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Abstract—We propose a fast agglomerative clustering method using an

approximate nearest neighbor graph for reducing the number of distance

calculations. The time complexity of the algorithm is improved from Oð�N2Þ to

Oð�N logNÞ at the cost of a slight increase in distortion; here, � denotes the

number of nearest neighbor updates required at each iteration. According to the

experiments, a relatively small neighborhood size is sufficient to maintain the

quality close to that of the full search.

Index Terms—Clustering, agglomeration, nearest neighbor, vector quantization,

PNN.
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1 INTRODUCTION

THE agglomerative clustering method [1] is commonly used for

clustering because of its conceptual simplicity. Its main drawback is

its slowness, as the original implementation requires OðN3Þ time [2].

An order of magnitude faster algorithm has been introduced in [3],

but the method is still lower bounded by �ðN2Þ. The main source of

computation originates from the search of the nearest neighbor.

Another approach is to use graph theoretical methods [4], [5].

For example, by first creating a complete undirected graph, where

the nodes correspond to the data vectors. The graph can be

trimmed to a minimal spanning tree representing one large cluster,

which is then iteratively split by removing largest edges one by

one. The final clustering is then determined by finding the

separated components [4]. This is a variation of divisive clustering

with similar criteria as in the single-linkage agglomerative cluster-

ing [6]. For agglomerative clustering, graph theoretical methods

have also been used by constructing a sparse graph and then

performing the clustering on this graph [7], [8].

We introduce a fast agglomerative clustering algorithm moti-

vated by the graph-based approaches. However, we process the

data so that every node represents a cluster and not a single vector.

The main difference is that the existing methods neglect the original

data after building the weighted graph, whereas we use the original

data in order to compute the weights of newly formed edges as the

agglomerative clustering goes on. We use the graph merely as a

search structure for reducing the number of distance calculations.

The proposed approach has two specific problems: how to

generate the graph efficiently, and how to utilize it. For example,

standard solutions for solving the minimum spanning tree take

OðN2Þ time, which would overweigh any speedup. For the first

problem, we consider K-d tree [9], divide-and-conquer [10], and

projection-based search [11]. For the second problem, we consider a

double linked list for utilizing the graph structure. Experiments

show that a significant speedup can be achieved and a relatively

small neighborhood size is sufficient for preserving the quality of

the clustering.

The rest of the paper is organized as follows: In Section 2, we

define the clustering problem and recall the agglomerative algo-

rithm. In Section 3, we propose the new graph-based agglomerative

clustering algorithm. Solutions for creating the nearest neighbor

graph are considered in Section 4. Experimental results are reported

in Section 5 and conclusions are drawn in Section 6.

2 AGGLOMERATIVE CLUSTERING

The clustering problem is defined here as a combinatorial optimiza-

tion problem. Given a set of N data vectors X ¼ fx1; x2; . . . ; xNg,
partition the data set into M clusters so that a given distortion

function is minimized. Partition P ¼ fp1; p2; . . . ; pNg defines the

clustering by giving for each data vector the index of the cluster

where it is assigned to. A cluster sa is defined as the set of data

vectors that belong to the same partition a:

sa ¼ xi pi ¼ ajf g: ð1Þ

The clustering is then represented as the set S ¼ fs1; s2; . . . ; sMg. In

vector quantization, the output of the clustering is a codebook

C ¼ fc1; c2; . . . ; cMg, which is usually the set of cluster centroids. We

assume that the vectors belong to Euclidean space and use the mean

square error (MSE) as the distortion function:

MSE C; Pð Þ ¼ 1

N
�
XN

i¼1

xi � cpi
�� ��2

: ð2Þ

The agglomerative clustering method [1], [12] generates the cluster-

ing hierarchically using a sequence of merge operations. At each

iteration, two nearby clusters are merged:

sa  sa [ sb: ð3Þ

The cost of merging two clusters sa and sb is the increase in the

MSE-value caused by the merge. It can be calculated using the

following formula [1], [12]:

MergeCost a; bð Þ ¼ nanb
na þ nb

� ca � cbk k2; ð4Þ

where na and nb are the corresponding cluster sizes. This will be

later denoted as the distance of the clusters a and b. Ward’s method

[1] selects the cluster pair to be merged that minimizes the increase

in the distortion function value:

a; b ¼ arg min
i;j2½1;m�
i6¼j

MergeCost i; jð Þ; ð5Þ

where m is the current number of clusters. In the vector

quantization context, this is known as the pairwise nearest neighbor

(PNN) method due to [12]. Straightforward implementation

recalculates all distances at each iteration of the algorithm. This

takes OðN3Þ time because there are OðNÞ iterations, and OðN2Þ
cluster pairs to be checked at each iteration.

Another approach is to maintain an N �N matrix of the merge

cost values. The merge cost values must be updated only for the

newly merged cluster. Nevertheless, the algorithm still requires

OðN3Þ because the search of the minimum cluster pair takes OðN2Þ
time [2]. Kurita’s method maintains an N �N matrix, but it also

utilizes a heap structure for searching the minimum distance [13].
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The method runs in OðN2 � logNÞ time, but the matrix requires

OðN2Þ memory.

A fast implementation with linear memory consumption

maintains a pointer from each cluster to its nearest neighbor [3].

The cluster pair to be merged can be found in OðNÞ time and only

a small number (denoted by �) of the nearest neighbors need to be

updated after each merge. The implementation takes Oð�N2Þ time

in total. We refer to this as the fast exact PNN.

Further speedup can be achieved by using lazy update of the

merge cost values [14] and by reducing the amount of work caused

by the distance calculations [15]. It has been shown that in a one-

dimensional case (multilevel thresholding), agglomerative cluster-

ing can be performed in OðN � logNÞ time [16]. The result,

however, does not generalize to higher dimensional data.

An inexact OðN � logNÞ time variant has also been considered

in [12] by using K-d trees for localizing the search for the clusters

and by merging several cluster pairs during the same iteration.

This variant can be very fast, but it significantly decreases the

quality of the clustering. Nevertheless, the idea itself of limiting the

search of the nearest cluster is appropriate, and we continue the

work in the same direction.

3 AGGLOMERATIVE CLUSTERING USING

k-NN GRAPHS

We define a k-nearest neighbor graph (k-NN graph) as a weighted

directed graph, in which every node represents a single cluster and

the edges represent pointers to neighbor clusters. Every node has

exactly k edges to the k nearest clusters, according to (4).

In agglomerative clustering, the search for the nearest neighbor

is repeated several times per iteration and every search requires

OðNÞ merge cost calculations. The graph is utilized so that the

search is limited only to the clusters that are directly connected by

the graph structure. This reduces the time complexity of every

search from OðNÞ to OðkÞ. The parameter k affects the quality of

the solution and the running time. If the number of neighbors ðkÞ is

small, significant speedup can be obtained.

3.1 The Simple Algorithm

The main structure of the algorithm is given in Fig. 1. The

algorithm starts by constructing the neighborhood graph in the

first step and, then, iteratively merges pairs of clusters until the

desired number of clusters has been reached.

At Step 2.1, the edge with the smallest weight is found. For each

cluster, we store the smallest merge cost value associated to the

edge in a heap structure [17]. It is a binary tree, in which the

minimum value is stored in the root (top of heap) and the values of

the children are always greater than that of the parent node. In this

way, we always find the best pair to be merged from the top of the

heap and the heap structure can be updated in logarithmic time

after the changes in the merge cost values. Note that only the

nearest of the k-NN pointers is stored for each cluster.

At Step 2.2, the nodes (sa and sb) are merged and a new k-NN

list is constructed for sab. In order to keep the computation

reasonable, we select the k nearest neighbors from the 2k neighbors

of the previously merged nodes sa and sb. This also means that the

accuracy of the k-NN graph is compromised and, thus, the graph

becomes an approximated nearest neighbor graph. It may also

happen that the number of neighbors for the cluster sab can become

smaller than k. The merged node (sab) replaces sa and the second

cluster (sb) is removed from the data structures at step 2.3. At

Step 2.4, we find the neighbors that pointed to sa or sb, and we

update the corresponding merge cost values at Step 2.5.

We illustrate the procedure in Fig. 2 for a sample directed 2-NN

graph (k ¼ 2), where a and b are merged. The new k-NN list of the

merged cluster is found among the neighbors of a and b, which are

c and e. We also update the edges that pointed to the clusters a and

b to point to the new cluster and update the associated cost values.

The corresponding locations in the heap structure must also be

updated. The new cluster replaces a, and b is removed. The

pointers c! b and d! b are replaced by pointers c! a and d! a,

accordingly. A sample graph (k ¼ 4) is shown in Fig. 3.

3.2 Time Complexity

The summary of the time complexities are presented in Table 1,

where the “steps” indicate the number of times the loops are

performed per iteration and the “distances” indicate the number of

distance calculations (4). We can consider k as a small constant,

whereas in the extreme case (k ¼ N), the algorithm would produce

exactly the same result as the full search.

At each iteration, the best pair can be found from the heap in

Oð1Þ time (Find the best pair). The merge takes Oðk2 þ logNÞ time

(Merge). The first term (k2) comes from finding the k neighbors

from the k-NN lists of a and b. In principle, we could merge the two

lists in OðkÞ time, but as the merge changes the weights, the lists

have no proper ordering anymore after merging and we apply

insertion sort requiring Oðk2Þ time. The second term (logN) comes

from the update of the heap structure.

We then find all the clusters that have the merged one in their

k-NN list (Find neighbors). This takes OðkNÞ time because the only
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Fig. 1. The structure of the proposed algorithm.

Fig. 2. An illustration of the k-NN graph ðk ¼ 2Þ where a and b are to be merged.



way to find the neighbors is to browse through the k-NN lists of all

N clusters. One of the merged clusters (cluster b in our case) must

also be removed (Remove obsolete), which takes Oðkþ logNÞ time

due to the removal of k pointers and due to the removal of one

value from the heap.

Finally, we recalculate the distance values of the neighbor

clusters (Update distances). This takes Oð� þ ð�=kÞ � logNÞ time,

where � is the in-degree of the node. There are � distance values to

be updated, each taking only Oð1Þ. However, only the first entry

from each k-NN list is stored in the heap. We, therefore,

approximate that only every kth of the distance update generates

heap update. Thus, there are �=k heap updates on average, each

requiring OðlogNÞ time.

The number of � depends both on k and on the data. Every

cluster has exactly k outgoing pointers and the in-degree of a

randomly chosen node must therefore also be k, on average. As

there are two clusters involved in the merge, � ¼ 2k for a randomly

chosen cluster pair. However, the pair to be merged is more likely

to be selected from a dense area. Thus, the number of neighbors

depends also on the dimensionality and structure of the data, but

in a way that is not trivial to measure.It has been shown in [18]

that, in Euclidean space, � is upper bounded by k times the kissing

number, which is defined as the number of unit hyperspheres that

are touching another unit hypersphere without any intersections.

The kissing numbers are known for some dimensions, but, in

general, the problem is unsolved [19]. It was observed in [3] that

there are only a relatively few (about 2-4) neighbors, on average.

3.3 Double Linked Algorithm (DLA)

Even though the number of distance calculations has been greatly

reduced by the simple algorithm, the number of steps still sums up

to OðkN2); see Table 1. The bottleneck is the search for the

incoming edges, i.e., the nodes that consider the merged cluster as

their neighbor. This step dominates the time complexity requiring

OðkNÞ per iteration, thus summing up to OðkN2Þ in total.

To attack this problem, we implement a double linked list

structure as shown in Fig. 4. For every node, we maintain two lists:

the k-NN list containing the pointers to the k nearest neighbors and

another containing the “back pointers” to the clusters that consider

the particular cluster as part of their k nearest neighbors. For

example, in Fig. 4, there are seven clusters that consider either a or

b as their nearest neighbors. All of them appear in the back pointer

lists of a (h, j, k, b) or b (c, d, a). The differences between the simple

algorithm and the double link algorithm (DLA) are described next.

In the merge step, in addition to resolving the k-NN list, we

must also update the back pointers of the neighbors. This is done

by browsing through the back pointer lists of the neighbors. As

there are k neighbors to be checked (clusters c and a in Fig. 4) and

the number of back pointers is � , an additional Oð�kÞ term appears

in the time complexity of this step. On the other hand, the back

pointer lists eliminate the need for the OðkNÞ time loops in the

search of the neighbors and replace it by searching through the

back pointer list of the cluster, which takes Oð�kÞ time. In Fig. 4, we

need to consider the neighbors h, j, k, c, and d. The rest of the

algorithm is the same and also the number of distance calculations

remains the same.

In the double linked algorithm, there is no clear bottleneck

anymore. If we consider k as a constant, we can simplify the overall

time complexity to Oð�N � logNÞ originating from the heap

updates (�=k � logN); see Table 1. In practice, � is also very small

for realistic data sets and, therefore, the merge step takes more
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TABLE 1
The Estimated Number of Steps and Distance Calculations per Iteration

Fig. 3. An example of the graph with a synthetic data set and the corresponding k-NN graph (k ¼ 4). Darker dots illustrate cluster centroids. Arrowheads are not printed

for clarity.



computation because �k � �=k � logN , k2 � logN , which is true

for our data sets (k ¼ 5 and N ¼ 1;000::100;000).

The observed number of steps and distance calculations are

reported in Table 2 for a sample data set (see Section 5). The

number of distance calculations is reduced to a fraction of that of

the full search (from 40 million to 80,413) by the simple

implementation, but the number of steps only to 52 percent of

that of the full search (from 81 million to 42 million). The double

link algorithm, however, reduces the number of steps to 746,492.

4 CREATION OF THE NEIGHBORHOOD GRAPH

The exact k-NN graph can be constructed in OðN2Þ time using brute

force by considering all pairwise distances. We therefore consider

faster alternatives for constructing an approximate k-NN graph by

using K-d tree, divide-and-conquer, and projection-based search.

The K-d tree method has been widely used for finding the

nearest neighbor [9], [20] and, here, we extended it for finding k

nearest neighbors. The method creates a tree-structured partition

by recursively splitting the data into two disjoint partitions along

one of the major axes. The leaf nodes of the resulting tree form

disjoint partitions called buckets. The nearest neighbor for any

vector can be found among the vectors in the same bucket, or from

its sibling nodes. The creation of the tree takes OðN � logNÞ time

and each search OðlogNÞ time, but only if the dimensionality d is

considered as a constant.

The closest pair problem is stated as follows: Given N points in

d-dimensional space, find the two whose mutual distance is the

smallest. The problem can be solved by the divide-and-conquer

approach [10] that recursively divides the data set into subsets. We

first calculate the principal axis of the data vectors and select a

ðd� 1Þ-dimensional hyperplane perpendicular to the axis, so that it

divides the set approximately into two halves. A third subset is

generated from vectors that are closer to the dividing hyperplane H

than its nearest neighbor. The three subproblems are solved

recursively and the results are then combined. An upper bound for

the time complexity can be estimated by the recurrence

T ðNÞ ¼ 3 � T ðN=2Þ þOðN � d2Þ;

which derives to Oðd2 �N1:58Þ. Lower time complexity could be

obtained by dividing the hyperplane by a simpler heuristic or by

making tighter bounds for the size of the third subset.

Mean-distance ordered partial search (MPS) calculates projections

of the data vectors to the diagonal axis [11] and proceeds to search

bidirectionally along the axis, starting from the input vector. Given

the distance to the best candidate found so far, other vectors can be

excluded from the search if the projection is outside of a given

radius. The precondition can be calculated in Oð1Þ time and, if it

holds, the OðdÞ time distance calculation can be avoided.

For finding the k nearest vectors, we relax the condition of the

graph and find any k neighbors, instead of the nearest ones. We

use the MPS method for finding the nearest neighbor, but stop the

search when it has been found (MPS full) or when a predefined

search limit has been reached (MPS limited). In addition to this, we

maintain an ordered list of the k best candidates found so far. The

rest of the neighbors are taken as the k best candidates from the list

of the candidates once the first nearest neighbor has been found. It
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TABLE 2
The Observed Cumulative Number of Steps and Distance Calculations (k ¼ 5) for Bridge

Fig. 4. Illustration of the double linked list structure for a part of the graph presented in Fig. 2 and the required updates due to the merge of clusters a and b.



is expected that the rest of the candidates are nearby vectors,

although not necessarily the nearest ones.

The main advantage of the method is its simplicity and the

main disadvantage is that the worst case time complexity is still

OðN2Þ. For details of the algorithm, see [21]. A better projection

axis can be obtained by principal component analysis (PCA)

[22, p. 10] on the data set and by using the projection to the first

principal component. It is expected that the search can be

terminated earlier by using the principal axis rather than the

diagonal one. However, the calculation of the principal axis takes

OðNd2Þ time, which might outweigh the additional speedup in the

case of higher dimensional data sets.

5 EXPERIMENTS

We consider three image data sets from [3], three BIRCH data sets

[23], and five high dimensional data sets Dim64 to Dim1024 with

higher dimensionality varying from 64 to 1,024. The summary of
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TABLE 3
Summary of the Data Sets

Fig. 5. The running time and the quality of the DLA as functions of k.

TABLE 4
Observed Number of Nearest Neighbor Updates (�) Required

Fig. 6. Histograms of the observed � values.

TABLE 5
Running Times of the Graph Creation Algorithms

for the Image Data Sets (k ¼ 5)

Fig. 7. Running times of the graph creation algorithms versus dimensionality (Dim
data sets).



the data sets is presented in Table 3. The results are run on a

450 MHz Pentium III personal computer.
In all test sets, a relatively small neighborhood size (k) is

sufficient to keep the distortion close to that of the full search. The

actual neighborhood size is not so critical, as long as the

neighborhood is large enough to keep the vectors within the same

cluster connected, thus avoiding isolated subclusters. According to

our experiments, this can be reached in all test sets presented here

by using k ¼ 3 or k ¼ 4.
The running time has linear dependency with the parameter k,

but the growing rate is small; see Fig. 5. The graph creation is the

bottleneck of the algorithm. In the rest of the paper, we fix the

neighborhood size at k ¼ 5. The number of incoming pointers (�)

depends on the data set and on the value of k. The observed

numbers for the data sets have been reported in Table 4, and their

distributions in Fig. 6. The results clearly show that the number of

� increases with the dimensionality of the data set.

For the graph creation, we consider the following five

algorithms:

. Brute force

. K-d tree

. Divide-and-conquer (D-n-C)

. Projection-based (MPS)

. Projection-based (MPS/PCA)

The D-n-C algorithm works well with some of the image data

sets (see Table 5), but, as the results in Fig. 7 demonstrate,

increasing dimensionality affects its performance severely because

of the calculation of the PCA, which takes quadratic time. K-d tree

works best for House because of its low dimensionality. For higher

dimensional data sets, MPS provides the best overall results

(limited to 500 searches) and it is, therefore, chosen for the rest of

the experiments.

Finally, the proposed method is compared against the existing

PNN variants and the k-means algorithm in Table 6. The original

PNN includes both the slow OðN3Þ and the faster OðN � logNÞ time

inexact variant using K-d tree. The Fast exact PNN has two variants:

the one proposed in [3] and an improved variant [15] that uses

PDS, MPS, and Lazy evaluation for speedup. The k-means results

include the original method [24] and a faster variant that uses PDS,

MPS and activity detection for speedup [25]. The results of the

combined methods (PNN + k-means, DLA + k-means) are produced

by feeding the output of the PNN (or DLA) as the input to the

k-means.

The proposed method (DLA) provides clustering almost as

good as (Birch sets) or only slightly worse (image sets) than the

PNN, but significantly faster. The difference is remarkable,

especially with the large data sets (Birch). Comparison to k-means

shows that the proposed method provides significantly better
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TABLE 6
Time (Seconds) and Quality (MSE) Comparison of the Methods

Fig. 8. Histograms of the MSE-values of 500 runs of the k means, PNN, and DLA.



quality with an algorithm that is competitive also in speed. The

difference in quality is demonstrated in Fig. 8 and Fig. 9.

6 CONCLUSIONS

A fast agglomerative method has been proposed for clustering

using an approximate k-nearest neighbor graph. A relatively small

neighborhood size is sufficient to produce clustering with similar

quality to that of the full search. There are no theoretical grounds

for how to fix the exact neighborhood size optimally, but there is

one guideline that should be followed: The connectivity of the

vectors within the clusters should be preserved. The bottleneck of

the algorithm is the graph creation and it remains a challenge to

invent a practical algorithm for creating a reasonably accurate

k-NN graph in subquadratic time.
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[25] T. Kaukoranta, P. Fränti, and O. Nevalainen, “A Fast Exact GLA Based on
Code Vector Activity Detection,” IEEE Trans. Image Processing, vol. 9, no. 8,
pp. 1337-1342, Aug. 2000.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006 1881

Fig. 9. Sample clustering of a synthetic data set (a) by k-means and (b) by DLA

with the remaining k-NN graph.
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