model. The new limit is
lower of the old limit and the minimum. Any point that has
a higher probability density than the limit is accepted for
direct model update. Those points are described better by the
model than the point that had the limit probability density.
If a point is accepted for model update, the update weights
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Fig. 4. Model before (left) and after (right) updates.

uij of the point are

uij = Pij (xi |wj , mj , cj )∑
sPis(xi |ws, ms, cs)

. (9)

The model updates, however, are not made immediately. In-
stead, we store the points and perform several updates at
once, as in Ref. [13]. In our case, the model is updated
after 100 new points have been accepted for direct update. In
practice, the sums (2)–(4) are computed first and the mean
vector, covariance matrix and component weight can be ob-
tained when needed.

Once the data buffer fills up, we try to update the model
with the contents of the buffer. This is done because points
may be accepted for direct model update after the limit of
acceptance has changed, or after new components have been
added. This limits the growth of the number of components
in the model since we can postpone creating a new compo-
nent. In practice, adding points directly into the model could
be handled just by testing the points in the buffer, but that
would be significantly slower since the same points that were
not accepted would be tested for direct update repeatedly.

Fig. 4 demonstrates a series of model updates. The region
is the same as in Fig. 3 but at a later stage in the process.
Experimentally, we have found that 84% of the points are
processed immediately through direct model update and are
never stored in the buffer. Of the remaining points, 13% are
stored in the buffer and used later for direct model update.
Only 3% of the points are used for creating new components.
The points that are stored in the buffer are tested for direct
update 34 times, on average.

2.2. Postprocessing the model

The model obtained using the GMG can have an un-
necessarily high number of components, see, for example,
Fig. 5. It also shows that despite a higher number of compo-
nents, the major modes in the contour plots of the probabil-
ity density distributions are in the same places in both plots.
In order to determine if the data are clustered, we can use
adapted clustering algorithms to find the clusters in the gen-
erated model. We use a hybrid of EM and k-means to find

ellipsoidal clusters. The hybrid algorithm does not require
the original data as input.

The basic idea of the adapted k-means (AKM) algorithm
is to treat each component of the input GMM as a data point.
The result is a GMM. Each component of the input model is
used to update only one component of the resulting GMM,
in the same way that one data point in k-means is used to
update only one centroid. An EM algorithm for clustering
features of BIRCH algorithm [1] is presented in Ref. [18].

The initialization of the output GMM is done by picking
the desired number of components randomly and by fix-
ing the weight sum to one. We use Bhattacharyya-distance
[16,17] between the components of input and output models
to determine the closest component in the output model

D((mj , cj ), (mk, ck))

= 1

8
(mj − mk)

T
(

cj + ck

2

)−1

(mj − mk)

+ 1

2
ln

| 1
2 (cj + ck)|√|cj | + |ck|

. (10)

Updating the components is done using the sums of
Eqs. (2)–(4). They can be computed from the results of
Eqs. (5)–(7) by inverting the procedure used to compute the
values used in the GMM. Using Tj for the number of points
in one group and T for the total number of points we get

Tj = wjT , (11)

Mj = mjTj , (12)

Cj = Tj

(
cj + MT

j Mj

T 2
j

)
. (13)

After the sums have been computed, we can use formu-
las (5)–(7), with T’s substituted for U’s, to obtain the final
model. However, the total number of points, T, can be set
arbitrarily, e.g. to 1. In that case the component means and
weights are already computed, so we need to compute the
covariance matrix only.

In order to avoid empty groups, we find for each output
component the closest input component and map the input
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(a) (b)
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Fig. 5. (a) The GMM generated by EM, (b) by the GMG, and (c and d) the corresponding contours of the probability density distributions.

Fig. 6. Model generated by GMG from the original data (left) and the reduced model (right).

component to the corresponding group regardless whether
the component would be closer to another output compo-
nent. Otherwise the algorithm proceeds like k-means. Since
the input model from GMG is considerably smaller than
the original data, this procedure is much faster than using

the original data. Fig. 6 shows an example of applying the
AKM algorithm. The data points are shown for illustration
purposes only. Looking closely, one can see only minor dif-
ferences between final model of Fig. 6 (right side) and the
EM model (Fig. 5a).
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3. Test results

We tested the combination of GMG and AKM, and com-
pared it against Online EM [9] and Scalable EM [10]. The
result obtained by the EM algorithm [11,12] was used as
a reference point. We computed log-likelihoods using Eqs.
(1) and (8) for the models produced by each method. Like-
lihood values vary from 0 to +∞, and their logarithm (log-
likelihood) can take values from −∞ to +∞. The higher
the value, the better the model.

In general, the EM algorithm will give better results than
the other methods, but one must consider that if all of the
data cannot fit into memory at one time, using the EM al-
gorithm is not straightforward. In that case, one must read
the data every time an EM iteration is performed, which
will probably be quite slow. We can see from the results in
Section 3.4.2 that the standard EM algorithm will take time,
so adding the overhead of reading the data from mass storage
may in practice result in an unacceptably high processing
time.

All tested algorithms, with the exception of EM, depend
on the processing order of the data points. We therefore used
four different orderings to study the dependency: the original
order in which the data sets are available, an increasing
order sorted according to the first variable, and two random
orderings. Ideally, results with different orderings should not
vary much. Due to the fact that Online EM forgets past data,
it was only tested with the random orderings. This means
that we were more likely to get a model that represents the
whole data fairly accurately since new points are expected
to be evenly distributed along different regions where there
are data. Thus, no part becomes completely forgotten during
the process. With sorted data this obviously is not the case,
as Sato and Ishii demonstrated [9].

3.1. Data sets

We used both synthetic and real data sets, see Table 1. The
BIRCH data sets include 100 000 points organized by prede-
fined structures [1]. The sets BIRCH1 and BIRCH2 consist
of 100 clusters, whereas BIRCH3 was visually determined
to be best represented by a GMM with 78 components. The
D-sets have progressively higher-dimensional data in nine
well-separated clusters. Each cluster in a set has the same
number of points, and the number of points in each cluster
increases linearly as dimensionality increases.

Table 1
Attributes of the synthetic data sets

Name Dimensionality Points Clusters

BIRCH1 2 100 000 100, 10 times 10 grid
BIRCH2 2 100 000 100, along sine curve
BIRCH3 2 100 000 78, approximately
D2–D15 2–15 1350–10 125 9

Table 2
Attributes of the real data sets

Name Dimensionality Points

CM 9 68 040
CT 16 68 040
El Niño 7 93 935

The first two real data sets are the Corel Image features
previously used in Ref. [19]. We selected the co-occurrence
texture (CT) and color moments (CM) data sets. The third
real data set is the El Niño data set previously used in the
American Statistical Association Statistical Graphics and
Computing Sections 1999 Data Exposition. Indices and
points with missing attributes have been removed from the
El Niño data set. All three data sets were obtained from
Ref. [20]. The number of clusters and whether the data are
clustered at all are unknown. The data sets are summarized
in Table 2.

3.2. Parameters used with different algorithms

The only parameters given to the EM algorithm are the
number of components and a halting threshold for the rela-
tive improvement of log-likelihood, which was set to 2−16.

The Online EM requires the number of components, and
also a factor that affects how fast the old data are forgotten.
This factor is multiplied with the weight of the point used
in the update of the component. We used a factor of 0.01 so
that the components would forget old data very slowly.

The Scalable EM requires the number of components, the
number of points and components that are stored, a vari-
ance limit for the summarization stage, and the amount of
how much the limit is increased if no summarization ap-
pears to be possible. The number of points and components
stored correspond to the amount of memory available for
storage. We treated this number as the sum of the number of
points and components that are stored. This favors the algo-
rithm since the components take up more space than indi-
vidual points especially when using full covariance matrices
as in these tests. We used 1000 for the synthetic data sets
and used 2000 and 4000 for the real data sets. The initial
variance limit was estimated directly from the data. Such
estimate corresponds to a good guess. If no summarization
appeared to be possible within the limit, the limit was multi-
plied by 1.5 and the summarization was retried. The number
of centroids in the secondary summarization phase was set
to n/2D, where n is the size of the retained set and D is the
dimensionality of the data. This meant that the secondary
summarization was independent of the number of compo-
nents, which varied greatly in our tests.

The GMG was run with buffer sizes b of 250, 500, 1000,
and 2000 for the synthetic data sets and also 4000 for the
real data sets. The number of points selected, k, from the
buffer to create a component was set to (D + 1) multiplied
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Table 3
Average log-likelihoods for BIRCH data sets

Data set EM Online EM Scalable EM GMG

No rejection test With rejection test

BIRCH1 −7.221 −7.312 −7.351 −7.338 −7.333
BIRCH2 −7.437 −8.409 −7.651 −7.778 −7.756
BIRCH3 −7.392 −8.376 −8.114 −8.008 −7.996

Table 4
GMG output model sizes and AKM log-likelihoods for BIRCH1

Sizes of generated models Log-likelihoods after applying AKM

Buffer size Buffer size

250 500 1000 2000 250 500 1000 2000

Points selected for new components 6 271 554 941 1674 −7.335 −7.324 −7.375 −7.401
9 135 183 352 732 −7.311 −7.342 −7.342 −7.363

12 80 116 252 415 −7.320 −7.309 −7.376 −7.332
15 78 106 157 258 −7.327 −7.293 −7.309 −7.352

by 2, 3, 4 and 5 for the synthetic data sets. For the real data
sets 20, 30, 40 and 50 points were selected. Furthermore,
we tested accepting all generated components and using the
rejection test described in Section 2.1.1. The algorithm was
run once for each parameter combination for each ordering
of each data set.

3.3. Results for synthetic data sets

Since the number of clusters was known for synthetic
data sets, we compared the GMM with the same number
of components as the number of clusters in the data sets as
listed in Table 1.

For the proposed method, we show the log-likelihoods ob-
tained by first running GMG and then generating a smaller
model using AKM. Due to the high number of tested pa-
rameter combinations we show the mean log-likelihood over
all parameter combinations. This indicates average perfor-
mance while keeping the figures readable. For the proposed
method we treat separately the cases where the rejection test
for new components was used, and where all new compo-
nents were accepted in order to see what effect the rejection
test had.

Table 3 shows the average log-likelihoods for the BIRCH
data sets, with data in the first random order. Scalable EM
produced results of about the same quality as the proposed
method, whereas the Online EM produced clearly the worst
results with BIRCH2 set. When the rejection test was used
it appeared to produce slightly better results, on average,
although the differences are quite small. The lower result
for the BIRCH3 data set by Scalable EM might be explained
by the difference in the size of the clusters in the data. Very
compact but heavy clusters are merged together with their
neighbors, and thus, the resulting components lie between
clusters.

Table 4 shows the sizes of the models generated by GMG
and the mean log-likelihoods obtained using AKM. The vari-
ation in log-likelihood is small despite the large differences
in the sizes of the models produced by GMG. The results
show clearly the effect that the buffer size (b) and the num-
ber of selected points (k) have on the size of the generated
model. With small buffer size and high number of selected
points there are fewer components than known clusters.

Fig. 7 shows the log-likelihoods for D-sets. Since the log-
likelihoods varied from 3 to 40 as dimensionality increased,
the log-likelihoods relative to that of the best result from
EM-algorithm are shown. The data order is the second ran-
dom order. Scalable EM performed about as well as the pro-
posed method while the results of Online EM became worse
as dimensionality increased. These data sets, especially the
high-dimensional ones have quite compact clusters that are
well separated.

3.4. Results for real data sets

Since the number of clusters was not known for the real
data sets, we show log-likelihood as a function of the num-
ber of components. For GMG, the graphs show the log-
likelihoods of models obtained after the model size has been
reduced using AKM. With the other algorithms, we gener-
ated all the models from scratch. Since the rejection test in
GMG appeared to produce slightly better results, on aver-
age, or at least it did not produce worse results, it was used
in all tests with real data sets.

3.4.1. Log-likelihoods
We compared the log-likelihoods computed using the

GMMs obtained from various algorithms with different
model sizes. The aim was to see what effect the ordering of
the data set has on the results. Tables 5–7 show the average
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Fig. 7. Average log-likelihoods for D-sets relative to result of EM-algorithm.

Table 5
Log-likelihoods for data set CT (model size 10)

Algorithm Data order

Original Sorted Random 1 Random 2

EM 16.33 16.33 16.33 16.33
Scalable EM 12.80 11.70 15.87 15.59
Online EM N/A N/A 14.87 14.59
GMG(4000,20)/AKM 14.65 14.65 14.59 14.70

Table 6
Log-likelihoods for data set CT (model size 30)

Algorithm Data order

Original Sorted Random 1 Random 2

EM 17.78 17.78 17.78 17.78
Scalable EM 14.05 11.75 16.29 15.97
Online EM N/A N/A 16.28 15.72
GMG(4000,20)/AKM 16.24 16.17 16.23 16.26

Table 7
Log-likelihoods for data set CT (model size 70)

Algorithm Data order

Original Sorted Random 1 Random 2

EM 18.65 18.65 18.65 18.65
Scalable EM 14.02 11.82 15.91 15.75
Online EM N/A N/A 15.85 15.52
GMG(4000,20)/AKM 16.99 16.97 16.82 16.99

log-likelihoods for data set CT with model sizes of 10, 30
and 70, respectively. Each value is an average over 20 runs.
We can see from Table 5 that for small models and random
order, Scalable EM outperformed the proposed method and
Online EM. However, if the data were not in random order,
or the model size was larger, our method outperformed

Scalable EM, as can be seen from Tables 6 and 7. None of
the methods reached the log-likelihood of the EM algorithm.

Fig. 8 shows a plot of the average log-likelihood as a func-
tion of the model size for the CT and El Niño data sets when
the data were in original order. Results for the same data sets
in sorted order are shown in Fig. 9. In both cases, Scalable
EM performed noticeably worse than the proposed method.
However, in Fig. 10, which shows the results for random
order, Scalable EM performance improved significantly. It
shows quite clearly that Scalable EM actually needed to have
the data in random order. The difference between the results
for different orderings was much smaller for the proposed
method than for Scalable EM. Each curve represents an
average log-likelihood of 20 runs over the range from 2 to
100 components. For GMG the buffer size b was 4000 and
the number of points selected k was 20, unless otherwise
noted.

Tables 8–10 show the average log-likelihoods for the El
Niño data set and model sizes 10, 30 and 70, respectively.
With a small model size, Scalable EM performed better than
Online EM or the proposed method provided that the data
were in random order. Once the model size grew the results
became worse: this happened with the CT data set also.

3.4.2. Running times
Here, we show how much processing time was spent in

obtaining the results. The total time for CM, CT and El Niño
data sets consists of the sum of average running times for
each number of components. The times for Online EM and
Scalable EM show how much time, on average, it took to
generate one solution for model sizes of 2–100 components.
For GMG/AKM the time includes the time spent by GMG
in constructing the model plus the time spent by AKM for
model simplification.

Tables 11–13 show the processing times for CM, CT and
El Niño data sets. The times are shown for each ordering of
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Fig. 8. Average log-likelihoods for CT (left) and El Niño (right) data sets, data in original order.
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Table 8
Log-likelihoods for data set El Niño (model size 10)

Algorithm Data order

Original Sorted Random 1 Random 2

EM −17.04 −17.04 −17.04 −17.04
Scalable EM −20.55 −18.36 −17.46 −17.26
Online EM N/A N/A −17.34 −17.29
GMG(4000,20)/AKM −18.16 −17.61 −17.43 −17.41

Table 9
Log-likelihoods for data set El Niño (model size 30)

Algorithm Data order

Original Sorted Random 1 Random 2

EM −14.24 −14.24 −14.24 −14.24
Scalable EM −18.64 −17.94 −16.23 −16.21
Online EM N/A N/A −16.92 −17.00
GMG(4000,20)/AKM −16.18 −15.75 −15.49 −15.49

Table 10
Log-likelihoods for data set El Niño (model size 70)

Algorithm Data order

Original Sorted Random 1 Random 2

EM −12.59 −12.59 −12.59 −12.59
Scalable EM −17.59 −17.99 −15.42 −15.23
Online EM N/A N/A −16.49 −16.65
GMG(4000,20)/AKM −13.72 −13.40 −13.64 −13.49

Table 11
Total processing times for data set CM in seconds

Algorithm Data order

Original Sorted Random 1 Random 2

EM 40 203 40 203 40 203 40 203
GMG(4000,20)/AKM 279 421 205 251
GMG(4000,30)/AKM 89 84 70 84
Scalable EM 14 445 93 906 7483 7322
Online EM N/A N/A 1060 1136

Table 12
Total processing times for data set CT in seconds

Algorithm Data order

Original Sorted Random 1 Random 2

EM 81 523 81 523 81 523 81 523
GMG(4000,20)/AKM 7323 19 651 5613 5200
GMG(4000,30)/AKM 96 135 96 81
Scalable EM 15 043 50 977 13 137 13 201
Online EM N/A N/A 2257 2125

Table 13
Total processing times for data set El Niño in seconds

Algorithm Data order

Original Sorted Random 1 Random 2

EM 37 800 37 800 37 800 37 800
GMG(4000,20)/AKM 364 287 210 193
GMG(4000,30)/AKM 238 259 127 103
Scalable EM 90 828 82 154 28 476 23 476
Online EM N/A N/A 1146 1120

the data set. For the EM algorithm, the same time is reported
for each order since the algorithm is independent of the
order of the data. For the proposed method, the buffer size
and points selected to generate new component are shown
in parentheses. For Scalable EM, the buffer size is 4000
points. Times for the CM data set show that the proposed
method used less time than Online EM, and significantly
less time than Scalable EM. For data set CT, the processing
time was still less than that of Scalable EM, but when only
20 points were selected from a large buffer the total time
taken by the proposed method exceeds that of Online EM.
The reason may have been that we selected 20 points from
16-dimensional data to create new components, which might
have produced lots of small components, as with a buffer
size of 2000 and 6 points selected as shown in Table 4.
When 30 points were selected the processing time dropped
noticeably. Hence the number of points selected apparently
should be close to twice the dimensionality of the data, at
minimum. For the El Niño data set the times are roughly
similar to those of the CM data set except that picking 20
points did not result in an excessive running time. For Online
EM, times did not vary much for single data set, as expected.

In practice it may be necessary to repeat the EM algo-
rithm several times to ensure that it has not converged on a
bad local optimum, which would multiply the running time
by the number of repetitions. AKM takes 11% of the re-
ported GMG/AKM totals, on average. Hence, given a model
generated by GMG it is possible to generate several candi-
dates of desired size in a short period using AKM without
increasing the running time significantly.

4. Summary

Clustering large data sets presents challenges in terms
of computational resources, namely the limitations of main
memory and processing time. In this paper, we present an al-
gorithm that converts the input data into a Gaussian mixture
model in a two-stage process. The basic method in the first
stage is to find small, compact subsets of the data and turn
these into multivariate Gaussians. Our experiments showed
that, on average, 3% of the data were used to generate new
Gaussians and the rest of the data were used to update the pa-
rameters of the model. The user does not specify the number
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of components in the resulting model. The model can then
be post-processed as the second stage to generate a model
with the desired number of components without using the
original data.

We compared our algorithm with Online EM and Scalable
EM algorithms using both synthetic and real-life data sets.
Each data set was ordered in four different ways to find out
if there are any implicit requirements regarding the order of
the data. We found out that the order of the data has only a
small effect on the performance of the proposed algorithm.
Moreover, the proposed algorithm reads the data only once
and stores only small amount of data, which allows us to
handle very large data sets fast without excessive memory
requirements.
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