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a b s t r a c t

Geo-spatial data with geographical information explodes as the development of GPS-devices. The data con-

tains certain patterns of users. To dig out the patterns behind the data efficiently, a grid-growing clustering

algorithm is introduced. The proposed algorithm takes use of a grid structure, and a novel clustering oper-

ation is presented, which considers a grid growing method on the grid structure. The grid structure brings

the benefit of efficiency. For large geo-spatial data, the algorithm has competitive strength on the running

time. The total time complexity of the algorithm is O(N log N), where the time complexity mainly comes

from the seed selection step. The grid-growing clustering algorithm is useful when the number of clusters is

unknown since the algorithm requires no parameter on the number of clusters. The clusters detected could

have arbitrary shapes. Furthermore, sparse areas are treated as outliers/noises in the algorithm. An empirical

study on several data sets indicates that the proposed algorithm works much more efficiently than other

popular clustering algorithms.

© 2014 Elsevier B.V. All rights reserved.
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. Introduction

Due to the emergence of GPS-devices, variants of location-based

pplications are developed. Geo-tagged multimedia, such as trajec-

ory, photo, video and text, are collected by users through the appli-

ations. The wealth of geo-spatial data provides an opportunity for

erforming further research topics.

Because of the convenience of collecting geo-spatial data, the size

f the data usually explodes. Therefore, there comes up problems re-

ated to storage, visualization and detection of meaningful patterns.

normous amounts of GPS trajectories, which record users’ spatial

nd temporal information bring heavy burdens for both network

ransmission and data storage. A compression algorithm in [1] op-

imizes both the trajectory simplification and the coding procedure

sing the quantized data. The way of visualization [2] on the geo-

agged data needs to be well designed in order to avoid problems

uch as clutter problem.

GPS trajectories and other geo-spatial data often contain large

nformation and unknown pattern. For example, a bunch of geo-

patial data can be collected from photos and trajectories uploaded

y one user. From the data, it would be interesting for the user to

now, manage and share his/her activity area. For other users, the

ctivity area can be a suggested place to visit. In [3], research on
✩ This paper has been recommended for acceptance by D. Dembele.
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xtracting associative points-of-interest patterns from geo-tagged

hotos in Queensland, Australia is introduced. A system to provide

oth location and activity recommendations is introduced in [4],

hich is based on the location information of GPS data and some

vailable user comments. Based on the concept of semantic trajecto-

ies, trajectories are observed as a set of stops and moves [4,5]. The

tart and end points of a trajectory could be interesting places with

ery high probability [6].

There is an increasing need for methods to extract knowledge from

he data [7]. Clustering algorithms are applied on users’ GPS data to

iscover spatio or temporal patterns. Typical clustering algorithms in-

lude model-based clustering (e.g., EM algorithm [8]), partition-based

lustering (e.g., k-means and its variants [9,10]), graph-based clus-

ering (e.g., spectral clustering [11]), density-based clustering (e.g.,

BSCAN) and grid-based clustering. Different types of clustering al-

orithms have their advantages and disadvantages. Two aspects are

sually considered when the algorithms are applied in geo-spatial

ata. One is the efficiency because the geo-spatial data is usually

arge. The other one is the adjustment on the algorithm to adapt in

eal applications.

A variant of k-means algorithm is proposed in [12] to cluster places

here GPS signal is lost from the satellites into significant locations.

he clusters are initially centered at K chosen points with a given

adius, and iteratively move to a denser area. However, k-means re-

ated methods need to determine the parameter K beforehand. A hy-

rid clustering algorithm [13] that combines hierarchical method and

rid-based method is presented to discover frequent spatial patterns

http://dx.doi.org/10.1016/j.patrec.2014.09.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.09.017&domain=pdf
mailto:zhao@cs.joensuu.fi
mailto:qin.liu@tongji.edu.cn
http://dx.doi.org/10.1016/j.patrec.2014.09.017
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Input: D(x, y), n, m

Output: P

1 Step 1: Construction on grid structure I

I(n, n) ← GridConstruct(D, n);
2 Step 2: Grid Growing on I,

R ← GridGrowing(I > 0, seed) (see Algorithm 2);

3 Step 3: Get partitions P ← GetPartition(R);
4 return P;

Algorithm 1: Grid-growing clustering algorithm
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Fig. 1. An example of a grid structure on data aggregation. The numbers in the grids

are the capacity of the grids.
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among trips. Algorithm SMoT [14] and its alternative variant [5] are

proposed to compute stops and moves from trajectory sample points.

A clustering algorithm based on changing parts of the concepts in

DBSCAN [15] is proposed in [5] to find low speed regions from trajec-

tories. Because the DBSCAN has features of detection on clusters of

arbitrary shape and noise detection, the algorithm is also commonly

used for processing geo-spatial data. A DBCLASD [16] is designed with

the advantages of discovering clusters of arbitrary shape and requir-

ing no parameters. A new clustering algorithm based on DBSCAN [17]

is presented specially for the problem of analysis of places and events

using large collections of geo-tagged photos.

It is demonstrated in [18] that the grid-based technique obtains

better results than the density-based one. The grid-based clustering

algorithm [19] partitions the data space into a certain number of cells

and performs clustering operations on the cells. Therefore, the al-

gorithm is efficient when the number of cells (n) is much less than

the size of the original data (N). The grid-based algorithms require at

least one scan of all individual objects (points), which makes the time

complexity of the algorithms at least O(N). A statistical information

grid-based method (STING) was introduced in [20], which reduced

the time complexity of O(N) to O(n) for each query. Since the method

constructed a hierarchical structure by going through the whole data,

the overall complexity is still linearly proportional to the size of data

with a small constant factor. A grid-based hierarchical clustering al-

gorithm was proposed in [13] for large-scale and event-based telem-

atics data sets. A merge operation among neighborhood clusters is

employed.

In this paper, we focus mainly on the efficiency of the algorithms.

A grid-growing clustering algorithm is proposed for geo-spatial data

specifically. To verify the validity of the algorithm, artificial data sets

are tested firstly. Then, the efficiency is demonstrated by geo-spatial

data which are sampled from trajectories. The experimental results

demonstrate that the proposed algorithm is more effective and much

faster than traditional clustering algorithms such as a k-means variant

(litekmeans), Greedy EM, DBSCAN, a spectral clustering (LSC) and a

pairwise random swap clustering (PRS).

The rest of the paper is organized as follows: Section 2 intro-

duces the grid-growing clustering algorithm. An analysis on the time

complexity of the algorithm is also included in the section. The ex-

perimental results are displayed in Section 3 and the conclusion is

followed in Section 4.

2. The grid-growing clustering algorithm

The proposed grid-growing clustering algorithm (see Algorithm 1)

is mainly designed for geo-spatial data. Let D(x, y) be the location-

based data with N points and P be the partitions as the result from

the clustering algorithm.

Given the data D, the first step is to generate a grid structure I(n, n),
where n is the number of rows and columns in the grid structure. The

number of n decides the size of the grids. For each data point, it is

assigned to appropriate grids according to its locations.

The second step is to perform a region growing on the grid struc-

ture, which generates a certain number of groups. In this step, m

seeds are firstly selected. With the selected seeds, regions are grown

to adjacent points. K number of regions or clusters are formed after

then.

Finally, the clustering partitions P are obtained from the K num-

ber of regions. We explain the details for each step in the following

sections (Algorithm 2).

2.1. Grid construction

For each point in data set D(x, y), the row (t ∈ 1, 2, . . . , n) and col-

umn (s ∈ 1, 2, . . . , n) number of the grids that the point belongs are
alculated as follows:

t =
⌈

xmax − x

xmax − xmin

· nx

⌉

=
⌈

ymax − y

ymax − ymin

· ny

⌉
(1)

here, xmax and ymax are the maximum values among x and y coor-

inates, whereas, xmin and ymin are the minimum values. Each grid

(t, s) is represented by t and s.

We define the capacity of grid I(t, s) as nts, which represents the

umber of points that are located in the grid. For each point, nts is

ncreased by one (nts + +) after its assignment to the grid. After then,

he grid structure is constructed.

An example of a grid structure is shown in Fig. 1. The original

ata distribution is also shown. The number of rows and columns in

he grid structure are 8 and 7 respectively. The grid structure I(n, n) is

imilar with a gray image structure, where each grid can be considered

s a pixel and the intensity of the pixel is the capacity of the grid. The

hoice of n is important because the time complexity of the grid-

ased algorithm is linearly increased with n. However, a large n does

ot necessarily bring a good performance of the algorithm.

.2. Grid growing

With the grid structure I(n, n) constructed, a grid growing step

s performed. The step begins with selecting m initial seed points

n I and the initial regions begin with the exact location of these

eeds. For a spatial data, high density locations indicate points of

nterest. Therefore, the seeds are selected based on the top m capacity

alues in I. There are also alternatives for selecting of seeds. A more

traightforward and efficient way is to randomly select the seeds.

The regions start to grow from each seed by searching adjacent

oints. The search can be performed in 4-neighbors or 8-neighbors

oints, where the latter one brings more accurate result. If the
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Input: I

Output: R

1 Initialize: S ← SeedSelecting(I, m);
2 R ← ∅; L ← ∅; c = 0;

3 FOR each seed in S ;

4 Rc ← Rc ∪ Sc; L ← L ∪ Sc;

5 WHILE L �= ∅;

6 get 8-neighbor points N8 of Lc;

7 FOR each N8;

8 IF N8(i) is not checked &I(i) > 0;

9 L ← L ∪ N8(i);
10 Rc ← Rc ∪ N8(i);
11 END IF;

12 END FOR;

13 L ← L\Lc;

14 END WHILE;

15 c ← c + 1;

16 END FOR;

17 R = ⋃K
c=1 Rc;

18 return R;

Algorithm 2: Grid growing step
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1 http://sse.tongji.edu.cn/zhaoqinpei/Software/.
2

djacent points are not visited and the point is larger than zero, the

oint is included into the current region. The points that have been

isited will be marked and not be visited again. During the growing,

andidates for growing are stored in a list L. When the current region

nds no adjacent points, a new region starts. The growing step stops

hen all the points in I are visited. The growing generates a number

f regions R = {R1, R2, . . . , RK}.

The regions obtained from the growing step are transformed to

artitions P = {P1, P2, Pi . . . , PN} based on Eq. (1), where Pi indicates

he class label that the ith point belongs to.

.3. Analysis on efficiency and effectiveness

The size of geo-spatial data obtained from a huge number of

sers by geo-tagged devices has been growing tremendously. The

fficiency, therefore, is a crucial challenge for the methods.

K-means is known for its efficiency among the clustering algo-

ithms, the time complexity of which is O(cKN), where K is the num-

er of clusters, N the data size and c the number of iterations. As a

ypical partition-based clustering algorithm, k-means is restricted to

ts cluster type, i.e., Gaussian-distributed clusters. Another issue of

-means is the problem of determining the number of clusters K. The

election of K affects the final result directly. Although there have

een research on how to determine the number of clusters by cluster

alidity indexes, it is still an open problem for users. The litekmeans

10] is an efficient MATLAB implementation on k-means, which is

ccelerated by matrix operations in MATLAB.

The landmark spectral clustering (LSC) [11] needs to construct a

raph, which takes O(KN)and O(K3 + K2N) to compute the eigenvec-

ors. The litekmeans is used to select the landmarks in the algorithm,

hich takes O(KN). The pairwise random swap algorithm (PRS) [9]

akes use of the similarity between two sets of centroids, and fine-

une the clustering results by a swap function and k-means. The time

omplexity of the algorithm is O(N + K2), which is affected by the

ata size and the number of clusters.

Greedy EM algorithm (GEM) [8] is an improved version on conven-

ional EM (Expectation-Maximization) algorithm. It detects the clus-

ers by estimating the parameters of Gaussian Mixture Models (GMM).

t increases the number of components (K) by one at each iteration.

he algorithm divides the data into disjoint sets, one for each compo-

ent. The time complexity of the GEM is O(K2N) or O(cKN) if K < c,
here c is the number of candidates.
As a representative algorithm in density-based clustering, DBSCAN

15] has been employed in many areas. The basic idea of it is that

very point in a data set should contain a minimum number of MinPts

oints in its neighborhood of radius ε, where two parameters are

eeded therefore. The number of MinPts affects the number of clusters

enerated by the algorithm. Although K is not so sensitive to the

etting of MinPts, users have to decide the value of MinPts. The setting

f ε is negligible, which makes the algorithm easier on the setting of

arameters. The time complexity of the algorithm is O(N2). One way

o improve the time complexity is to build an index over the data set

ike a R∗-tree spatial index.

The time complexity on the construction of a grid structure in the

lgorithm 1 is O(N). For the grid growing step, the time complexity

s based on the size of I, which is n2. As shown in Fig. 5, the size of n

s better to be large enough to detect all the clusters, however, it is

ot necessary to be too large. For the time complexity of the growing

tep, it depends on the way of selecting seeds. Selecting the seeds

andomly takes constant time. Other ways such as selecting the seeds

rom top m capacity values take O(n2 log n2). Therefore, the total

ime complexity of the growing step could be O(cn2 log n2), where

represents a constant number coming from the seed number and

-neighbor search. The time complexity of the entire algorithm is

(N + cn2 log n2). Considering the size of the grid structure is con-

rolled in a relatively small size, i.e., n ∝ √
N, the time complexity of

he grid-growing algorithm is O(N log N) in worse case and O(N) in

est case.

. Experiments

The proposed grid growing clustering algorithm is designed specif-

cally for large data sets with GPS points or trajectories to detect

laces-of-interest. The efficiency of the algorithm brings competitive

trength on large data sets. We consider different types of clustering

lgorithms: the fastest MATLAB implementation of k-means (litek-

eans), Greedy EM, DBSCAN, spectral clustering (LSC) and pairwise

andom swap (PRS) in the experiment. Synthetic data sets and real

PS points are tested with the algorithms. The methods in the exper-

ments are all implemented in MATLAB. The implementations of the

lgorithms and the tested data sets can be found here.1

The synthetic data sets (see Fig. 2) are 2-dimensional, which makes

he validation easier from just visualization. Based on human judg-

ent by visualization, we manually generate reference labels for the

ynthetic data sets to get a numeric evaluation. Aggregation [21] con-

ists of seven perceptually distinct groups of points, where there are

on-Gaussian clusters. Data R15 [22] is generated as 15 similar 2-

imensional Gaussian distributions that are positioned in rings. Com-

ound [23] is composed of six different structures of clusters, where

here are connected clusters, noise and embedded-cluster. Data path-

ased [24] consists of a circular cluster with an opening near the

ottom and two Gaussian distributed clusters inside. Each cluster

ontains 100 data points.

The real data sets MOPSI-fi and MOPSI-joensuu are generated

hrough mobile devices with GPS in a project called MOPSI.2 The

ata MOPSI-fi contains 13,467 GPS locations, which are obtained from

ser’s trajectories by taking the start and end points and photo collec-

ions in Finland. The start and end points are point-of-interest in high

robability and taking only the start and end points can reduce the

ample size. The data MOPSI-joensuu has a size of 4509 GPS locations

n city Joensuu, Finland. We also test the proposed algorithm on a taxi

ata, which comes from Wireless and Sensor Network Lab, Shanghai,

iaotong University. Each taxi with GPS devices in Shanghai sends its

PS information every three minutes. We extract the data within a
http://cs.uef.fi/mopsi.

http://sse.tongji.edu.cn/zhaoqinpei/Software/
http://cs.uef.fi/mopsi
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(a) Aggregation
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GG

(c) Compound (d) pathbased

Fig. 2. Clustering results (partitions) from different clustering algorithms.

s

b

e

a

P

time period of 5:30 pm to 6:00 pm, which is the rush hour in Shanghai,

China. The data contains 29,492 GPS points from 2074 taxies.

We firstly show the results of the algorithms on the synthetic

data sets to validate the proposed algorithm. In Fig. 2, we demon-

strate one among 100 clustering partition from six algorithms on four
ynthetic data. Different clusters are represented in different sym-

ols with colors. For data Aggregation, the DBSCAN and GG have

xactly same partitions with only five clusters detected since there

re two narrow “bridges” between clusters. The litekmeans, LSC and

RS produces similar results generally. Only the GEM generates seven
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Table 1

The running time of the algorithms in million seconds on different data sets. The algorithm

with the least running time for each data set is listed in bold.

litekmeans GEM DBSCAN LSC PRS GG

Aggregation 4.6 39.1 32.5 35.0 43.6 0.5

Compound 2.4 46.6 11.5 23.8 30.4 0.6

pathbased 5.3 20.3 7.0 23.4 6.6 0.3

R15 3.0 67.6 31.4 52.8 119.7 0.7

MOPSI-fi 233.1 1323.8 15551.7 1843.3 13316.3 5.3

MOPSI-joensuu 23.6 411.4 2062.7 1201.0 2481.7 2.8

Taxi 4609.9 63999.5 49150.4 NA 75621.0 793.2

Table 2

Numerical evaluation by external indexes on the algorithms. The highest mean values of the indexes for each data set are noted in bold.

Those stable results (std = 0) are noted in italic.

Data Index litekmeans GEM DBSCAN LSC PRS GG

Mean std Mean std Mean std Mean std Mean std Mean std

Aggregation

RI 0.91 0.01 0.90 0.02 0.95 0.04 0.93 0.00 0.93 0.00 0.93 0.00

ARI 0.72 0.05 0.69 0.07 0.86 0.12 0.76 0.01 0.81 0.00 0.81 0.00

JAC 0.64 0.05 0.60 0.08 0.81 0.15 0.67 0.02 0.75 0.00 0.75 0.00

FM 0.78 0.04 0.75 0.06 0.89 0.09 0.81 0.01 0.87 0.00 0.87 0.00

R15

RI 0.97 0.02 0.98 0.01 0.97 0.02 0.99 0.01 0.75 0.00 0.91 0.02

ARI 0.78 0.10 0.87 0.06 0.79 0.10 0.95 0.07 0.26 0.00 0.49 0.06

JAC 0.68 0.13 0.79 0.09 0.69 0.12 0.92 0.11 0.21 0.00 0.36 0.05

FM 0.81 0.09 0.88 0.05 0.82 0.08 0.96 0.06 0.46 0.00 0.55 0.04

Compound

RI 0.84 0.04 0.83 0.01 0.86 0.03 0.84 0.01 0.90 0.00 0.97 0.00

ARI 0.55 0.11 0.51 0.04 0.60 0.10 0.54 0.02 0.76 0.00 0.92 0.00

JAC 0.49 0.11 0.45 0.03 0.54 0.10 0.47 0.02 0.71 0.00 0.89 0.00

FM 0.66 0.09 0.62 0.03 0.70 0.08 0.64 0.02 0.84 0.00 0.94 0.00

Pathbased

RI 0.76 0.00 0.83 0.04 0.74 0.00 0.76 0.00 0.34 0.00 0.46 0.00

ARI 0.49 0.00 0.63 0.08 0.46 0.00 0.49 0.00 0.00 0.00 0.08 0.00

JAC 0.51 0.00 0.61 0.06 0.49 0.00 0.51 0.00 0.33 0.00 0.33 0.00

FM 0.68 0.00 0.76 0.05 0.67 0.00 0.68 0.00 0.57 0.00 0.54 0.00
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lusters. For data Compound, the GG, LSC and PRS generates six clus-

ers, however, the DBSCAN has a different partitioning, which is com-

osed of four clusters. The litekmeans and GEM generate five clusters.

nly the DBSCAN generates eight clusters for R15, the rest of the al-

orithms can detect 15 clusters. All of the algorithms fail to detect the

lusters for data pathbased.

Unlike partition-based (k-means and its variants) and model-

ased clusterings (EM), the grid-based clustering (GG) can detect

on-shaped clusters. Also, the grid-based algorithm includes auto-

atic outlier detection. Those data points far from the main cluster

ody are regarded as outliers. Compared to density-based clustering

DBSCAN), the GG is capable of producing more sensible result.

The algorithms are performed on the data sets 100 times to study

he average performance of them. To compare the algorithms numer-

cally, the clustering labels of the four synthetic data sets from the

lgorithms are compared to the reference labels by external valid-

ty indexes. External validity indexes measure how well the results

f a clustering match the ground truth (if available), a reference or

nother clustering [25,26]. We compare the performance of the al-

orithms by external indexes such as rand index (RI), adjusted rand

ndex (ARI), Jaccard coefficient (JAC) and Fowlkes and Mallows in-

ex (FM) in Table 2. The index values are ranged in [0, 1], where one

ndicates a completely match. The average values (mean) and stan-

ard deviation values (std) of 100 runs are listed in the table. As it is

hown, there is no algorithm that is best for all the four data sets. The

roposed algorithm has a best performance on the data Compound.

ccording to the std values, the DBSCAN and GG produce same results

n each run for most of the data. In other words, the two algorithms

re more stable.

For the efficiency, as shown in Table 1, the proposed algorithm

s a lot faster than the other algorithms. The GEM, DBSCAN, LSC and

RS are almost at the same scale level. Restricted by the memory

ssue in MATLAB, the LSC algorithm cannot generate any result on the

axi data. For real data set MOPSI-fi and MOPSI-joensuu, the DBSCAN
akes much more time than GEM. The results indicate that the time

omplexity of DBSCAN is affected by the data size heavily, which

akes the DBSCAN not proper for real applications with large size.

he GEM has better performance when the data gets larger. However,

t is still not fast enough for real data. The litekmeans is claimed as

he fastest implementation of k-means, which is proved to be quite

fficient. However, it is still one scale level more than the proposed

lgorithm.

We get 49 clusters for the taxi data by the GG algorithm. Each clus-

er reflects the places with high population and traffic. As shown on

ig. 3, the clusters are mainly the CBDs in city Shanghai. The airports

nd railway stations are also the places with taxies. The clustering

esult reflects the city’s traffic information.

The original MOPSI data contains not only trajectories, it includes

omments in text also. To detect the places-of-interest, the geo-spatial

ata with only location information needs to be clustered. The com-

ents in text thereby can be employed to generate a tag for the places.

o demonstrate the clustering result in a clear way, we extract one

ser’s data in city Joensuu, Finland, which is shown in Fig. 4. We dis-

lay the generated clusters into green ellipses with a google marker

s the centroid. The high efficiency of the proposed algorithm makes

t applicable in a real application. Since the tag generation based on

exts is out of scope in this paper, we tag the clusters manually with

abels “home”, “work place” and “sports”. In our future work, the

agging step will be performed automatically.

In the proposed algorithm, there is a step of selecting seeds for

rowing. Two aspects need to discuss in the experiment. One is the

ethod of selecting seeds. We introduce that the selection method is

ased on the top m capacity values. An intuitive way is to select the

eeds randomly. The two methods are compared in the experiment

nd we use random to represent the random method and max for

he top m capacity. The other aspect is the strategy for seed grow-

ng. We compare the 8-neighbor (N8) and 4-neighbor (N4) growing

trategies. As shown in Table 3, the random way of selecting seeds
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Fig. 3. The clusters obtained from the proposed algorithm on data Shanghai taxi.

Fig. 4. Three clusters obtained from the clustering algorithm on one user’s data.

w

t

g

t

s

(

r

o

is faster. However, from the observation on the clustering result,

the random way generates much less clusters than the max way.

A large number of seeds might help on the situation. However, it

brings the difficulty to control the number of seeds that should be

selected. When the 4-neighbor searching is employed, it is also true

that the efficiency has been improved because less points have been

checked. However, the algorithm sometimes generates more clusters

when it is 4-neighbor searching. The algorithm employing 4-neighbor

searching labels more points not connecting to others as outliers,
hich increases the number of clusters. In general, the seed selec-

ion method should be adapted by applications. Since the 4-neighbor

rowing brings little improvement on efficiency, we suggest to use

he 8-neighbor growing. In this paper, the combination of the max

election and 8-neighbor growing is the best choice.

Since there are two parameters e.g., the size of the grid structure

n) and seed number for growing (m), involved in the proposed algo-

ithm, an experiment is performed in Fig. 5. The GG algorithm is run

n data Compound with different settings on the number of seeds m



Q. Zhao et al. / Pattern Recognition Letters 53 (2014) 77–84 83

0 10 20 30 40 50
0

10

20

30

40

50

grid structure size

20*20;30

20*20;40

30*30;10

30*30;20

30*30;30

30*30;40

40*40;10

40*40;20

40*40;30

40*40;30

50*50;10

50*50;20

50*50;30

50*50;40

se
ed

 #

1

1

1

1

1

4

4

3

4

5

5

5

4

6

6

6

5

5

6

6

10

12

6

6

4

Fig. 5. How the parameters setting in grid-growing clustering algorithm affects the final clustering? The size of the grid structure n and number of seeds m are studied.

Table 3

How the seed selection method and neighborhood searching strategy

affect the final result?

Random, N8 Max, N8 Max, N4

Aggregation 0.5 (K = 5) 0.6 (K = 5) 0.5 (K = 6)

Compound 0.4 (K = 5) 0.5 (K = 6) 0.5 (K = 6)

pathbased 0.4 (K = 2) 0.4 (K = 2) 0.4 (K = 2)

R15 0.4 (K = 3) 0.8 (K = 15) 0.7 (K = 24)

MOPSI-fi 1.9 (K = 9) 5.3 (K = 19) 5.1 (K = 22)

MOPSI-joensuu 1.0 (K = 9) 2.9 (K = 14) 2.8 (K = 16)
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312–321.
nd the size of grid structure n. The values of m and n are set as 10, 20,

0, 40 and 50 pairwisely. The partitions obtained from the proposed

lgorithm with different m and n are shown and a number on each

lustering result indicates the number of clusters obtained finally. It

eems that the parameter m in the growing step affects less than n

n the final clustering result. With certain n, for example n = 20, the

lustering result has no change when m > 20. When n changes, the

lustering result also changes even with fixed m. It can be concluded

hat the larger n brings more sensible result, however, it is not nec-

ssary to set the n as large as possible. For example, when n = 40

nd n = 50, the clustering results reach quite similarly with certain

etting of m. Therefore, it is the first priority to set up n and then is m.

ince the efficiency of the algorithm is controlled by the setting of n,

he knowledge that setting high values on n hel ps little on the result

ill cheer users up.

. Conclusion

A grid-growing clustering algorithm is proposed in this paper,

hich possesses the advantages of both k-means and DBSCAN. The

lgorithm needs no settings on the number of clusters. Similar to

BSCAN, it is not restricted to the cluster shape and it can detect
he outliers at the same time. The most important point is that its

ime complexity is O(N log N). The algorithm is much more efficient

han other clustering algorithms, litekmeans, LSC, PRS, Greedy EM

nd DBSCAN, which are shown to be restricted in real applications

ecause of their running time on large data sets. Considering the

ffectiveness and efficiency obtained from the proposed algorithm, it

s more suitable in real applications. Therefore, it has been employed

n geo-spatial data for detecting regions of interest. Manual tagging

n the regions of interest in the experiment has been done. We will

ork on conceptualization from short texts and tag the regions of

nterest automatically in our future work.
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