Gesture Input for GPS Route Search

Radu Mariescu-Istodor™ and Pasi Frinti

University of Eastern Finland, Joensuu, Finland
{radum, franti}@cs.uef. fi

Abstract. We present a simple and user-friendly tool for an efficient search
from a spatial database containing GPS tracks. The input is a sketch of a route
drawn by a user on a map by mouse, hand or other means. This type of
interaction is useful when a user does not remember the date and time of a
specific route, but remembers its shape approximately. We evaluate the effi-
ciency of the retrieval when the shape given by the gesture is simple or complex,
and when the area contains either a small or large number of routes. We use the
Mopsi2014 route dataset to demonstrate that the search works in real time.

Keywords: GPS - Route - Gesture - Matching - Touchscreen - Draw

1 Introduction

GPS-enabled smartphones allow users to collect large amounts of location-based data
such as geo-tagged notes, photos, videos and geographical trajectories hereafter
referred to as routes. Mobile users track routes for reasons like: recording travel
experiences, recommending a certain path and keeping track of personal statistics in
sports such as hiking, running, cycling and skiing. A sample route collection is shown
in Fig. 1. From a large collection like this, it is difficult to find a specific route unless
user remembers the date when it was recorded. Otherwise the amount of data is
overwhelming to perform systematic search from among all the records.

Many applications exist that allow users to track their movement; some of these are:
Sports Tracker', Endomondo®, Strava® and Mopsi*. Mopsi is a location-based social
network created by the School of Computing at the University of Eastern Finland.
Mopsi users can find out who or what is around. They can track their movements, share
photos and chat with friends. Mopsi includes fast retrieval and visualization of routes
[1] using a real-time route reduction technique [2]. Transport mode information is
automatically inferred by analyzing the speed variance of the route [3]. Movement is
classified as either: walking, running, cycling or car. Route similarity, novelty, inclu-
sion and noteworthiness [4, 5] are computed by using cell representations of the routes
created by a grid which covers the planet. Searching for spatially similar routes is done
efficiently by indexing these cells.

! http://www.sports-tracker.com.
2 https://www.endomondo.com.
* https://www.strava.com.

* http://cs.uef.fi/mopsi.

© Springer International Publishing AG 2016
A. Robles-Kelly et al. (Eds.): S+SSPR 2016, LNCS 10029, pp. 439-449, 2016.
DOI: 10.1007/978-3-319-49055-7_39

http://www.sports-tracker.com
https://www.endomondo.com
https://www.strava.com
http://cs.uef.fi/mopsi

440 R. Mariescu-Istodor and P. Frénti

Fig. 1. Route collection of user Pasi over the city of Joensuu, Finland is shown on left. The
collection spans from 2008 to 2014. A circle-shaped route that we want to find is emphasized.
Four attempts (all failed) to find this route by clicking the map are shown right.

We propose a real-time search for routes in the Mopsi collection by using gestures
and pattern matching. The gesture is a hand-drawn input in the form of a free shape
done on a map. The shape approximates the locations where the targeted route passes
through. According to [6], this gesture can be classified as of the symbolic type,
implying that it has no meaning when performed in other contexts (not using a map).
Referring to the taxonomy in [7] the result of the gesture is to trigger a command:
search for route(s) with given spatial characteristics. This search works by computing
the similarity between the input gesture and every route in the database. The most
similar route candidates are provided to the user.

Gestures have been used as a means to access menu items without the need to
traverse large hierarchies. In [8], gestures are continuous pen traces on top of a stylus
keyboard. This soft keyboard can be inconvenience as it wastes screen space unnec-
essarily. In our method, we use the underlying map as a canvas for drawing the
gestures. On desktop computers, the gesture mode is explicitly activated by holding
a hotkey while drawing the gesture by mouse. On touchscreens, we need to distinguish
the gesture from normal map interaction (panning and zooming). In [9], it was dis-
covered that it is possible to distinguish gesture from other touch events such as
scrolling or tapping by buffering the touch events and analyzing the queue to determine
if the sequence is a gesture or not. We use this method to activate the gesture mode, and
neither designated area nor activation button are therefore needed.

Typically, symbolic gesture-based systems require the user to learn a set of symbols
[6]. Our method is simpler as no learning of symbols is required. However, the user is
expected to understand and be able to read maps because the roads, buildings and
terrain elements such as forests, lakes and rivers are the key information used when
giving the input. For example, user may draw the input by following a river front, road,
or other landmarks visible on map. Users who have a large route collection benefit
most from the gesture search. It is therefore fair to assume that these users have also the
necessary skills to understand maps.

Gesture Input for GPS Route Search 441

2 User Interface

2.1 System Overview

Let us assume that Mopsi user Pasi wants to review the statistics of a specific route
from his collection but he does not recall the date. Pasi knows that the route is in
Joensuu, Finland so he proceeds to move the map to this location. Figure 1 shows that
Pasi has a large route collection in Joensuu. Let us further assume that he wishes to find
the highlighted circular route. Exhaustive search among all the routes would not be
reasonable so best change is to try to distinguish the route on map. In Mopsi, this is
possible by clicking any individual route on the map. However, this is also difficult
because the targeted route overlaps with many others.

Gesture search enables a user to search routes by drawing the sample shape of the
desired route over the map. Figure 2 shows how Pasi’s route is found by drawing a
circular gesture on the map around the center of Joensuu. The search returns four
possible candidates, including the one he was looking for.

Gesture-input--, *© Found Candidates

Fig. 2. A circle-shaped gesture surrounding the center of Joensuu reveals four circular route
candidates. Pasi’s route is number two in the list.

2.2 Map Handling

Mopsi uses Google Maps and OpenStreetMap. They both offer several built in functions
for user interaction. A user can pan the map by clicking and dragging it in the desired
direction. Zooming in can be done by double left-click and zooming out is done by
double right-click. Zooming can be also done using the mouse wheel or by the pinch
gesture.

To start the gesture search on a computer, user presses a hotkey (Ctrl). When
pressed, the built-in map handling functions are disabled and the gesture input mode is
enabled. In this mode, a user can draw on the map by clicking, holding and moving the
mouse around while keeping the hotkey pressed. Releasing the hotkey causes two
things to happen simultaneously: the input gesture is sent to the server for processing
the query, and default map behavior is reactivated.

Majority of touchscreens nowadays do not have a keyboard and existing buttons
serve for different purposes such as exiting applications, changing volume levels or
enabling the camera. It is possible to implement a soft button on the screen to toggle the

442 R. Mariescu-Istodor and P. Frénti

gesture input mode however this wastes screen space which makes drawing more
difficult, especially on small screens.

Instead, we activate the gesture first by a click (tap) and then, immediately, touch
the screen again to draw the shape. We denote this event as Tap-and-Draw. The Draw
event works similarly as panning the map, however, the preceding Tap event triggers
gesture input mode. When the Draw gesture is complete, the input gesture is sent to the
server and the search is initiated; default map behavior is reactivated.

2.3 Real-Time Route Search

The search returns the route(s) that are most similar to the shape of the gesture input.
For the matching, we use the method in [5]. It computes the spatial similarity between
routes by first representing them as cells in a grid and then using the Jaccard similarity
coefficient:

|Can Gyl

j(CAacB) - |CAUCB|7

(1)
where C, and Cy are two sets of cells. However, because of the arbitrary division of
the grid, route points may end up in different cells even though the points are close to
each other. This problem is solved by applying morphological dilation with square
structural element and using the additional cells as a buffer region when computing the
similarity. The similarity is then formulated as:
d d
S(CA’CB):|CAOCB|+|CA0CB|+|CBHCA|’ @
|CA| + |CB| — |CA ﬁCB|

where CdA and C‘é are the dilated regions of routes C, and Cg respectively. To make the
search efficient we pre-compute the cell representation and use B-tree index [12] on the
cell database. With this setup the search works real-time.

To perform the search, the input shape is converted into cells. The similarity
between this cell set and all routes is then computed using (2). The result is similarity
ranking which often contains a multitude of results with varying levels of similarity to
the given shape. To the user we present only the most significant candidates.

2.4 Map Projection and the Grid

Most online maps (Google Maps, OpenStreetMap, Yahoo! Maps, Bing Maps) use a
variant of the Mercator projection [10]. In Mopsi, we use Google Maps or Open-
StreetMap as the map interface. Mercator is a cylindrical map projection which pre-
serves the angles, however, the linear scale increases with latitude. The parallels and
meridians are straight and perpendicular to each other. The meridians are equidistant,
but the parallels become sparser as they further themselves from the equator.

Creating a grid by choosing a fixed cell size (in degrees) will cause the cells to
appear vertically stretched when viewed on the Mercator projection. The amount cells
stretch increases the farther away they are from the equator. In Joensuu, Finland the
cells appear twice as tall as they are wide.

Gesture Input for GPS Route Search 443

2.5 Multi-resolution Grids

The precision of drawing the gesture should be independent on the zoom level of the
map. When the zoom level is decreased by one unit the content of the map becomes
half of its previous size, and consequently, the regions on the map become twice as
difficult to read. We create 10 grids with different resolutions and store the routes at
each of these approximation levels (see Table 1).

The finest grid has a cell size of 25 X 25 meters. Finer grids are not needed because
at this level, GPS error becomes already apparent and the route approximations become
unreliable. The amount of cells needed increases exponentially when finer grids are
produced. Therefore, we do not compute unnecessary levels in vain. Sparsest grid has
cell length of 12.5 km. At lower levels (= 25 km) the cell size becomes so big that even
the longest routes are represented by only a few cells.

Table 1. A mapping from zoom-level to the grid resolution. The statistics are for Mopsi2014
Route dataset using each of the grid resolutions.
Zoom level <6 |7 |8 9 10 |11 |12 13 14 =15
Grid resolution 0 1 |2 3 4 5 6 7 8 9
Cell size (km) 12,8/64/32 |1,6 [0,8 |04 |02 |01 |50m|25m
Amount of cells |7X |9X | IX |2X [4X |7X |1X 3X 5x | 1X
10* [10*/10° [10° 10’ |10° [10° |10° |10° |10’
Memory (MB) 35 145/65 195 |16,5]30,6/59,6 |118,6 /238 |486
B-tree Index (MB) | 8,5 |9,5|13,5|21,5|35,6|66,7 |131,8|263,1 526 |1,1 GB

3 Route Search

We present next our algorithm for performing the gesture-based route search. The
algorithm (GSearch) first extracts the cells that the input shape passes through using the
Find-Cells function. This function chooses the correct grid resolution based on the
zoom level using the mapping presented in Table 1. Every point is then mapped to the
cell it resides in. At the Equator, one degree is roughly 111 km and the smallest cell
length we support is 25 X 25 meters. We dilate the input route C, with 3 X 3 square
structural element to obtain Ci.

GSearch: Searches for route candidates matching a given gesture.
Input: gesture shape G, zoom level z

Output: candidates list L

C, Cd < Find-Cells (G, z)

ranking < RSR(C,C4,z)

Top-Cluster € Cluster (ranking. similarities)

for i € 1 to size (ranking) do
if ranking [1] is in Top-Cluster then
add ranking [1] to L. append (ranking [1])

444 R. Mariescu-Istodor and P. Frénti

Find-Cells: Obtains the cells that a given shape passes through at a specific zoom level.
Input: shape S, zoom level z
Output: cell set C, dilated region Cd
r < Get-Resolution (z) // according to Table 1
min-cell-size & 25 // meters
degree-size < 111/ km
dividing-factor € min-cell-size * degree-size / pow(2, r)
fori € 1 tosize (S) do

x € round (S [1]. latitude * dividing-factor)

y € round (S [1]. longitude * dividing-factor)

add (x,y)to C
Cd < Dilate (C)

Route Similarity Ranking (RSR) algorithm is then applied to find all similar routes in
the database. RSR iterates through every cell in C5 and C4, and finds what other routes
pass through the same cells. For each found route Cg, it checks if the cell belongs to Ca
N Cg, Ca N CdB or Ci N Cg. The algorithm maintains counters for each type and uses
them for computing the similarity values using (2). Time complexity is O((|C| + |CY])
(logMQ)) + a(C) + a(C%) where M is the number of routes in the database, Q is the
average route size in cells and a(C) = Y (|CNCi|+|CN Cﬂ), i=1,M.

The similarity ranking usually results in a large number of routes, of which only
few are relevant to the user. It might be possible to filter out routes below a given
threshold, but then we might get no result in some cases; the other extreme is when
searching for a very common route. Then there can be too many results above the
threshold. Therefore, we limit the number of results using clustering as follows.

RSR: Computing the route similarity ranking.
Input: cells C, dilated part Cd, zoom level z
Output: ranking of routes according to similarity values
SC € initialize SetCounter array; / structure defined below
/I process input route
for i € 1tosize (C) do
R;, R4 € Get-Routes (C[1])
forj € 1 to size (Ri) do
SC[Ri[j]].A++ SC[Ri[j]]. B++; SC[Ri[j]]. AB ++;
forj € 1 tosize (R%) do
SC[R4[j]].A++SC[R4[j]].B++ SC[R4[j]]. ABd ++;
// process dilated part
for i €< 1 to size (C¢) do
Ri, R4 € Get-Routes (Ci[1])

forj € 1 to size (Ri) do

SC[Ri[j]]. B++ SC[Ri[j]]. AB ++;
forj € 1 to size (R%) do

SC[R4[j]]. B++;SC[R4[j]]. AdBd ++;

ranking € new list;

for each riq in SC do
sim € (SC[ria] . AB+SC[ria] . AB+SC[ria].ABd)/
(SC[ria] .A+SC[ra].B-SC[rua].AB)
add (rig, sim) to ranking
SetCounter { A<0; B€0; AB€O; AIB<€0; ABI<0; }

Gesture Input for GPS Route Search 445

We cluster the threshold values by Random Swap (RS) algorithm [11] with 10,000
iterations with 16 clusters. The algorithm alternates between K-Means and random
relocation of centroids in order to avoid getting stuck in a local optimum. The algo-
rithm converges to the final result in few hundreds of iterations, on average. However,
since Random Swap is fast, we can afford to use 10,000 iterations to increase the
probability of finding optimal partitioning.

From the clustering result, we take the cluster having the routes of highest simi-
larities. The idea is that the clustering will find the size of this set automatically by
fitting the clustering structure to the distribution of the similarities.

Cluster: Limits the ranking to the most likely candidates.

Input: similarities S

Output: cluster with highest similarities

T < 10.000 // number of iterations

M < 16// number of clusters

P <& RS (S, T, M)/ Random Swap clustering
Top-Partition € 0; Top-Cluster € empty set

fori € 1 tosize (S) do
if S[i] =max (S) then
Top-Partition € P [1]
for i € 1 to size (S) do
if P [1] = Top-Partition then
add S [1] to Top-Cluster

4 Experiments

We perform experiments using the Mopsi2014° dataset, which is a subset of all routes
from the Mopsi database collected by the end of 2014. It contains 6,779 routes recorded
by 51 users who have 10 or more routes. Routes consists of a wide range of activities
including walking, cycling, hiking, jogging, orienteering, skiing, driving, traveling by
bus, train or boat. Most routes are in Joensuu region, Finland, which creates a very
dense area suitable for stressing the method. A summary of the dataset is shown in
Table 2. All experiments were performed on Dell R920, 4 x E7-4860 (total 48 cores),
1 TB, 4 TB SAS HD.

Table 2. Statistics of Mopsi2014 route dataset.

Routes | Points Kilometers | Hours
6,779 |7,850,387 87,851 4,504

3 http://cs.uef.fi/mopsi/routes/dataset.

http://cs.uef.fi/mopsi/routes/dataset

446 R. Mariescu-Istodor and P. Frénti

4.1 Efficiency of the Search

The efficiency of the search is proportional to the size of the database, and to the
resolution of the grid. The grid to be chosen depends on the zoom level required to view
the targeted route on the map: small routes are best viewed using a higher zoom-level.
The grid depends also on the size of the screen. To get a better understanding of this we
computed the zoom-level for the best-view of each route in the Mopsi2014 dataset. We
consider the best-view as the maximum zoom-level that shows the entire route on
screen. The results in Fig. 3 show that lowest zoom levels are rarely used. Routes in
such zoom levels should span across multiple countries or even continents, and thus, are
rare in the dataset. The highest zoom levels (20-21) are also not often used because they
cover only very short routes, usually non-movement records.

1800
1600
1400
1200

1000
800
600
. Il
200
0 __lIII II.-

1234567 8 9101112131415161718192021
Zoom Level

Routes

o

Fig. 3. Histogram showing what zoom-levels are used more often when viewing routes.

When computing the histogram from Fig. 3, we assumed a screen size of
1366 X 768, which, according to the free statistics provided by W3Counter®, was the
most used screen size during March 2016.

We next compute the efficiency of the G-Search algorithm by taking every route in
Mopsi2014 as the target route. The best-viewed zoom level for them is first found.
A perfect gesture is then simulated for the route by selecting the cells it travels through.
Search is then performed using the default screen size of 1366 X 768. The results are
summarized in Fig. 4. As expected, the time required is small (0.2-0.8 s) at small zoom
levels. At the largest zoom levels the time is also small, but this is against expectations.
The reason for the low execution times is the fact that for zoom level 15 and above, the
same grid is used and, as a result, the number of cells required to represent each route is
lower. Only the middle level routes can take slightly more than 1 s.

This experiment shows that, given a random target route, the expected search time
is about 1 s or less, thus, it can be considered real-time. In practice, a smaller zoom
level is used by the user than the best-fitting one is selected. Thus, < 1 s result happens

S hitps://www.w3counter.com/globalstats.php.

https://www.w3counter.com/globalstats.php

Gesture Input for GPS Route Search 447

16
1,4 $
K

0,8 'y }

Time (s)

0,4 L4 'Y
0,2 ®

01234567 89101112131415161718192021
Zoom Level

Fig. 4. Times required by G-Search when searching all routes in Mopsi2014 dataset. The results
are grouped by the zoom-level and averaged. The average of all searches is 0.9 s.

more often. The reason is that often at zoom levels just below the best-fitting one it is
easier to see the landmarks on the map. Furthermore, it is possible that at the best-fitting
level the gesture implies drawing on the edges of the map, which are more difficult to
target than the central area. Another reason is that the 1366 X 768 screen size is large,
and using a smaller screen implies a finer grid will be used. Processing times with
default screen size of 320 X 658 yields even smaller processing time of about 0.2 s.
The search time also depends on the density of the routes. In low density areas
(< 200 routes), the search time is 0.14 s, on average. In very dense areas (> 1000
routes) the search time is 2.2 s, on average. There is also minor dependency on the size
of the gesture. A gesture passing through 50 cells takes 0.7 s time on average, whereas
as gesture passing through 200 cells takes 0.7 s, on average. The upper limit is the
number of cells that can fit on the screen (3600 with the 1366 X 768 screen size).

4.2 Usability Evaluation

We study next the efficiency of the gesture search from usability point of view. We
compare the average time user spends on searching a randomly chose route using the
gesture search and using the previous (traditional) system. Eleven volunteers were
asked to search randomly selected routes using a tool’ built for this purpose as follows:

A target route was shown on map but no date, length or duration were shown. User
can study and memorize the route as long as wanted.

When user pressed the Start button, user was (randomly) directed either to the
traditional system or to the new Gesture search. Timer was started.

The task was to find the route and input its date and then press Stop button. If the
date was correct the timer was stopped. If the user considered the task too difficult he
was allowed to press Give-up button.

7 http://cs.uef.fi/mopsi/routes/gestureSearch/qual.php.

http://cs.uef.fi/mopsi/routes/gestureSearch/qual.php

448 R. Mariescu-Istodor and P. Frénti

210

0, 0, 60%
150 M Traditional 42% 68%
Gesture i 110%
150 98%
—
7.}
= 120 33%
2 21%
£ 90
= - 1% 12/6
6%
30
0
8 9 10 11

Volunteers

Fig. 5. Average search times and the relative difference between traditional and gesture search.

Each volunteer was asked to repeat the test at least 10 times, or as long as he/she
found it fun to do.

In total, 106 routes were searched using the traditional system, and 98 using the
gesture search. The searched routes were found 77 % of the time using traditional
search compared to 91 % when using gestures. Gesture search was 41 % faster, on
average. The individual performance differences are shown in Fig. 5. Traditional
search is slower on average than gesture search for all except one user.

The search time is affected also by other factors such as complexity and length of
the route, and density of the areas the route passes through. We next group the results
by these three factors. The complexity is calculated as the number of points used by the
polygonal approximation [2] to represent the route at its best-fit zoom level. Density is
calculated as the proportion of cells that are overloaded by other routes; it is the
opposite to the noteworthiness value in [5]. Results in Table 3 show that although
shorter and less complex routes in low density areas are faster to find, the Gesture
search outperforms the traditional approach in all cases.

The volunteers were also asked if they liked the Gesture search and which one they
would prefer for such search task. They all rated Gesture search as good (10) or
excellent (1). Most (9) preferred Gesture search, none (0) preferred the traditional
search, and some (2) would not use either. Written comments included “I really liked
it” and “It was fun”.

Table 3. Average search times when grouped by different factors.

Length Complexity | Density

Short |Long |Low |High |Low |High

2.7 km| 12.7 km| 31 pts| 128 pts 12 % | 75 %
Traditional [90s | 116s |87 s |[120s [90s |[117 s
Gesture 64s |78s 65s |77s |54s |88s
Reduction (30 % (33 % (25 % |36 % |30 % |24 %

5

Gesture Input for GPS Route Search 449

Conclusion

We showed that gestures can be successfully used as input for searching routes from
large data collections. We solved all the components of the search including user input,
database optimization, pattern matching, and selecting threshold by clustering to show
only the most significant results. The effectiveness of the method was demonstrated by
run time analysis showing that it works real time, and by usability experiments showing
that it outperforms traditional search.

References

10.
11.

12.

Waga, K., Tabarcea, A., Mariescu-Istodor, R., Fréanti, P.: Real time access to multiple GPS
tracks. In: International Conference on Web Information Systems and Technologies
(WEBIST 2013), Aachen, Germany, pp. 293-299 (2013)

Chen, M., Xu, M., Frénti, P.: A fast multiresolution polygonal approximation algorithm for
GPS trajectory simplification. IEEE Trans. Image Process. 21(5), 2770-2785 (2012)
Waga, K., Tabarcea, A., Chen, M., and Frénti, P.: Detecting movement type by route
segmentation and classification. In: IEEE International Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom 2012), Pitts-
burgh, USA, pp. 508-513 (2012)

Mariescu-Istodor, R., Tabarcea, A., Saeidi, R., Fréanti, P.: Low complexity spatial similarity
measure of GPS trajectories. In: International Conference on Web Information Systems and
Technologies (WEBIST 2014), Barcelona, Spain, pp. 62-69 (2014)

Mariescu-Istodor, R., Frinti, P.: Grid-based method for GPS route analysis and retrieval.
Manuscript (2016, submitted)

Cirelli, M., Nakamura, R.: A survey on multi-touch gesture recognition and multi-touch
frameworks. In: ACM Conference on Interactive Tabletops and Surfaces (ITS 2014),
Dresden, Germany, pp. 3544 (2014)

Karam, M., Schraefel, M.C.: A taxonomy of Gestures in Human Computer Interaction.
ACM Transactions on Computer-Human Interactions (2015, in press)

Kristensson, P.O., Zhai, S.: Command strokes with and without preview: using pen gestures
on keyboard for command selection. In: SIGCHI Conference on Human Factors in
Computing Systems (CHI 2007), New York, USA, pp. 1137-1146 (2007)

Li, Y.: Gesture search: a tool for fast mobile data access. In: ACM Symposium on User
Interface Software and Technology (UIST 2010), New York, USA, pp. 87-96 (2010)
Kennedy, M., Kopp, S.: Understanding Map Projections. ESRI Press, Redlands (2001)
Franti, P., Kivijarvi, J.: Randomized local search algorithm for the clustering problem.
Pattern Anal. Appl. 3(4), 358-369 (2000)

Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)

	Gesture Input for GPS Route Search
	Abstract
	1 Introduction
	2 User Interface
	2.1 System Overview
	2.2 Map Handling
	2.3 Real-Time Route Search
	2.4 Map Projection and the Grid
	2.5 Multi-resolution Grids

	3 Route Search
	4 Experiments
	4.1 Efficiency of the Search
	4.2 Usability Evaluation

	5 Conclusion
	References

