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ABSTRACT

Characterizing spoken languages and foreign accents is a challeng-
ing pattern recognition task. This thesis addresses the problem of
automatic foreign accent recognition, that is, the task of identify-
ing the mother tongue (L1) of a non-native speaker given a speech
utterance spoken in his or her second language (L2).

Selecting representative features which best characterize spo-
ken foreign accents is an open and challenging research problem.
This thesis proposes a hybrid approach to the problem of foreign
accent recognition by combining both phonotactically-inspired and
spectral approaches. In particular, primary aim of this thesis is to
examine whether it is possible to improve upon state-of-the-art spectral
feature extraction methods within foreign accent recognition tasks by in-
corporating phonotactic knowledge.

To this end, a universal acoustic characterization of speech utter-
ances, originally developed for automatic speech recognition (ASR),
is adopted in this thesis. A set of universal descriptors outline
spoken foreign accents in terms of a common set of fundamental
units, known as speech attributes. Speech attributes, namely manner
and place of articulation, exist in all languages and the statistics
of their co-occurrences can considerably differ from one language
to another. In this dissertation, speech attributes are extracted and
modeled in order to characterize spoken foreign accents using an
i-vector representation paradigm. Then, a dimensionality reduc-
tion approach, based on the principal component analysis (PCA),
is investigated in order to capture the temporal context of attribute
feature streams. To further optimize the i-vector modeling back-
end for improved classification accuracy, a heteroscedastic linear
discriminant analysis (HLDA) is compared and contrasted with a
linear discriminant analysis (LDA).

A vast majority of the language and accent recognition systems
assume a closed-set problem, where the training and the test seg-
ments correspond with one of the known target languages or ac-
cents. Practical systems, however, need to consider an open-set case



also, where the language of the test segment might not be any of
the in-set languages. To this end, this work proposes an out-of-set
(OOS) data selection approach in order to locate OOS data from an
unlabeled development set and train an additional OOS model in
the back-end.

Testing the proposed foreign accent recognition system on both
the Finnish National Foreign Language Certificate (FSD) corpus
and the US National Institute of Standards and Technology (NIST)
2008 speaker recognition evaluation (SRE) corpus, the experimen-
tal results indicate statistically significant improvement in foreign
accent recognition accuracy, with a 45% relative reduction in aver-
age detection cost over the conventional Gaussian mixture model-
universal background model (GMM-UBM) spectral-based techniq-
ue. This attribute system outperforms an already excellent spectral-
based i-vector system based on shifted delta cepstrum (SDC) fea-
tures by 15% and 8% relative decrease in average detection cost for
the Finnish and English data, respectively. Appending temporal
context to the attribute feature streams yields 13% and 6% relative
reduction in average detection cost over the context-independent
attribute system for the Finnish and English data, respectively. The
results of the open-set language identification (LID) task indicate
that the proposed OOS data selection method outperforms the base-
line one-class support vector machine (one-class SVM) by a 16%
relative reduction in equal error rate (EER).

In summary, this dissertation advances state-of-the-art automatic
foreign accent recognition by combining both phonotactically-
inspired and spectral approaches. Furthermore, by incorporating
the proposed OOS data selection method into modeling OOS lan-
guages, open-set LID accuracy substantially improves in compari-
son to using all the development set as OOS candidates.

Universal Decimal Classification: 004.934, 519.76, 801.612, 801.653

Library of Congress Subject Headings: Pattern recognition systems; Com-
putational linguistics; Speech processing systems; Automatic speech recog-



nition; Accents and accentuation; Spectral analysis (Phonetics); Principal
components analysis; Discriminant analysis

Yleinen suomalainen asiasanasto: hahmontunnistus; puheentunnistus;
puhekieli; aksentti; ääntäminen; tietokonelingvistiikka
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1 Introduction

Speech contains a number of information cues [1], including the
spoken message content [2] and speaker-related information such
as identity [3], language [4], age [5], gender [6], regional origin [III]
and emotion [7].

Language defines a set of rules for generating speech [8]. Accord-
ing to the most recent edition of Ethnologue [9], over 7,000 known
living spoken languages exist in the world. Most languages belong
to a certain language family. A family defines a group of related spo-
ken languages that share a common ancestor. For example, Italian
and Spanish both descend from Latin. Languages within a family
reflect similarities in grammar and lexicon, i.e. by exhibiting simi-
lar sounds and meaning [10]. Individual languages may also have
variations, known as dialects [11]. When a dialect is associated with
a geographical region, it is called a regional dialect [11]. Individuals
living in the same geographical region often share regional speech
patterns that differ from that of individuals in other regions. Social
dialect [11] refers to a variant of a language spoken by a social com-
munity, such as an ethnic group or age group in a particular social
situation.

Another type of language variation occurs when non-native
speakers use the characteristics of their mother tongue (L1) in a
second language (L2) [12]. This type of variation is known as a for-
eign accent [11]. For example, when non-native speakers are learn-
ing specific sound patterns in L2 which do not exist in their L1,
they tend to substitute them with the closest sound patterns in
their L1 [13]. These new sounds seem foreign or wrong to the na-
tive speakers of that language [13]. For example, a German speaker
might have problems pronouncing the consonants at the beginning
of the English words this and wish because they do not exist in
German [14]. Instead, they may pronounce them as /z/ and /v/
respectively, since they are the closest sounds found in German [14].



Advances in Automatic Foreign Accent Recognition

Foreign accent recognition refers to an automatic process of iden-
tifying the foreign accent spoken in a given speech sample. It is an
enabling technology in a large number of speech processing appli-
cations. It is used in developing computer-based systems for au-
tomatically grading the pronunciation quality of students learning
a foreign language [15, 16]. Non-native accents can also be found
in targeted advertisements. In this form of advertisement which
is based on customer’s traits, connecting the customer to an agent
with a similar foreign accent facilitates communication and creates
a user-friendly environment [17]. In the areas of intelligence and
security, automatic foreign accent recognition could help officials
discover the true origin of travelers and immigrants by detecting
their L1 from their speech samples [18].

Currently, ASR [19] systems are widely used in the market by in-
ternet applications. Many of these systems have been developed for
the standard accent of a language, thus their performance degrades
considerably when faced with non-native speech [20–23]. Accord-
ing to [24], gender and accent are the first two principal components
of variation between speakers. Foreign accented speech causes a
shift within the acoustic-phonetic feature space of speech [2]. This
shift may considerably vary based on the speaker’s proficiency in
their L2 [2] and their educational background [I]. Finding an effec-
tive foreign accent compensation technique remains one of the most
challenging problems associated with different ASR tasks [20, 21].

To deal with the problem of foreign accented speech, typical
ASR systems use acoustic models adapted from foreign accented
speech data [22, 25]. A relative reduction of 23.9% in error rate
over a baseline native system consisting of a 3-state hidden Markov
model (HMM) [26] with 48 Gaussians per each state, was observed
in [22] by employing a maximum a posteriori (MAP) adaption [27]
of acoustic models with non-native speech data. The authors in
[25] proposed an adaptation approach that takes advantage of ac-
cent detection, accent discriminative acoustic features and acoustic
adaptation for accented Chinese speech recognition. They achieved
a 1.4% absolute reduction in character error rate when the degree

2 Dissertations in Forestry and Natural Sciences No 241
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of accent considerably varied. Such acoustic adaptations improve
speech recognition performance, specifically when the foreign ac-
cent is strong [20]. However, as presented in [21], using strong
foreign accents leads to a lower performance of native speech recog-
nition. To deal with this problem, authors in [20] established a sys-
tematic use of a foreign accent adapted model based on the auto-
matic classification of speakers according to their degree of foreign
accent. This approach avoided degradation of recognition perfor-
mance on native speech while improving the recognition of foreign
accented speech.

Recently, with the rise of deep neural network (DNN) acoustic
modeling approaches [28, 29], the foreign accented ASR technol-
ogy has led to impressive improvements, enabled by DNN capa-
bilities, in automatically learning feature representations [29]. A
multi-accent DNN with an accent-specific top layer and shared bot-
tom hidden layers, was proposed in [28]. The accent-specific top
layer was used to model distinct accent classes and the shared hid-
den layers allowed maximum data sharing and knowledge transfer
between accented and native speech.

The selection of features, which highlight representative aspects
of the speech signal for a given task, is an established problem
within automatic speech processing. There has been a massive
amount of studies done, since the development of digital comput-
ers beginning with the Fourier transform, which has given rise to a
number of successful feature extraction techniques, such as the mel-
frequency cepstral coefficients (MFCCs) [30]. The MFCCs are purely
acoustic features, i.e. accounting for physical sound patterns. Studies
have shown that acoustic and phonotactic features are the most effec-
tive language cues [4]. However, it is still not well-understood how
best to characterize foreign accent variation. The author of this the-
sis explores a number of state-of-the-art foreign accent recognition
approaches by adopting similar techniques from language recogni-
tion. Specifically, a new type of architecture is developed in this
dissertation. Using the developed system, the author attempts to
answer the following research questions:

Dissertations in Forestry and Natural Sciences No 241 3
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• Q1: Can we improve upon the state-of-the-art spectral feature
extraction methods by incorporating phonotactically-inspired
knowledge to a spectral-based foreign accent recognition sys-
tem?

• Q2: How do speaker-related characteristics such as age, ed-
ucation, L2 proficiency and region of origin affect foreign ac-
cent recognition accuracy?

• Q3: With respect to limitation of foreign accent corpora and
given that training state-of-the-art foreign accent classifiers of-
ten requires vast amounts of offline speech data for training
the various system components, what data can be used for
training hyper-parameters of the foreign accent recognition
system?

• Q4: Can we improve upon state-of-the-art SDC features by us-
ing alternative temporal context modeling of speech attribute
features?

• Q5: How can one automatically select the most representative
OOS data to model OOS languages from a large set of unla-
beled data in order to improve the recognition accuracy of an
open-set LID system?

• Q6: How does training set size and test utterance length affect
foreign accent recognition performance overall?

To answer these research questions, the acoustic characteristics
of spoken foreign accents of two languages, English and Finnish, are
modeled with the help of statistical pattern recognition techniques.
Then, an unknown foreign accented speech is evaluated against all
available models and the most likely foreign accented model is then
selected.

Particularly, to address Q1, the usefulness of conventional and
proposed acoustic-phonetic feature vectors are compared and con-
trasted with respect to foreign accent recognition results. In order
to discover the impact of speaker-related characteristics on foreign

4 Dissertations in Forestry and Natural Sciences No 241
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accent recognition in Q2, speakers are first divided into meaningful
subgroups within each characteristic. Then, foreign accent recogni-
tion accuracy within each subgroup is compared. As an example,
speakers are divided into subgroups of elementary, high school, vo-
cational, polytechnic and university in order to analyze the impact
of education on foreign accent recognition results. Since training
state-of-the-art foreign accent classifiers (or generally current ma-
chine learning systems in this field) often demands vast amounts of
offline speech data for training the various system components [31],
the effect of incorporating a non-matched dataset on foreign ac-
cent recognition results is explored in Q3. To address Q4, a simple
feature stacking approach to capture temporal information from a
longer context is proposed and compared against “state-of-the-art”,
i.e. SDC features, with comparable settings. For Q5, an efficient
OOS data selection method is proposed and compared with several
conventional OOS selection methods. Then, the proposed method
is integrated into an open-set LID task to represent the OOS classes
in the back-end. Finally, the recognition error rates as a function of
training set size and test utterance length, are studied separately in
Q6. In particular, for the effect of training set size, the training data
is split into portions of 20%, 40%, 60%, 80% and 100% of the entire
training material so that each individual portion contains the data
from the previous portion. Similarly, for the effect of test utterance
length, feature vectors are extracted from the 0%, 40%, 60%, 80%
and 100% portions of active speech frames for evaluation.

The rest of this thesis is organized as follows. In Chapter 2,
fundamentals of foreign accent recognition, including acoustic and
phonotactic approaches, are presented. Open-set LID and the pro-
posed OOS data selection method are discussed in Chapter 3. Next,
in Chapter 4, the i-vector representation of spectral features and
conventional channel compensation techniques in this paradigm
are reviewed. Chapter 5 describes the proposed foreign accent
recognition approach in detail. Chapter 6 describes standard pro-
tocols for performance evaluation in language and foreign accent
recognition tasks. A summary of the publications and selected re-

Dissertations in Forestry and Natural Sciences No 241 5
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sults from the publications are given in Chapter 7. Also, the pro-
posed foreign accent recognition results are compared with other
results obtained from the literature in Chapter 7. Finally, conclu-
sions are drawn and future works are outlined in Chapter 8. The
original research papers, that address the stated research questions,
are attached at the end of this thesis.

6 Dissertations in Forestry and Natural Sciences No 241



2 Fundamentals of automatic
foreign accent recognition

Automatic foreign accent recognition [32,33] refers to the task of mod-
eling and classifying the foreign accent spoken in a given speech
sample. Foreign-accented speech typically contains information re-
garding the speaker’s linguistic origin, i.e. his or her native lan-
guage [34]. Techniques to perform foreign accent recognition are
typically adopted from LID. Language identification is the pro-
cess of automatically recognizing the language of a spoken utter-
ance [35]. Foreign accent recognition can be viewed as a specific
type of LID task, where the goal is to recognize the foreign accent
spoken in a given utterance. Hence, it is a common practice to
adopt LID techniques to foreign accent recognition tasks.

Language identification systems operate in two phases: training
and testing. In the training phase, language-dependent character-
istics of the training data are modeled. During the testing phase,
feature vectors are computed from a new utterance and compared
to each of the language-dependent models in order to produce a set
of detection scores. The language with the highest detection score
is then hypothesized as the spoken language.

Figure 2.1 illustrates two broad categories of LID techniques,
phonotactic [36, 37] and spectral [38, 39]. Phonotactic approaches
typically employ phone recognizer outputs, such as N-gram statis-
tics, to build N-gram language models. Spectral approaches in turn
classify languages using the acoustic characteristics of the speech
signals followed by bag-of-speech-frame models such as Gaussian
mixture models (GMMs) [40].

In this Chapter, we first review acoustic-phonetic underpinnings
of foreign-accented speech. Then, we describe the fundamental
techniques of automatic language and foreign accent recognition,

Dissertations in Forestry and Natural Sciences No 241 7
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Figure 2.1: Block diagram of two commonly used approaches in
automatic language recognition systems [4]: a) Phonotactic-based
and b) Acoustic based techniques.

including both spectral and phonotactic approaches as well as de-
scribing the acoustic and phonotactic feature extraction process. For
each approach, the possible choices for classifiers are presented.

2.1 ACOUSTIC-PHONETIC UNDERPINNINGS OF FOREIGN-
ACCENTED SPEECH

Foreign-accented speech contains a number of cues about the mother
tongue of the L2 speaker. Foreign accent recognition systems use
one or more of these cues in order to classify accents [33]. Stud-
ies on the perception of foreign-accented speech by native speakers
suggest that segmental cues, i.e. vowels and consonants, play an
important role in recognizing foreign-accented speech [34, 41]. For
example, Japanese speakers may not distinguish between the En-
glish consonants /l/ and /r/ as they have no English-type /l/ or
/r/, but rather, their own distinct consonant which lies in between
the two sounds [42]. As a result, they may mistakenly switch /l/

and /r/ in the English words right and light. Japanese speakers
may also have difficulties in pronouncing a group of consecutive

8 Dissertations in Forestry and Natural Sciences No 241
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consonants in English, such as /spl/ and /NTs/. In Japanese, a syl-
lable contains either a single vowel or one consonant followed by
one vowel (consonant+vowel) or one consonant followed by /j/ and
one vowel (consonant+/j/+vowel) [43]. This makes it difficult for
Japanese speakers to correctly pronounce a group of English con-
sonants. Due to this difficulty, they may pronounce a vowel sound
between the consecutive consonants [43].

Foreign-accented cues can also occur at the prosodic level, which
refers to a number of properties defined on the top of segments usu-
ally extended over more than one sound segment, such as syllables,
words and phrases [44]. Authors in [41] showed that prosodic cues,
such as segmental duration and intonation, are relevant to the percep-
tion and rating of the foreign Italian accent in English. Segmen-
tal duration defines the time period in which a given segment of
speech is produced [44], while intonation is the overall melodic pat-
tern of a sentence, i.e. the fall and rise of a voice during speech [44].

Speakers of different languages do not pronounce vowels with
the same prominence [45]. Stress determines which syllables or
vowels are more prominent (or loud) within a word [44]. Drastic
difference between stress patterns of English and Chinese is one of
the main reasons of pronunciation errors made by Chinese speakers
of English [45]. English is a stress language, while Chinese is a tonal
language. In English, stress can differentiate the meaning of words,
while in Chinese, it is the tone that changes the meanings. For
example, the English word present, depending on the position of
the stress either on its first or last syllable, means gift (stress on first
syllable) and describe (stress on last syllable), respectively. However,
in Chinese, the majority of the syllables receive the same stress [45].

Grammar also differs from one language to another [46]. For
example, Arabic does not have the verbs ‘to be’ and ‘to do’ [46]. Fur-
thermore, Arabic contains only present tense, in contrast to English
which has both the simple present tense and continuous form. For
these reasons, Arabic speakers may produce errors when speaking
English, such as He good driver, When you leave home?, I reading a book
and When you going? [46].
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In addition to the acoustic-phonetic influence of L1 on L2, the
amount of exposure to L2 and the age of learning were also identi-
fied as strong factors on the degree of foreign accent [47]. Analysis
on the perception of foreign-accented speech indicates that the de-
gree of foreign accent is less pronounced in L2 speakers with longer
residence within an L2 speaking community [47]. Also, it is sug-
gested that younger adults typically learn L2 faster and more flu-
ently than older ones, resulting in less degree of foreign accent in
their L2 speech [47]. In [I], the proposed foreign accent recognition
accuracy is also related to a number of affecting factors, such as, L2
language proficiency, age of entry and level of education.

2.2 SPECTRAL TECHNIQUES

Spectral approaches within language recognition tasks are based on
the observation that languages differ in their sound systems [48]. In
these approaches, each speech sample is represented as a sequence
of short-term spectral feature vectors [4]. The feature vectors of
each language are assumed to contain specific statistical character-
istics specific to that language. The spectral feature vectors are used
for modeling the target languages by generative or discriminative
methods.

Generative methods model the joint probability distribution be-
tween observation x and class label y using parametric family of
models. Then, classification is obtained by first estimating the class-
conditional densities based on Bayes rule, then classifying a new
data to the class with highest posterior probability. In contrast,
discriminative classifiers directly model the class posterior probabil-
ity p(y|x) without assuming any prior distributions over the classes
[49]. Gaussian mixture models [40] and support vector machines (SVMs)
[50] are, respectively, examples of generative and discriminative
classifiers used commonly in language recognition tasks. As we
will discuss further in Chapter 4, the simple acoustic approaches
form the basis for more advanced factor analysis techniques (e.g.
[51]) that are the current state-of-the-art techniques in both lan-
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Figure 2.2: Block diagram of mel-frequency cepstral coefficient
(MFCC) feature extraction [56].

guage [52] and speaker [53] recognition.

2.2.1 Acoustic feature extraction

Acoustic feature extraction refers to the process of parameterizing
a raw speech signal into a sequence of feature vectors that then
characterizes the information within the speech signal. According
to the source-filter model, speaker characteristics of a speech signal
are carried into the excitation source characteristics [54] and vocal
tract1 characteristics [55].

Mel-frequency cepstral coefficients [30] are commonly used for
speech parameterization in a number of automatic speech process-
ing systems. Mel-frequency cepstral coefficients are an example of
speech signal parameterization using (mainly) vocal tract informa-
tion. They were first introduced and applied to speech processing
in [30]. Mel-frequency cepstral coefficients are loosely based on
models of human auditory perception. Specifically, according to
a number of psychophysical studies, human perception of the fre-
quency content of sounds follows a nonlinear scale, known as mel
scale. The mel scale defines a nonlinear scale of frequency based on
a human’s perceived frequency (or pitch).

A block diagram of MFCC computation is shown in Figure 2.2.

1The vocal tract is the area between the larynx and the mouth and nose where
air passes during the production of sound.
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In the pre-processing step, a speech sample is first divided into
overlapping short speech segments or frames lasting 20 to 30 ms in
order to obtain a local “snapshot” of signal. Next, since the high
frequency components of voiced speech signals are suppressed dur-
ing a human’s sound production mechanism, each speech frame
is filtered by a first-order pre-emphasis filter [57] in order to boost
energy in the high-frequency region. The pre-emphasized frame
is then multiplied by a tapered window function, usually, the so-
called Hamming window [58]. The Hamming window (Figure
2.3), compared to a traditional rectangular window, results in re-
duced spectral leakage2 within the spectrum of the speech frames
[58]. The spectrum of each frame is obtained via fast Fourier trans-
form (FFT), a computationally efficient algorithm for computing dis-
crete Fourier transform (DFT) [59]. The magnitude spectrum is then
passed through a bank of triangular-shaped bandpass filters po-
sitioned according to the mel-frequency scale. A commonly used
analytical mapping of the frequency in Hz to mel-scale frequency
in the MFCC computation is given by [60]

fmel = 2595 log10(1 +
f

700
), (2.1)

where f denotes the frequency in Hz and fmel is the corresponding
mel-scale frequency.

The mel-scale filterbank is illustrated in Figure 2.4. Here, the
endpoints of each filter are positioned at the center frequencies of
adjacent filters. It should be noted that MFCC implementations
differ in the number of filters and the methods used to compute the
filter center frequencies, among other details [60]. The number of
filters, between 20 and 40, is typically selected in order to cover the
signal bandwidth [0, fs/2], where fs is the sampling frequency. For
a speech frame at time t, a set of E mel-scale cepstral coefficients
c(t) = {ci(t), i = 0, 1, . . . , E− 1}, is obtained by applying a discrete
cosine transform (DCT) [61] to the logarithm of filterbank energies so
as to de-correlate them.

2Spectral leakage causes the spectrum of a speech frame to have new frequency
components.
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Figure 2.3: A Hamming window in both time and frequency do-
main.

The MFCC coefficient, c0, indicates energy over all of the fre-
quency bands. The second coefficient represents the balance be-
tween the high and low frequency components of the speech signal.
Other coefficients do not have a clear physical interpretation, other
than representing the finer details of the spectrum and allowing for
discrimination between the different sounds.

The MFCC coefficients are usually further augmented with their
first- and second-order derivatives, known as the delta and double-
delta coefficients [62]. They are computed across several speech
frames as representative of the short-term speech dynamics. A sim-
ple computation of delta coefficients ∆t at time t for the cepstral
coefficient ct is as follows [60]:

∆t =
ct+1 − ct−1

2
, (2.2)

where ct+1 and ct−1 are the cepstral coefficients at time t + 1 and
t− 1, respectively.

Since the characteristics of the channel or environment might
vary between different speech recordings, for example by a change
in the recording microphone, it is important to reduce these un-
wanted channel effects on extracted feature vectors by applying
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Figure 2.4: A set of 24 triangular-shaped bandpass filters for an 8
kHz sampled speech signal.

a certain type of feature compensation. The aim is to have a ro-
bust feature extraction method which is minimally affected by both
channel and noise. Relative spectral (RASTA) filtering [63] and cep-
stral mean and variance normalization (CMVN) [64] are among the
most commonly used feature compensation techniques. Cepstral
mean and variance normalization normalizes the mean and vari-
ance together. After normalization, the sample mean and sample
variance of each cepstral coefficient become, respectively, zero and
one. RASTA filter is a band-pass filter, which can be applied in both
log spectral and cepstral domain. The high-pass portion of the filter
removes the effect of a channel’s convolutional noise, while the low-
pass portion smoothes the fast frame-to-frame spectral changes [63].

Typically, MFCC features are computed over short speech frames
(e.g. 20 ms), along with their first- and second-order derivatives
in order to represent temporal information. On the other hand,
SDC [38] coefficients are the most commonly used set of features
for language recognition tasks. Similar to the first- and the second-
order delta coefficients of MFCCs, SDCs aim at capturing local
speech dynamics over a longer temporal context. Shifted delta cep-
strums are computed by stacking delta features of multiple speech

14 Dissertations in Forestry and Natural Sciences No 241



Fundamentals of automatic foreign accent recognition

t-D          t        t+D    t+P-D      t+P    t+P+D                     t+(Q-1)P-D   t+(Q-1)P   t+(Q-1)P +D 

…

E

c(t) c(t+P) c(t+(Q-1)P)

- +- + - +

Figure 2.5: Shifted delta cepstrum feature extraction with parame-
ters E, D, P and Q. ∆ refers to the first-order derivatives of MFCCs,
known as delta features.

frames. Figure 2.5 illustrates the computation of SDC features for
parameters E, D, P and Q. E is the number of cepstral coefficients
computed at frame t, while D is the time advance and delay for
computing the first-order deltas of MFCCs. P represents the time
shift between consecutive blocks and, finally, Q is the number of
blocks whose delta features are concatenated to form the final SDC
feature vectors. For the example displayed in Figure 2.5, the final
SDC feature vector at frame t is computed through the concatena-
tion of all of the ∆c(t + iP):

∆c(t) = c(t + iP + D)− c(t + iP− D) (2.3)

where i = 0, 1, . . . , Q− 1. Commonly used SDC parameters are E =

7, D = 1, P = 3, Q = 7. This configuration results in E× Q = 49
delta features which contain temporal information of Q× P = 21
consecutive frames of cepstral features.

2.2.2 Acoustic classifiers

At this point, we focus on generative and discriminative classifiers
used in conventional automatic language recognition systems. Par-
ticularly, we describe GMMs as generative, and SVMs and neural
networks as discriminative classifiers.
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Gaussian mixture models

In language recognition systems, a GMM-UBM approach [65]
is typically employed as the conventional spectral modeling tech-
nique. Gaussian mixture models have the ability to model arbitrary
continuous feature distributions through the linear combination of
individual Gaussian components. In language recognition, GMMs
are used to model the overall characteristics of spoken languages
using the distribution of acoustic feature vectors.

The d-variate Gaussian mixture densities N (x|µj, Σj), j = 1,
. . . , G are given by [66]:

N (x|µj, Σj) =
1

(2π)d/2|Σj|
1
2

exp
[
−1

2
(x− µj)

>Σ−1
j (x− µj)

]
. (2.4)

The density function of a GMM is a linear weighted combination
of G Gaussian components:

p(x|θ) =
G

∑
j=1

wjN (x|µj, Σj). (2.5)

A GMM is denoted as parameters θ = {wj, µj, Σj, j = 1, . . . , G},
where µj is a d-dimensional mean vector, Σj is a d × d covariance
matrix and wj’s are the mixture weights satisfying ∑G

j=1 wj = 1 and
wj ≥ 0. Often, the choice of GMM configuration, i.e. the number of
components and full or diagonal covariance matrices, is determined
experimentally by the amount of data available for estimating the
GMM parameters. When only a limited amount of training data is
available, diagonal covariance matrices are usually adopted due to
computational simplicity [66].

The parameters of a GMM, θ, are often estimated by maximum
likelihood (ML) criterion in order to best describe the distribution of
the training feature vectors. Given K training feature vectors X =

{xi, i = 1, 2, . . . , K}, the GMM likelihood, assuming independence
between the observations, can be written as:

p(X|θ) =
K

∏
i=1

p(xi|θ). (2.6)
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The log likelihood form of this equation can be computed as:

ln p(X|θ) =
K

∑
i=1

log p(xi|θ) =
K

∑
i=1

log

{
G

∑
j=1

wjN (xi|θj)

}
. (2.7)

The ML estimation of the GMM parameters is given by:

arg max
θ

log{p(X|θ)}. (2.8)

In the special case of a single Gaussian, G = 1, the maximum
likelihood estimator of µ and Σ are given, respectively, by the sam-
ple mean and sample covariance matrix:

µ̂ML =
1
K

K

∑
i=1

xi (2.9)

Σ̂ML =
1
K

K

∑
i=1

(xi − µ̂ML)(xi − µ̂ML)
>. (2.10)

A Gaussian mixture with G > 1, however, (2.7) is a non-linear func-
tion of the unknown parameters θ and a closed-form solution does
not exist. An ML estimate of the GMM parameters, can however,
iteratively be obtained using the so-called expectation-maximization
(EM) algorithm [67]. An EM algorithm begins with an initial guess
of the model parameters. Then at each iteration, the EM estimates
the new model parameters, θ̄, such that p(X|θ) ≤ p(X|θ̄). The new
parameters then become the initial parameters for the next iteration
and the process continues until convergence. The convergence can
be defined, for instance, when the relative increase in log-likelihood
across consecutive iterations is less than a pre-set threshold value,
or when a maximum number of iterations has been reached. How-
ever, it should be noted that EM does not necessarily converge to a
globally optimal ML estimate of the GMM parameters [67].

The EM algorithm to train GMMs can be summarized as follows
[68]:

1. Initialize the means µj, covariances Σj and mixing weights
wj’s, and evaluate the initial value of the log likelihood ac-
cording to (2.7)
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2. E-step: Compute the posterior probability of a mixture com-
ponent j given a particular feature vector xi and the current
estimate of the parameters θ, following Bayes’ rule:

p(j|xi, θ) =
p(xi|j, θ)p(j|θ)

p(xi|θ)

=
p(xi|µj, Σj)wj

p(xi|θ)
(2.11)

3. M-step: Re-estimate the parameters using the current poste-
rior probabilities as follows:

w̄j =
1
K

K

∑
i=1

p(j|xi, θ), (2.12)

µ̄j =
∑K

i=1 p(j|xi, θ)xi

∑K
i=1 p(j|xi, θ)

, (2.13)

Σ̄j =
∑K

i=1 p(j|xi, θ)(xi − µj)(xi − µj)
>

∑K
i=1 p(j|xi, θ)

(2.14)

4. Evaluate the log likelihood in (2.7) according to new param-
eters, w̄, µ̄ and Σ̄ from step 3. If convergence has not been
reached, return to step 2.

The initial parameters of the EM algorithm can be chosen at
random, for example, by selecting G random data points as the
initial means and selecting the covariance matrix of the entire ran-
domly selected data for initializing each of the G covariance matri-
ces. Similarly, component weights can be chosen randomly, satisfy-
ing ∑G

j=1 wj = 1 and wj ≥ 0. Other methods of initialization include
using herd clustering algorithms, such as k-means in order to clus-
ter the data first and then using the cluster means for initializing
the means of the GMM components. The former approach, based
on random initialization, has been adopted for the experiments in
this thesis.
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Maximum a posteriori adaptation of GMMs

This thesis previously described the general principle of GMMs
as well as the EM algorithm. This section will now focus on the
GMM-UBM [65] approach used extensively in speech classifica-
tion tasks. In language recognition systems, UBM is a language-
independent GMM that ideally represents the overall characteris-
tics of the world’s spoken languages. Universal background model
is usually estimated by training data from all of the languages avail-
able at the time of system development. In regards to a speaker ver-
ification system, the UBM is a speaker-independent GMM trained
with speech samples from a multitude of speakers representing
general speech characteristics [65]. In this approach, for each hy-
pothesized class, a GMM model is adapted from the UBM using a
MAP estimation [27]. For classes with insufficient training data, a
MAP adaptation leads to a more robust estimate of the model pa-
rameters by updating the well-trained parameters in the UBM [65].
Training a new model in the GMM-UBM approach is also faster
than using the EM algorithm for ML training, requiring typically
only one or two adaptation iterations.

Figure 2.6 illustrates the adaptation process of a language-
specific class from UBM using new training data and UBM statis-
tics. First, the training feature vectors are aligned with the UBM
mixture components and then the adapted mixture parameters are
estimated using the statistics of the training feature vectors and
UBM parameters. As illustrated, different UBM mixture compo-
nents are adapted for different amount depending upon the new
training data.

The details of the MAP adaptation are as follows. First, given
the UBM parameters θUBM = {wUBM

j , µUBM
j , ΣUBM

j }, and K training
vectors {xi, i = 1, 2, . . . , K}, for each mixture j in the UBM, we first
compute the posterior probabilities p(j|xi, θUBM) as in (2.11). Then,
new parameters are computed as follows [65]:

ŵj =
K

∑
i=1

p(j|xi, θUBM) (weight) (2.15)
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Figure 2.6: Adaptation of a target language model using the new
training vectors and UBM mixture parameters. (a) The training vec-
tors are mapped according to the UBM mixtures. (b) The adapted
mixture parameters are estimated by the characteristics of the new
training vectors and UBM parameters [65].

µ̂j =
1

ŵj

K

∑
i=1

p(j|xi, θUBM)xi (mean) (2.16)

Σ̂j =
1

ŵj

K

∑
i=1

p(j|xi, θUBM)(xi − µ̂j)(xi − µ̂j)
> (covariance). (2.17)

Second, using the new parameters {ŵj, µ̂j, Σ̂j} obtained from
class-specific training data, the old parameters of the UBM
{wUBM

j , µUBM
j , ΣUBM

j } for mixture j are adapted as follows [65]:

wnew
j = [αω

j ŵj/K + (1− αω
j )w

UBM
j ]γ (adapted weight) (2.18)

µnew
j = αm

j µ̂j + (1− αm
j )µ

UBM
j (adapted mean) (2.19)

Σnew
j = αν

j Σ̂j + (1− αν
j )Σ

UBM
j (adapted covariance). (2.20)
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For each mixture j, data-dependent adaptation coefficients
{αω

j , αm
j , αν

j } are used. These coefficients control the balance be-
tween the old and new parameters for the weights, means and vari-
ances, respectively. They are defined as [65]:

α
ρ
j =

ŵj

ŵj + rρ
, (2.21)

where ρ ∈ {ω, m, ν} and r is a constant known as relevance fac-
tor [65]. The relevance factor is usually fixed between 6 and 16 in
speaker and language recognition. During adaptation, if ŵj is low
for a mixture component, then α

ρ
j → 0 causes the old parameters to

become more pronounced. Similarly, for mixture components with
high ŵj, αj → 1, emphasizes the new class-dependent parameters.
The scale factor, γ, is computed over all of the adapted mixture
weights to ensure their sum is equal to 1.

Support vector machines

Support vector machine (SVM) [50] is a discriminative supervised
classifier. Given labeled training data, an SVM finds an optimal hy-
perplane (decision boundary) in order to classify training samples.
For the sake of simplicity, we will consider a 2-dimensional example
in Figure 2.7. In this example, we search for a decision boundary in
order to linearly separate the two classes. As displayed, an infinite
number of decision boundaries that separate the two classes exist.
The question then, concerns which decision boundary one should
use.

Intuitively, a decision boundary passing too close to the points
is not an appropriate choice since it may not generalize new points
correctly, such as decision boundaries 1 and 5 in Figure 2.7. Thus,
an appropriate choice is to select a decision boundary that is distant
from all of the other points.

The SVM is based on locating a decision boundary that is max-
imally far from any training data point. The minimal distance be-
tween the classes and decision boundary is known as a margin. The
SVM is referred to as a large margin classifier since it aims at sepa-
rating the training data with as much margin as possible.
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Figure 2.7: A 2-dimensional dataset with linearly separable classes.

To formulate the SVM, let us first define the equation of a hy-
perplane. A hyperplane is defined by z>x+ e = 0, where z is a per-
pendicular vector of the hyperplane, x is a point on the hyperplane
and e is a constant scalar. Changing e moves the hyperplane along
the direction of z, resulting in parallel hyperplanes. Mathemati-
cally, the distance between two parallel hyperplanes, z>x + e1 = 0
and z>x + e2 = 0, is given by [69]:

|e1 − e2|
||z|| (2.22)

where ||z|| denotes the norm of z, i.e. ||z|| =
√

z2
1 + · · ·+ z2

d.
Given K training feature vectors {xi, i = 1, 2, . . . , K} and class

labels y1, y2, . . . , yK ∈ {1,−1}, in a linear SVM, among a multitude
choices of classifiers, the optimal hyperplane is conventionally cho-
sen as [70]:

|z>x + e| = 1 (2.23)

or equivalently:

z>x + e = 1 if y = 1, (2.24)

z>x + e = −1 if y = −1. (2.25)
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According to (2.22), the distance between these two parallel hy-
perplanes is 2

||z|| . Since we aim to maximize the margin that sepa-
rates the two classes, we need to minimize ||z|| or, similarly, mini-
mize 1

2 ||z||2.
The constraints for correct classification of all training samples

are defined as: [70]

z>xi + e ≥ 1 if yi = 1 (2.26)

z>xi + e ≤ −1 if yi = −1, (2.27)

or equivalently:
yi(z>xi + e) ≥ 1. (2.28)

In summary, in the linear SVM classifier, for each training sam-
ple, the optimization problem is to minimize 1

2 ||z||2, which is sub-
ject to the inequality constraints yi(z>xi + e) ≥ 1 for i = 1, . . . , K.
This is known as the primal formulation of linear SVMs.

In order to solve this constrained optimization problem, the La-
grange multiplier method is adopted [70]. The Lagrange multiplier
method allows a dual form of the SVM optimization problem, writ-
ten equivalently as follows [70]:

Λ(z, e, β) =
1
2
||z||2 −

K

∑
i=1

βi(yi(z>xi + e)− 1), (2.29)

where K is the number of training feature vectors and β is a vector
of K elements with βi ≥ 0 corresponding to the Lagrange multipli-
ers. At the extrema, we have:

∂

∂z
Λ(z, e, β) = 0, (2.30)

∂

∂e
Λ(z, e, β) = 0, (2.31)

which leads to the following solutions [70]:

z =
K

∑
i=1

βiyixi, (2.32)
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K

∑
i=1

βiyi = 0. (2.33)

Substituting the above values into (2.29), the dual formulation
of linear SVM can be rewritten as follows:

Λ(β) =
K

∑
i=1

βi −
1
2

K

∑
i,j=1

βiβ jyiyjx>i xj. (2.34)

This reveals that the optimization depends only on the inner prod-
uct of pairs of feature vectors.

Given a test sample, xtest, the decision rule in the SVM is defined
as [70]:

sign(z>xtest + e). (2.35)

Substituting z obtained from (2.32) in the decision rule leads to: [70]

sign(
K

∑
i=1

βiyix>i xtest + e). (2.36)

Again, the decision rule only depends upon the inner product be-
tween the training samples and the test feature vector.

In the development displayed above, we assumed linearly sepa-
rable classes. When the data is not linearly separable, we can trans-
form the data into a new space where the mapped data (features)
will more likely be linearly separable.

Let φ define a feature mapping or kernel [71], which maps data
to a new space. Then, to apply the SVM within the new space,
rather than the original space, we map a data sample x by φ(x).
Replacing x with φ(x) in (2.36) gives [70]:

sign(
K

∑
i=1

βiyiφ(xi)
>φ(xtest) + e). (2.37)

A kernel is a function κ defined on feature vectors xi and xj as:

κ(xi, xj) = φ(xi)
>φ(xj). (2.38)

This indicates that in (2.37), we do not need to know φ explicitly.
Rather, we only need to define a kernel function κ that fulfills (2.38)
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for some φ, which itself might not be known. A number of the
popular kernels with control parameters p1, p2 and σ2 are:

κ(xi, xj) = x>i xj Linear kernel

κ(xi, xj) = exp

(
−||xi − xj||2

2σ2

)
Gaussian or RBF kernel

κ(xi, xj) = (p1 + x>i xj)
p2 Polynomial kernel

The discussions above assumed that there are only two classes.
In order to deal with the multi-class classification problem in lan-
guage recognition or foreign accent recognition tasks for using
SVMs, a “one-versus-all” strategy is usually adopted [72]. In this
strategy, a single classifier per each class is trained considering the
samples of that class as positive, and the rest of the classes as neg-
ative. After obtaining individual target class models, they are all
combined to build a language recognition system.

Artificial neural networks

Artificial neural network (ANN) models historically originate
from models that attempt to mimic computations carried out by the
brain [73]. They were developed to simulate a network of neurons,
which communicate with one another in the brain. An ANN imple-
ments a greatly simplified model of the actual neural computations
carried out by the brain. Figure 2.8 displays a simple representa-
tion of an ANN with two inputs x1 and x2, and a single output (or
neuron). This represents a simple type of a single layer feed-forward
neural network. In feed-forward neural networks, each subsequent
layer is connected to the previous layer without forming a cycle. In
this type of ANN, the final layer produces the network’s output.

The simple neuron in Figure 2.8 can be considered a computa-
tional unit which takes two inputs x1, x2 (and a bias term +1) and
outputs:

h(x; a, b) = F(a>x + b) = F(
2

∑
i=1

aixi + b) (2.39)
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𝑥1

𝑥2

ℎ 𝒙; 𝒂, 𝑏 = 𝐹( )

+1

𝑎1

𝑎2

𝑏

𝒂 𝒙 + 𝑏

Figure 2.8: A simple neuron can be considered as a logistic unit [49]
which applies a sigmoid (or logistic) function to its inputs. Here,
a = (a1, a2) and b denote the parameters (weights) of the neural
network and F denotes the activation function of the neuron.

where F is the activation function of the neuron, which can be either
a linear or a non-linear function. In practice, the bias unit increases
the capacity of the neural networks to learn nonlinear models.

Each neural network is characterized by parameters a and b.
These are the connection weights between the neurons and their
inputs in the entire network. Considering F as a sigmoid activation
function3 [76], the output (or hypothesis) is given by [77]:

h(x; a, b) =
1

1 + exp(−a>x− b)
. (2.40)

The aim of neural network is to produce a decision function h(x)
which approximates the input’s target class label. The decision
function h(x) depends on a and b, and is therefore written as
h(x; a, b).

In general, a neural network is constructed by many of these
simple neurons organized within different layers. Figure 2.9 dis-
plays a neural network consisting of two input units (not including
the bias unit), one hidden layer with two neurons and one output
layer. This neural network has parameters a and b, where a(l)ij de-
notes the weight associated with the weight between neuron j in
layer l, and neuron i in layer l + 1. Also, bl

i is the bias of neuron i
in layer l + 1. According to these notations, the output (hypothe-

3There are also other types of activation functions such as the hyperbolic tangent
[74] and rectified linear function [75].
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𝑥1
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Input layer         Hidden layer     Output layer

𝑎11
(1)

𝑎21
(1)

𝑎22
(1)

𝑎12
(1)

𝑎11
(2)

𝑎12
(2)

𝑏1
(1)

𝑏2
(1)

𝑏1
(2)

Figure 2.9: An example of a neural network with 2 input units
(not including the bias unit), 1 hidden layer with 2 neurons, and 1
output layer.

sis) of the neural network in Figure 2.9 can be computed through a
process called forward propagation, as follows:

h(x; a, b) = F(a(2)11 F(x1a(1)11 + x2a(1)12 + b(1)1 )+

a(2)12 F(x1a(1)21 + x2a(1)22 + b(1)2 ) + b(2)1 ). (2.41)

Parameters of the neural network are trained using a set of train-
ing samples. Backpropagation [77] is one of the most commonly used
supervised learning algorithms for training neural networks. It also
searches for the minimum of a defined error (or loss) function, with
respect to weights, using a gradient descent method. One of the
most commonly used error functions is the squared error [77]:

K

∑
i=1

(h(xi; a, b)− y(i))2, (2.42)

where K denotes the number of training samples and y is the train-
ing sample label. The set of weights which minimize this error
function are considered the solution to the training problem.

Following the notations discussed above, the decision function
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h(x) can be recursively computed as [78]:

h(1) =x

h(2) =F((a(1))>h(1) + b(1))

. . .

h(L−1) = F((a(L−2))>h(L−2) + b(L−2))

h(x) =h(L) = F((a(L−1))>h(L−1) + b(L−1))

(2.43)

Note that h(l−1), l = 2, . . . , L− 1 is a vector, h(x) is a scalar value
and L is the total number of layers. The steps of the backpropaga-
tion algorithm for estimating the neural network parameters can be
summarized as4 [78]:

1. Initialize the parameters a and b at random

2. Feed an input x into the network

3. Perform forward propagation to compute h(1), h(2), h(3), . . . ,
h(L)

4. For the output layer, compute:

δ
(L)
1 = 2(h(L) − y)F

′
(

rL−1

∑
j=1

a(L−1)
1j h(L−1)

j + b(L−1)
1 ), (2.44)

where rL is the number of neurons in layer L and F
′

denotes
the partial derivatives of the activation function F with respect
to a and b, i.e. ∂

∂a F(.) and ∂
∂b F(.)5.

5. For each neuron, i, within the hidden layer l = L − 1, L −
2, . . . , 2, perform the back pass as:

δ
(l)
i = (

rl+1

∑
j=1

a(l)ji δ
(l+1)
j )F

′
(

rl−1

∑
j=1

a(l−1)
ij h(l−1)

j + b(l−1)
i ) (2.45)

4This is one particular implementation of backpropagation algorithm.
5The activation function F is continuously differentiable for enabling gradient-

based optimization methods.
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6. Compute the partial derivatives ∆a(l)ij and ∆b(l)i as:

∆a(l)ij = h(l)j δ
(l+1)
i (2.46)

∆b(l)i = δ
(l+1)
i (2.47)

7. Update a and b according to:

a = a− η∆a (2.48)

b = b− η∆b, (2.49)

where 0 < η < 1 is the learning rate. A large learning rate can
aggressively change the parameters, while a small learning
rate can result in slow convergence.

8. Iterate steps 2-7 until convergence.

Simple feed-forward neural networks are typically adopted as
language back-end classifiers [79, 80]. In this dissertation, however,
a simple neural network with one-hidden layer is adopted in order
to generate posterior probabilities of speech attributes. These poste-
rior probabilities are then used as feature vectors to extract i-vectors
for utterance-level characterization of languages. The speech at-
tribute extraction process will be described in detail in Chapter 5.

2.3 PHONOTACTIC TECHNIQUES

Phonotactic language recognition systems are based on co-
occurrences of phone sequences in speech. Unlike spectral ap-
proaches, which extract acoustic features from fixed-length frames
of speech, in phonotactic approaches, speech is segmented into a
logical unit of tokens, namely, phones. Phonetic recognition followed
by language model (PRLM) [81] is the basis for a majority of state-
of-the-art phonotactic approaches. In PRLM, first, a phone recog-
nizer extracts phoneme sequences from the speech data. Follow-
ing this, N-gram language models are estimated by computing the
probability of occurrences of all phone sequences in each target lan-
guage. The N-gram models are then used to classify the phoneme
sequences of the test data.
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2.3.1 Phone recognition

The goal of phone recognition is to accurately recognize the phone
sequences contained in speech. Accurate phone recognition has a
significant impact on the accuracy of phonotactic language recogni-
tion systems. However, it also occupies a majority of the processing
time in PRLM [48].

An HMM is also often adopted to perform phone recognition.
It consists of a network of context-independent phones, each hav-
ing three emitting states [48]. The term context-independent refers
to the recognition of phones without taking the context into ac-
count [26]. Phone HMMs are trained with phonetically labeled
speech data from different languages. To ensure that all of the
possible sound units in the target languages are captured by the
phone recognizers, it is common to train the HMM phone recog-
nizers using data from multiple languages [82]. The primary diffi-
culty, however, is that phonetically labeled speech data from multi-
ple languages may not be available. Since labeled English speech is
more commonly represented within the available speech corpora, a
single-language phone recognizer trained on English data is typi-
cally adopted for PRLM [48].

Each phone is represented by the three states of HMM. Given
a sequence of observations, X = {xi, i = 1, 2, . . . , K}, generally in
the form of acoustic feature vectors, an HMM phone recognizer
decodes the most likely sequence of states S = {si, i = 1, 2, . . . , K}
which have produced the sequence of observations according to
[81]:

arg max
S

p(S|X). (2.50)

By adopting the Bayes rule and noting that maximization does not
depend upon p(X), (2.50) can be written as:

arg max
S

p(X|S)p(S)
p(X)

= arg max
S

p(X|S)p(S). (2.51)

Eq. (2.51) defines a search space over all of the possible state se-
quences. It is important to note that the search space size grows
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exponentially with the number of observations, making a brute
force search infeasible for finding the most likely sequence of states
(phones) [83]. Instead, an efficient algorithm known as the Viterbi
algorithm [83] is generally adopted. This algorithm belongs to the
class of dynamic programming algorithms that uses a table to store
intermediate values as it finds the most likely sequence of states
(phones).

2.3.2 Phonotactic classifier

A phone recognizer produces the most probable phone sequence,
ϑ. In a PRLM, N-gram statistics [83] are employed to estimate the
frequency of occurrences of phone sequences within each target lan-
guage. An N-gram captures the probability of a particular phone
given the N − 1 preceding consecutive phones according to [84]:

p(ϑi|ϑi−1, ϑi−2, . . . , ϑi−(N−1)). (2.52)

Then, N-gram statistics are computed for all possible phoneme
sequences which occur in each language to form the language
model Θ. Each language model represents the phonotactic in-
formation of a particular language. Given the phone sequence
ϑ = {ϑ1, ϑ2, . . . , ϑI} of a particular utterance, the likelihood score
for language y is obtained by [84]:

`(ϑ|Θy) =
I

∏
i=N

p(ϑi|ϑi−1, ϑi−2, . . . , ϑi−(N−1), Θy). (2.53)

where Θy denotes the language model corresponding to language
y. Then, the most likely language, y∗, is obtained by:

y∗ = arg max
1≤y≤M

`(ϑ|Θy). (2.54)

where M is the total number of target languages.
For the language recognition problem, an N-gram order is typ-

ically chosen between 2 and 4 [48]. While, higher order N-gram
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counts are expected to contain more discriminant language-specific
information, estimating their probabilities is difficult since the num-
ber of N-grams increases exponentially. Also, N-gram models often
do not generalize from training to test set [85]. For the higher order
N-grams, more training data is often needed [48].

As implied by (2.54), phone recognition and target language
modeling are performed independently. PRLM can be further ex-
tended to include multiple parallel phone recognizers, each trained
on different languages. The author of [86] developed multiple
language-dependent phone recognizers in parallel to better cap-
ture phoneme characteristics represented in the target languages
and increase the robustness of phone recognition. This system is
commonly known as parallel PRLM (PPRLM) [86]. Parallel PRLM
consists of multiple phone recognizers, each trained on different
languages. These languages are not necessarily limited to the tar-
get languages. Each phone recognizer is then followed by N-gram
language models trained on phoneme sequences generated from
the corresponding phone recognizers. The language-specific scores
obtained from each individual system are then combined using, for
instance, a product-rule fusion [48] in order to produce the final
detection scores.
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3 Open-set versus closed-set
identification

As mentioned in the previous chapter, LID is a multi-class recogni-
tion task where the objective is to assign a given input utterance to
one of the language classes, {yi, i = 1, . . . , M}, where M is the num-
ber of target languages. In a closed-set scenario, each yi represents an
explicitly known or in-set language. In contrast, in an open-set sce-
nario, speech may come from any language, either explicitly known
or unknown. An open-set scenario can be addressed by simply in-
troducing an additional OOS class into the target set [4]. Then, the
objective is to assign the test segment to one of the in-set languages
or a single OOS class, as illustrated in Figure 3.1.

Target
models

Out-of-set 
model

C
la

ss
if

ic
at

io
n

Out-of-set data

Test uttarance

1

M

oos

...

Figure 3.1: An open-set language identification (LID) can be imple-
mented by introducing an additional out-of-set (OOS) class into the
target set. The objective then, is to classify the test utterance as one
of the M target languages or an OOS class.

The OOS model shown in Figure 3.1 is complementary to target
languages and represents a language-independent distribution of fea-
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tures. The OOS model can be trained using additional OOS data. A
number of approaches select the OOS data based on linguistic sim-
ilarities of the languages in a supervised way. Authors in [87] col-
lected additional data from languages different from the target lan-
guages. Specifically, OOS candidates with different prosody char-
acteristics from the target languages were selected from different
language families. It should be noted that these supervised ap-
proaches require either linguistic knowledge, additional metadata
or manual works, which can be costly and time consuming.

The use of unlabeled data for general system development pur-
poses is currently being investigated within the speaker and lan-
guage recognition research community. Training an OOS model
from an unlabeled development set consisting of both target and
OOS languages was one of the primary issues of the 2015 NIST lan-
guage recognition i-vector challenge [88]. Being able to select the
OOS data in an unsupervised or a semi-automatic manner, makes
OOS modeling more practical and scalable for a larger variety of
problems. For semi-automatic approaches, one might only need a
small number of language labels of the reference languages for the
OOS data selection to be done in an entirely unsupervised manner.

Authors in [52] proposed a best fit OOS data selection method
followed by cluster purification in order to select the best OOS can-
didates from an unlabeled development set. First, all of the unla-
beled data is assumed to be OOS. Then, a multi-class SVM is run
on M + 1 classes (M target classes + 1 OOS). Each unlabeled data
is then scored against the OOS class and those yielding the highest
posterior probability are selected as the OOS candidates. Following
this, an adaptive cluster purification technique is further applied in
order to increase OOS homogeneity by excluding those OOS utter-
ances which are close to the target languages.

Other classical approaches for locating OOS data from a set of
unlabeled data include methods based on a one-class SVM [89] and
methods based on k-nearest neighbor (kNN) distances [90]. Each of
these methods provides an outlier score for each of the unlabeled
data. Specifically, in a one-class SVM, the detector constructs a de-
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cision boundary in order to achieve maximum separation between
the training data and the origin. Then, the distance between the
unlabeled data and the decision boundary is considered the outlier
score. In the kNN approach, the outlier score for an unlabeled data
is computed by the sum of its distances from its k nearest neigh-
bors [90].

In [V], the author proposed a simple and effective OOS selec-
tion method for identifying OOS candidates from an unlabeled de-
velopment set in the i-vector space [51]. The technique is based on
the non-parametric Kolmogorov-Smirnov (KS) test [91, 92], which is
used to decide whether a sample is drawn from a population with
a known distribution (one-sample KS test) or to estimate whether
two samples have the same underlying distribution (two-sample KS
test). Using this approach, each unlabeled sample in the devel-
opment set is given a per-class outlier score. Scores with a higher
value confidently indicate that the corresponding sample is an OOS
observation (none of the known target classes).

Particularly, for any feature vector xi, the distances of xi to other
feature vectors in language y have an empirical cumulative distribu-
tion function (ECDF) Fxi(x) evaluated at points x. The KS statistic
between feature vectors xi and xj in language y is defined as [93]:

KS(xi, xj) = max
x
|Fxi(x)− Fxj(x)|. (3.1)

The outlier score for xi is then defined as the average of the previous
KS test statistics, computed as:

KSE(xi) =
1

K− 1

K

∑
j=1
j 6=i

KS(xi, xj), (3.2)

where K is the total number of training instances in language y.
The average of the KS test statistics in (3.2) lies between 0 and 1. A
point is considered as an OOS to a class if its KSE is large, i.e. close
to 1.

Figure 3.2 depicts an example of the distribution of in-set and
OOS KSE values for a French language class using i-vector [51]
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Figure 3.2: Distribution of in-set and OOS KSE values for a French
language class using i-vector [51] representation of utterances (from
[V]). The in-set KSE values tend to be close to 0, while OOS KSE
values tend to be close to 1.

representation of utterances. To compute the in-set KSE values,
only data from the French class was used to plot the distribution.
In other words, xi and xj in (3.1) and (3.2) are both from the same
class. Similarly, for OOS KSE values, a set of data which does not
belong to the French class was used. In other words, xi and xj in
(3.1) and (3.2) are from different classes. It is clear that the in-set
KSE values tend to be close to 0, while OOS KSE values tend to be
close to 1.
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In Chapter 2, we reviewed common choices for classifiers within the
language and foreign accent recognition problems. This included
both GMM-based generative approaches, as well as discriminative
approaches such as SVMs and neural networks. Recent research
in speaker and language recognition has focused on the i-vector
front-end factor analysis approach. The i-vector methodology [51]
was first introduced by Dehak et al. within the context of auto-
matic speaker verification to define a new low-dimensional sub-
space representation of speech utterances that models both speaker
and channel variabilities. The i-vector approach was obtained by
modifying the existing successful supervector based joint factor anal-
ysis (JFA) approach [94], which models speaker and channel sub-
spaces using separate subspace models [95–97]. One of the main
differences between speaker and language recognition with respect
to the JFA approach is that in the former, language is an unwanted
(nuisance) variation, while in the latter, language variation is useful
and comprises the desired information [98, 99].

Since the i-vector approach is based on defining one subspace
which contains both speaker and channel variations, subsequent
channel compensation techniques are required in order to suppress
the effect of unwanted variability within the i-vector representa-
tion [51]. Consequently, an i-vector system can be viewed as a front-
end feature extractor for further channel compensation and model-
ing in the back-end side [51]. Widely used channel compensation
techniques for the i-vector features include within-class covariance
normalization (WCCN) [100], linear discriminant analysis (LDA) [101],
probabilistic linear discriminant analysis (PLDA) [102] and nuisance at-
tribute projection (NAP) [103].

Figure 4.1 displays the block diagram of a speaker (or language)
recognition system based on the i-vector representation. This dia-
gram indicates which parts of the system are trained in supervised
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and unsupervised mode. In the present context, supervised train-
ing refers to the training process of the pattern recognition system
that makes no use of the available language information. While in
supervised training, labels for each particular i-vector are required.
In the following sections, we describe the i-vector parameter esti-
mation and the channel compensation techniques used in this dis-
sertation.

i-Vector 
extraction

UBM
Channel 

compensation
Classification

Unsupervised Supervised

Spectral 
features Scores

Figure 4.1: Block diagram of speaker (or language) recognition in
i-vector representation paradigm indicating which parameters are
trained in supervised and unsupervised mode.

4.1 THE I-VECTOR REPRESENTATION IN LANGUAGE
RECOGNITION

An i-vector extractor [51] maps a sequence of acoustic feature vec-
tors obtained from a speech utterance, X = {xi, i = 1, 2, . . . , N}
with xi ∈ Rd, to a fixed-length vector u ∈ RR. In order to per-
form this, given a UBM of G components with parameters θUBM =

{wUBM
j , µUBM

j , ΣUBM
j }, we first compute the following zeroth- and

first-order centered Baum-Welch sufficient statistics [51]:

N̂j =
N

∑
i=1

p(j|xi, θUBM) (4.1)

F̂j =
1
N̂j

N

∑
i=1

p(j|xi, θUBM)(xi − µUBM
j ). (4.2)

Subsequently, we assume each utterance to have a language- and
channel-dependent GMM mean supervector m ∈ RG×d, that obeys
a factor analysis model according to [51]:

m = mUBM + Tw + ε, (4.3)
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where mUBM ∈ RG×d denotes the utterance- and channel-
independent component (UBM mean supervector), T ∈ R(G×d)×R

is a global low rank total variability matrix where a majority of the
language-specific information resides. Vector w represents a latent
random variable with a prior standard normal distribution N (0, I),
and ε is a residual error term with N (0, Ψ), which models the vari-
ability not captured by T . For a given utterance, the posterior dis-
tribution of w is computed for the entire sequence X. The mean
of this posterior distribution is known as the i-vector, u, and is ob-
tained as follows [51, 95]:

u = (I + T>Ψ−1N̂T)
−1

T>Ψ−1N̂ F̂, (4.4)

where N̂ ∈ RGd×Gd is a diagonal matrix whose diagonal blocks are
N̂j I, j = 1, . . . , G, and F̂ ∈ RGd×1 is a supervector generated by
stacking the F̂j, and Ψ ∈ RGd×Gd is a diagonal covariance matrix
which captures the residual variability not captured by T . Here,
the superscript > denotes a matrix transpose.

An efficient algorithm to train T is described in [95, 96]. It is
estimated using the EM algorithm similar to JFA eigenvoice training
[97] except that, during training all of the training utterances of a
given class are treated as if they are from different classes in order
to capture both language and channel variations [51].

4.2 CHANNEL COMPENSATION TECHNIQUES

As discussed earlier, in the i-vector approach, channel compen-
sation is performed on the extracted i-vectors at the back-end.
Channel compensation approaches are typically defined based on
the within- and between-class variations among the i-vectors. In
the context of language recognition, a within-class variation might
occur due to transmission channel, acoustic environment, micro-
phones and also intrinsic speaker variation. Similarly, a between-
class variation depends on differences in language information
between classes. Channel compensation techniques are typically
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adopted in order to minimize the within-class variations while max-
imizing the between-class variations [51, 95].

The dimensionality reduction of i-vectors is one of the com-
monly used channel compensation techniques in the i-vector ap-
proach [39, 95, 104, 105]. These techniques attempt to reduce the di-
mensionality of i-vectors while preserving as much of the discrim-
inatory information as possible for classification purposes [39, 95].
Below, we review three commonly used dimensionality reduction
techniques in the i-vector representation paradigm.

i) Principal component analysis

Principal component analysis (PCA) [106] is a commonly used
unsupervised learning technique, which reduces feature vector di-
mensionality by means of feature decorrelation. A principal com-
ponent analysis suppresses linear correlations between the inter-
related variables by projecting the data onto the direction of the
data’s maximum variance, so as to minimize the projection dis-
tance [107]. Projection distance is defined as the distance between
the data points and their projections.

To perform a PCA in the i-vector-based language recognition
[105], given K training i-vectors ui, i = 1, 2, . . . , K, a sample covari-
ance matrix of the training data Σ is first estimated as follows:

Σ =
1
K

K

∑
i=1

(ui − u)(ui − u)> (4.5)

where u is the training set mean,

u =
1
K

K

∑
j=1

uj. (4.6)

The eigenvalues and eigenvectors can then be obtained by de-
composing the sample covariance matrix in (4.5) as follows [107]:

ΣOi = λiOi, i = 1, . . . , d, (4.7)

where λi ≥ 0 are the eigenvalues and the columns of the matrix O
correspond to the eigenvectors oi.
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Next, the eigenvalues are arranged in decreasing order, λ1 ≥
λ2 ≥ · · · ≥ λd and the corresponding eigenvectors o1, o2, . . . , od are
found. The eigenvector o1 corresponding to the largest eigenvalue
provides the direction of projection where the variance of the data is
maximized. Accordingly, o2 is the second direction where the vari-
ance is maximized and which is also orthogonal (perpendicular) to
o1. Similarly, all oi’s are mutually orthogonal.

In order to perform a dimensionality reduction, the first d̂
(d̂ < d) eigenvectors must be selected. They form a d̂-dimensional
subspace represented by a matrix BPCA of size (d × d̂), in which
each column is a principal component. Then, a given i-vector
u ∈ RR is projected to this subspace according to [107]:

uPCA = B>PCAu, (4.8)

where uPCA is the d̂-dimensional channel compensated i-vector.

ii) Linear discriminant analysis

Linear discriminant analysis (LDA) is a general-purpose technique
for dimensionality reduction in various pattern recognition tasks.
An LDA was also used in [51] as a channel compensation tech-
nique. It projects the data onto a maximum (M − 1)-dimensional
subspace, where M denotes the number of target classes. An LDA
aims at maximizing the between-class variation while minimizing
the intra-class variation. Specifically, an LDA is meant to optimize
the Fisher’s objective function defined as [101]:

J(v) =
v>Σbv
v>Σwv

, (4.9)

where the matrices Σb and Σw denote the between- and within-class
scatter matrices, respectively. For use in i-vector-based language
recognition, the matrices are computed as follows [39]:

Σb =
M

∑
i=1

(ui − u)(ui − u)> (4.10)

Σw =
M

∑
i=1

1
ki

ni

∑
j=1

(ui
j − ui)(ui

j − ui)
>, (4.11)
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where M is the total number of target languages. The mean of
training i-vectors across all languages, u, is defined as:

u =
1
K

K

∑
j=1

uj, (4.12)

where K is the total number of training i-vectors. The mean of the
i-vectors for each language, ui, is defined as:

ui =
1
ki

ki

∑
j=1

ui
j, (4.13)

where ki is the number of training i-vectors in language i. An LDA
then seeks a v that maximizes the Fisher’s criterion (4.9) [101]:

arg max
v

J(v). (4.14)

One can show that maximizing the Fisher’s criterion is equivalent
to solving the following eigenvalue equation [101]:

Σbv = λΣwv. (4.15)

The LDA projection matrix, BLDA, is the one whose columns are
the eigenvectors corresponding to the largest eigenvalues of Σ−1

w Σb

[101]. Since Σb is the sum of M matrices of rank ≤ 1, Σb will have
a maximum rank of (M − 1), indicating that only (M − 1) of the
eigenvalues λ will be non-zero [101]. Finally, each i-vector u ∈ Rd

is projected to the new subspace according to [51]:

uLDA = B>LDAu, (4.16)

where uLDA represents the LDA channel compensated i-vector with
the maximum (M− 1) dimension.

iii) Heteroscedastic linear discriminant analysis

An LDA projects the data onto a subspace whose maximum di-
mensionality is (M− 1), where M is the number of classes. These
(M − 1)-dimensional subspaces may not necessarily contain all of
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the relevant information needed for a class separation [108]. Het-
eroscedastic linear discriminant analysis (HLDA) [109], an extension
of the LDA, is currently used within speech processing for dimen-
sionality reduction and feature representation [110–113]. Unlike the
LDA, an HLDA does not assume shared covariance matrix for all
classes. Instead, it takes into account the discriminatory informa-
tion presented in both class means and variances [109, 110].

In the HLDA technique, the feature vectors of dimensionality
d are projected into first q < d rows, bj=1...q, of the d × d HLDA
transformation matrix, BHLDA. The matrix BHLDA is estimated by
an efficient row-by-row iteration method, whereby each row is iter-
atively updated as [110, 114]:

b̂j = ŝjG(j)−1

√
K

ŝjG(j)−1ŝ>j
. (4.17)

Here, ŝj is the jth row vector of the co-factor matrix Ŝ =

|BHLDA|B−1
HLDA for the current estimate of BHLDA and

G(j) =





∑M
i=1

ki
bjΣib>j

Σi j ≤ q

K
bjΣb>j

Σ j > q,
(4.18)

where Σ denotes the class-independent covariance matrix com-
puted from (4.5), Σi is the covariance matrix of the ith model, ki

is the number of training i-vectors of the ith class and K = ∑M
i=1 ki

is the total number of i-vectors. Finally, given i-vector u ∈ Rd, the
HLDA channel compensated i-vector uHLDA is obtained by [110]:

uHLDA = B>HLDAu. (4.19)

Within-class covariance normalization

Along with an i-vector dimensionality reduction, a within-class
covariance normalization (WCCN) [100] can be applied for the com-
pensation of unwanted intra-class variations within the total vari-
ability space [51]. The WCCN projection matrix, BWCCN, is ob-
tained by a Cholesky decomposition of BWCCNB>WCCN = ξ−1 from
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the dimensionality reduced i-vectors, where a within-class covari-
ance matrix, ξ, is computed according to [100]:

ξ =
1
M

Σw, (4.20)

where M is the total number of target languages and Σw was de-
fined earlier in (4.11). Given i-vector u, the WCCN channel com-
pensated i-vector uWCCN is obtained by [51]:

uWCCN = B>WCCNu. (4.21)

4.3 SCORING AND NORMALIZATION

Classification techniques, such as SVMs [115], Gaussian scoring
[115], PLDA scoring [116] and cosine similarity scoring [39] are typ-
ically used for i-vector-based language recognition tasks. In publi-
cations [I–IV], cosine similarity scoring was adopted to perform
classification.

Following an i-vector dimensionality reduction using an HLDA,
a WCCN is further applied in [IV]. Denoting the HLDA and WCCN
projection matrices by BHLDA and BWCCN, respectively, the compen-
sated i-vectors are obtained by:

û = B>WCCNB>HLDAu. (4.22)

Then, the cosine similarity scoring between two compensated i-
vectors ûtarget and ûtest is defined as follows [39]:

score(ûtarget, ûtest) =
û>target ûtest

‖ûtarget‖ ‖ûtest‖
, (4.23)

where ûtarget is the average i-vector over all of the training utter-
ances of the target class i,

ûtarget =
1
ki

ki

∑
i=1

ûi, (4.24)

and ûtest is a test i-vector and ki is the number of training i-vectors
in class i.
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After obtaining scores {ti, i = 1, . . . , M} for a particular test ut-
terance of class i, scores are further post-processed as [4]:

t̂i = log
exp(ti)

1
M−1 ∑j 6=i exp(tj)

, (4.25)

where t̂i is the detection log-likelihood ratio for a particular test
utterance of class i, scored against all of the M target classes.
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5 Attribute-based foreign ac-
cent recognition

In Chapter 2, we described the cues which are beneficial in discrim-
inating between different foreign accents. In this chapter, we fo-
cus on another type of linguistic variation which occurs when non-
native speakers use the characteristics of their L1 in their L2, specif-
ically, a variation in speech attributes [117]. When humans listen to
a particular language without having a linguistic knowledge of the
language, they learn to identify fundamental speech cues in that lan-
guage. For example, one can identify the tonal nature of Mandarin
Chinese or Vietnamese. Speech attributes, also known as articula-
tory features [118], are a set of universal language descriptors shared
across languages and assumed to be less language-dependent than
phones [119, 120].

Speech attributes can be divided into three broad categories:
manner of articulation, place of articulation and voicing [118]. The man-
ner of articulation describes the interaction between the speech or-
gans such as the jaw, tongue and lips, in making a sound [118]. The
following manners of articulation are used in the experiments of
this dissertation:

• Fricative: A fricative consonant is articulated by bringing the
mouth into a position, where the air passes through a small
gap. Examples of English fricative sounds are /f/ and /v/ as
in from and have, respectively.

• Glide: Glides, also known as semi-vowels, are consonants
which have vowel-like articulation, but with a narrower con-
striction in the vocal tract. Examples of English glides are /j/

and /w/ as in yes and wish, respectively.

• Nasal: Nasal consonants are produced when the air flow is

Dissertations in Forestry and Natural Sciences No 241 47



Advances in Automatic Foreign Accent Recognition

blocked through the mouth and the air passes through the
nose. Examples of English nasal sounds are /m/ and /n/ as
in mom and no, respectively.

• Stop: Stop sounds are those consonants which at some point
during the articulation, the air flow is blocked and then re-
leased. Examples of English stop sounds are /b/ and /p/ as
in bee and pose, respectively.

• Vowel: A vowel is a sound produced when articulators hold
a shape with no constriction in the vocal tract. Examples of
English vowels are /a:/ and /i:/ as in father and fleece, respec-
tively.

In contrast, the place of articulation indicates the position, where
obstructions in the vocal tract occur [118]. Figures 5.1 and 5.2 illus-
trate the position of common places of articulation in the human
vocal tract. The following places of articulation are used in the ex-
periments of this dissertation:

• Coronal: It refers to the consonants which use the front part
of the tongue for articulation, as illustrated in Figure 5.1. Ex-
amples of English coronal sounds are /s/ and /t/ as in seal
and team, respectively.

• Dental: Dental consonants are produced when the air flow is
constricted by placing the tongue against the upper teeth, as
illustrated in Figure 5.1. Examples of English dental sounds
are /T/ and /D/ as in bath and the, respectively.

• Glottal: Glottal sounds happen at the glottis, that is the part
of larynx consisting of the vocal cords, by bringing the vocal
cords together, as illustrated in Figure 5.1. /h/ as in hi, is an
example of English glottal sound.

• Labial: In labial sounds, one or both lips are actively engaging
in articulation, as illustrated in Figure 5.1. Examples of labial
consonants are /v/ and /b/ as in voice and beef, respectively.
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• Low: It refers to the sounds with a relatively wide space be-
tween the tongue and the roof of the mouth (palate), as illus-
trated in Figure 5.2. Examples of low English vowels are /a:/
and /æ/ as in arm and sat, respectively.

• High: It refers to the sounds with a relatively narrow space
between the tongue and the roof of the mouth, as illustrated
in Figure 5.2. /i:/ as in see, is an example of high English
vowel.

• Mid: It refers to the sounds which space between the tongue
and the roof of the mouth is approximately between low and
high, as illustrated in Figure 5.2. /e/ as in pet, is an example
of mid English vowel.

• Retroflex: In retroflex consonants, the tongue articulates with
the hard palate, as illustrated in Figure 5.1. English /r/ as in
road, is an example of Retroflex sound.

• Velar: In velar sounds, the back of the tongue articulates with
the soft palate, as illustrated in Figure 5.1. Examples of En-
glish velar consonants are /k/ and /g/ as in book and good,
respectively.

Finally, voicing refers to either vibration or non-vibration of the
vocal cords. For example, English consonants /s/ and /t/ are both
voiceless sounds, while /s/ is a fricative sound and /t/ is a stop
sound [118].

Speech attributes were used in automatic speech attribute tran-
scription (ASAT) framework [122] in an attempt to mimic human
speech recognition (HSR) capabilities and consequently bridge the
gap between the performance of ASR and HSR [123]. The primary
aim of ASAT was to provide additional information to the ASR by
integrating acoustic and phonetic knowledge in the form of speech
attributes using data-driven modeling techniques. Later, articula-
tory features were adopted into the acoustic modeling of context-
independent phone models in [124]. A universal phone recognizer
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Coronal

Dental

Glottal

Labial
Retroflex

Velar

Figure 5.1: Position of common places of articulation in the human
vocal tract. Re-drawn by the author of the thesis, with inspiration
taken from [118].

(a) (b) (c)

Figure 5.2: Relative height distinctions among English sounds: (a)
Low, (b) Mid, and (c) High. Re-drawn by the author of the thesis,
with inspiration taken from [121].

using a bank of attribute detectors was proposed in [125] for pro-
cessing the speech signal of all languages including never-seen lan-
guages. The bank of speech detectors was trained by sharing lan-
guage specific data with no loss in phone recognition performance.
In [126], speech attributes, in the form of manner and place of ar-
ticulation, were chosen to characterize spoken languages similar to
in the ASAT framework. Spoken utterances were first tokenized
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into sequences of universal speech attributes. Then, feature vectors
were generated using the statistics of co-occurrences of manner and
place units by considering the tokenized spoken utterance as a spo-
ken document. Finally, vector space language classifier [126] was
adopted in order to make language recognition decisions.

In this dissertation, the author adopts a universal attribute char-
acterization of speech signals for the foreign accent recognition task.
Before discussing the details of the proposed system, a few ex-
amples are first provided to indicate the usefulness of speech at-
tributes in characterizing foreign spoken accents. These examples
are selected from the languages used in experiments of this thesis.
For example, /p/ is not found at the beginnings of the words in
Vietnamese [127]. Vietnamese speakers of English may substitute a
fricative sound, such as /b/ or /f/, when producing the English stop
sound /p/ at the beginning of words [127]. For example, the word
put may be pronounced as /fUt/ [127]. In this case, detecting a frica-
tive in the beginning of the word is a potential foreign accent cue
for Vietnamese L1. Further, Vietnamese speakers may omit frica-
tives such as /f/, /v/ and /s/ at the end of words when speaking
English, since fricatives do not occur in a word’s final position in
their mother tongue [128]. For example, beef may be pronounced as
/bi:/ or the sentence The boys always pass the garage on their way home
may sound like The boy alway pa the gara on their way home [129].

Similarly, /N/, which is a nasal sound in English, does not ex-
ist in Russian [130]. This makes it difficult for Russian speakers to
correctly pronounce the sentence The singer sang a nice song. Can-
tonese consonants, except nasals and semi-vowels, are all voiceless,
making it challenging for Cantonese speakers to pronounce English
voiced consonants [131], resulting in a foreign spoken accent.

Speech attributes provide a unified approach by combining both
phonotactically-inspired and spectral approaches for the problem
of foreign accent recognition [132, 133]. Lack of transcribed accent-
specific speech data may hinder the use of phonotactic-based tech-
niques in foreign accent recognition tasks [134, 135]. As discussed
in the previous chapters, phonotactic features provide useful cues
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for discriminating between languages. Thus, having a unified ap-
proach that takes advantage of both acoustic and phonotactic in-
formation is expected to be beneficial for the task of foreign accent
recognition.

Figure 5.3 displays the block diagram of the attribute based for-
eign accent recognition system proposed in this thesis. In this sys-
tem, short-term spectral features are fed into left- and right-context
ANNs and merged to form speech attribute posterior probabilities.
Then, a PCA is adopted to capture long-term contextual informa-
tion from the consecutive speech frames of the posterior probabil-
ities. Obtained feature streams are then modeled with the i-vector
approach [51] followed by cosine scoring [136].

5.1 SPEECH ATTRIBUTE EXTRACTION

The process of speech attribute extraction consists of converting an
input speech utterance into feature streams, where each element
corresponds to the level of presence or level of activity of a par-
ticular property of an attribute over time [123]. A bank of speech
detectors, each designed for detecting a particular speech attribute,
is used for the experiments in this thesis (Figure 5.3). Each detec-
tor consists of three single hidden layer feed-forward ANNs with
a hierarchical structure. A window of 310 ms, centered around
each speech frame, is split into two halves to form left- and right-
context speech frames. Sub-band energy trajectories are extracted
from each half with a 15-band mel-frequency filterbank and fed into
the corresponding left- and right-context ANNs. The third ANN
merges the outputs of these two independent ANNs and results in
the posterior probabilities of the target speech attribute.

Similar to the conventional HMM approach to the ASR, each at-
tribute is modeled as having multiple states [123]. It was shown in
[124] that better phone recognition results are obtained by consid-
ering three states per each attribute. Similar to [137], each attribute
contains three states, namely attribute present (target), attribute absent
(non-target) and noise [124] in experiments of this thesis. Given a
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speech frame f and a target attribute class i, each attribute detector
outputs three posterior probabilities (speech events), p(H(i)

target| f ),
non-target (denoted as anti), p(H(i)

anti| f ), and noise, p(H(i)
noise| f ).

These probabilities add up to one for each frame. The final fea-
ture stream then, is formed by stacking the posterior probabilities
delivered by each attribute detector into a supervector of attribute
detection scores, as indicated in Figure 5.3.

The set of speech attributes used in the experiments of this thesis
are five manner of articulation classes (fricative, glide, nasal, stop
and vowel) and nine place of articulation classes (coronal, dental,
glottal, high, labial, low, mid, retroflex and velar) together with a
voicing class. The final feature vector for manner and voice com-
prises 18 dimensions (6 attributes × 3) and for place, it comprises
27 dimensions (9 attributes × 3) for each speech frame.

5.2 TRAINING ATTRIBUTE DETECTORS

Each attribute detector is realized with three independent feed-
forward multi-layer perceptrons (MLPs) each having one hidden-
layer and 500 hidden nodes with a sigmoidal activation function.
In this thesis, we used the “stories” part of the OGI multi-language
telephone speech corpus [138] to train the attribute detectors. This
corpus consists of phoneme transcriptions for six languages: En-
glish, German, Hindi, Japanese, Mandarin, and Spanish. For our
purposes, data from each language was pooled together totaling
approximately 5 hours and 34 minutes of training and 31 min-
utes of validation data. The training data is categorized into “at-
tribute present”, “attribute absent” and “other” regions for every
attribute class. Manner and place attributes were annotated using
the phoneme transcriptions provided in the OGI corpus. Annota-
tion examples are displayed in Table 5.1 for the English portion.
For training the MLP parameters, back-propagation algorithm with
a cross-entropy cost function [77] is used. The reduction in classifi-
cation errors on a development set is used as the stopping criterion
in order to prevent over-fitting [137].
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Table 5.1: Examples of manner and place annotations for English
phonemes in the OGI corpus adopted from [137]. Transcriptions
are based on TIMIT [139] phoneme transcription.

 Attributes Phonemes 

Manner of articulation 

Vowel 
 

Fricative 
Nasal 
Stop 

Approximant 

/iy/, /ih/, /eh/, /ey/, /ae/, /aa/, /aw/, /ay/, 
/ah/, /oy/, /ow/, /uh/, /uw/, /er/ 
/jh/, /ch/, /s/, /sh/, /z/, /f/, /th/, /v/, /dh/, /hh/ 
/m/, /n/, /ng/ 
/b/, /d/, /g/, /p/, /t/, /k/, /dx/ 
/w/, /y/, /l/, /r/, /er/ 

Place of articulation 

Coronal 
High 

 
Dental 
Glottal 
Labial 
Low 
Mid 

Retroflex 
Velar 

/d/, /dx/, /l/, /n/, /s/, /t/, /z/ 
/ch/, /ih/, /iy/, /jh/, /sh/, /uh/, /uw/, /y/, /ey/, 
/ow/, /g/, /k/, /ng/ 
/dh/, /th/ 
/hh/ 
/b/, /f/, /m/, /p/, /v/, /w/ 
/aa/, /ae/, /aw/, /ay/, /oy/, /ah/, /eh/ 
/ah/, /eh/, /ey/, /ow/ 
/er/, /r/ 
/g/, /k/, ng/ 

 

5.3 LONG-TERM SPEECH ATTRIBUTE EXTRACTION

Since language and accent recognition systems generally bene-
fit from including long-term contextual information [140, 141] in
acoustic feature vectors, we explore the same idea when consider-
ing speech attribute modeling. One way of doing this is to treat
the attributes analogous to cepstral coefficients and compute the
SDC-like features. In [II], contextual information in forms of delta
and double delta features were computed from attribute features.
We also introduced another approach for extracting contextual in-
formation from attribute feature streams with the help of a PCA
in [II,IV]. Specifically, let x(t) represent 18-dimensional (6 manner
attributes × 3) or 27-dimensional (9 place attributes × 3) speech
attribute feature vectors at frame t. Given a context of size C, a se-
quence of d = 18×C (or d = 27×C, for place) dimensional stacked
vectors x̃C(t) = (x(t)>, x(t + 1)>, . . . , x(t + C − 1)>)>, t = 1, 2, . . . ,
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𝑥(𝑡)

Figure 5.4: Stacking d-dimensional speech attributes at frame t
using a context of size C. Given C, a sequence of d = 18 × C
(or d = 27 × C, for place) dimensional stacked vectors x̃C(t) =

(x(t)>, x(t + 1)>, . . . , x(t + C− 1)>)>, t = 1, 2, . . . , is formed in or-
der to capture long-term contextual information.

is formed, as illustrated in Figure 5.4. Each x̃C(t) is projected to
the largest eigenvalues of the sample covariance matrix using PCA
to preserve 99 % of the cumulative variance. A PCA projection
matrix is estimated from the same data as the UBM in our experi-
ments. The final dimensionality, after a PCA projection, varies from
approximately 20 to 100, where longer contexts have larger dimen-
sionality.
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6 Performance evaluation

An important aspect of any speech processing task is to evalu-
ate performance using standard protocols. During the past sev-
eral years, NIST has provided the speech research community with
standard evaluation metrics and datasets for several tasks, includ-
ing language recognition evaluations in 1996, 2003, 2005, 2007, 2009,
2011 and 2015. The focus of the NIST LREs has been on detection
tasks, both in closed-set and open-set identification problems. In
the detection tasks defined by the NIST, given a speech segment
and a language hypothesis (i.e. target language of interest), the
system decides whether a hypothesized language is spoken in a
given test segment [142]. In open-set identification problems, the
language of a test segment might not be any of the indicated target
languages [4].

Here, we describe the evaluation metrics, i.e. detection cost and
detection error tradeoff (DET) curve, adopted within our foreign
accent recognition task in [I–IV]. The performance measure of an
open-set LID task used in [V] is also presented.

Average detection cost

The average detection cost is defined as [142]:

Cavg =
1
M

M

∑
i=1

CDET(yi), (6.1)

where CDET(yi) is the detection cost for a subset of test segment
trials for which the target language is yi and M is the number of
target languages. The cost per each target language is defined as
[142]:

CDET(yi) = Cmiss ptar pmiss(yi)

+ Cfa(1− ptar)
1

M− 1 ∑
k 6=j

pfa(yj, yk), (6.2)
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where the miss probability (or false rejection rate) is denoted by pmiss,
representing the error of rejecting a test segment in yi that was actu-
ally spoken in that language. Similarly, pfa(yj, yk) denotes the false
alarm (or false acceptance) probability when a test segment in lan-
guage yk is misclassified as being in language yj. This is computed
for each target and non-target language pair. The probabilities are
calculated by dividing the number of errors by the total number of
trials in each subset. Combining (6.1) and (6.2), the average detec-
tion cost can be represented as [142]:

Cavg(θthreshold) = Cmiss ptar
1
M

M

∑
i=1

pmiss(yi)

︸ ︷︷ ︸
pmiss(θthreshold)

(6.3)

+ Cfa(1− ptar)
1
M

M

∑
i=1

[
1

M− 1 ∑
k 6=j

pfa(yj, yk)

]

︸ ︷︷ ︸
pfa(θthreshold)

,

where θthreshold is a threshold for making hard decisions in order to
compute the detection cost in (6.3). In this threshold-based decision,
the assumption is that the higher detection scores favor the target
language hypothesis, while the lower scores favor the alternative.
For a general decision threshold with θthreshold being fixed across
all of the language pairs, the minimum of Cavg over all θthreshold is
defined as min Cavg [142].

In all of the experiments of this thesis, the costs, Cmiss and Cfa

are both set to 1 and ptar, the prior probability of a target language,
is set to 0.5 following [142]. For computing detection costs, FoCal
multi-class toolkit was used [143].

Detection error tradeoff (DET) curve

As previously discussed, computing the detection cost in (6.3)
is performed by setting a threshold for the detection scores. The
threshold can vary across a range of possible operating points. One
can plot the pmiss(θthreshold) against pfa(θthreshold) for different values
of θthreshold using normal deviate scale. The resulting graph repre-
sents the detection error tradeoff (DET) curve [144]. An example of a
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DET plot is displayed in Figure 6.1. The curve becomes a straight
line when target and non-target scores are normally distributed [4].
The error at the operating point, at which the false alarm and the
miss alarm probabilities are equal, is known as the EER.
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Figure 6.1: An example of a DET curve adopted from [V] compar-
ing the performance of the proposed OOS detection (KSE) and three
different baseline methods. Equal error rate (EER) is the point on
the DET curve at which the false acceptance rate and false rejection
rate are equal.

Performance measure in an open-set LID

In [V], we followed the performance measure of an open-set
LID task defined in the NIST 2015 language recognition i-vector
challenge, computed as follows [88]:

Cost =
(1− pOOS)

M

M

∑
i=1

pmiss(yi) + pOOS × pmiss(OOS), (6.4)

where pmiss(yi) and pmiss(OOS) are the error rates of the test seg-
ments not assigned to the correct language yi or OOS class, respec-
tively. In the i-vector challenge [88], constant pOOS was set to 0.230
and the number of target languages was M = 50. Substituting these
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values into (6.4) provides the following:

Cost =
50

∑
i=1

0.0154× pmiss(yi) + 0.230× pmiss(OOS). (6.5)

This indicates that the cost of misclassifying an OOS segment as an
inset is much higher than the opposite, in this task.
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7 Summary of publications
and results

This chapter summarizes the contributions and significant results
of the five, previously mentioned publications. Publications [I], [II]
and [IV] address the problem of foreign accent recognition. Pub-
lication [III] investigates the problem of dialect leveling within the
context of Finnish dialect identification. Publication [V] addresses
OOS data selection within the context of an open-set LID.

Figure 7.1 depicts how each publication, except [III] that focuses
on dialect recognition, contributes to the overall proposed foreign
accent recognition system. Publications [II,IV] contribute to the
front-end processing of the spoken foreign accents, while [I] fo-
cuses on the back-end and [V] on the open-set identification cases.
It should be noted that although [V] investigates the OOS data se-
lection in an open-set LID problem, it can be also adopted in an
open-set foreign accent recognition.

Table 7.1 summarizes the corpora used in the publications. The
FSD corpus [145] was originally developed to assess Finnish lan-
guage proficiency among adults of different nationalities. From
this corpus, we selected 8 accents – Russian, Albanian, Arabic, En-
glish, Estonian, Kurdish, Spanish, and Turkish – with a sufficient
number of utterances available (accents with more than 70 utter-
ances). From the NIST 2008 SRE corpus [146], 7 accents – Hindi,
Thai, Japanese, Russian, Vietnamese, Korean and Chinese Can-
tonese – with enough available data were selected. These accents
are from the short2, short3 and 10 second portions of the original
corpus. Finally, the speech data in the SAPU (Satakunta in Speech)
corpus [147] were recorded in Satakunta, in South-Western Finland
between 2007–2013 in an interview setting with topics relating to
informants’ lives and home regions.
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Figure 7.1: The overall foreign accent recognition system with an
indication of how each publication contributes to the system.

7.1 SUMMARY OF PUBLICATIONS

In [I], we have performed an extensive experiment with an i-vector
based foreign accent recognition system in order to assess the ef-
fects of three different aspects of the recognition system: (1) recog-
nition system parameters, (2) data used for estimating the system
hyper-parameters and (3) language aspects, including a study of
confusion patterns among different accents and comparing the in-
dividual accents in terms of their detection difficulty. First, we have
studied the various choices of i-vector extraction hyper-parameters
including the UBM size, the i-vector dimensionality and the effec-
tiveness of an HLDA dimensionality reduction algorithm. Further-
more, we have studied how the choices of dataset in training the
i-vector hyper-parameters, namely, the UBM, the T-matrix and the
HLDA projection matrix, affect the foreign accent recognition accu-
racy. If this effect had been trivial in regards to overall recognition
accuracy, then it would have been easy to skip the computationally
expensive steps of the UBM and especially, the i-vector extractor
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Table 7.1: A summary of the corpora used in the publications.

Corpus Summary Usage

Finnish (FSD) [145]

A total of 1,644 interview utterances
corresponding to 415 speakers and
8 foreign accents are collected. Raw
audio files are partitioned into 30
second portions and resampled to
8 kHz.

Foreign accent
recognition in

[I,II,IV]

English (NIST 2008
SRE) [146]

A total of 1,262 telephone recorded
utterances corresponding to 315
speakers and 7 foreign accents are
collected. The sampling rate is 8
kHz.

Foreign accent
recognition in [IV]

Finnish regional
dialects (SAPU) [147]

The corpus consists of 282 utter-
ances (231 hours 31 minutes) and 8
dialects recorded in interview set-
tings. Raw audio files are parti-
tioned into 30 second portions and
resampled to 8 kHz.

Dialect Leveling in
[III]

OGI Multi-language
telephone

speech [138]

This corpus contains phonetic tran-
scriptions of six languages. Data
from each language is pooled to-
gether to obtain approximately 5
hours and 34 minutes of training
and 31 minutes of validation data,
in total.

Training the attribute
detectors in [II, III,

IV]

NIST language
i-vector

challenge [88]

The corpus consists of 50 target
languages corresponding to 15,000
training utterances. Test and de-
velopment sets contain 6,500 un-
labeled i-vectors each. The i-
vectors are derived from conversa-
tional telephone and narrow-band
broadcast speech data.

Open-set language
identification in [V]

training in the i-vector extraction process. Finally, in our last exper-
iment, we have related the foreign accent recognition accuracy to
four affecting factors, namely, Finnish language proficiency, age of
entry, level of education and where the second language is spoken.
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In [II], we have proposed a hybrid acoustic and phonotactically-
inspired approach to the problem of foreign accent recognition.
This approach was based on defining a common set of fundamental
units, known as speech attributes, which are shared across different
spoken languages. These units were adopted to represent the for-
eign accent cues in each spoken utterance. Although these units
exist in all languages, the statistics of their co-occurrences vary
from one language to another, motivating their use in foreign ac-
cent recognition. In this study, shallow neural networks have been
adopted to extract the manner attributes from each speech utter-
ance. Furthermore, contextual information in the forms of delta
and double delta features computed from the attribute features
were appended to the attribute feature vectors. Following this, the
extracted attribute features were modeled with the state-of-the-art
i-vector methodology.

In [III], the author has adopted the attribute-based characteri-
zation of speech utterances in order to study dialect leveling — a
phenomenon in which the spoken dialects within a language get
closer to the standard spoken dialect of that language. Leveling
can be considered a nuisance factor in automatic dialect recog-
nition problems where similar spoken dialects are more difficult
to discriminate. In this study, three leveling effects were studied,
namely, age, gender and region of birth. We have hypothesized
that leveling is more pronounced in younger speakers, while older
speakers might still preserve properties of their regional dialects.
We have addressed the leveling phenomenon on Finnish regional
dialects (SAPU corpus) containing speech material collected in the
Satakunta region (South-Western Finland) between 2007 and 2013.

In [IV], the author has considerably expanded upons the pre-
liminary findings of automatic foreign accent recognition achieved
in [II] in a more systematic and organized way with the goal of ex-
plaining why speech attribute feature extraction followed by an i-
vector back-end scoring, is useful in discriminating between foreign
accents. The key experiments not included in this earlier study were
(1) investigating the effect of HLDA on the foreign accent recogni-
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tion accuracy by contrasting it against LDA, (2) exploring the effect
of training and test file durations on the foreign accent recognition
results, (3) experimenting with an English foreign accented speech
corpus together with Finnish data, (4) experimenting with the place
of attributes in the results and finally, (5) exploring the effect of fea-
ture level fusion on foreign accent recognition results.

In [V], the author has proposed a new approach to the prob-
lem of OOS data selection using i-vectors within the context of an
open-set LID. In this approach, each unlabeled i-vector was given
a per-class outlier score with the help of a non-parametric KS test.
This score represented the confidence that an i-vector corresponds
to OOS data. Out-of-Set candidates were detected from an unla-
beled development set and then used to train an additional model
to represent the OOS languages in the back-end.

7.2 SUMMARY OF RESULTS

[I]: Training hyper-parameters from mismatched dataset results in
greatly degraded recognition results in comparison to training them
from the application-specific dataset. The most effective hyper-
parameter settings that resulted in the highest accent recognition
accuracy are UBMs with 512 Gaussians, i-vector dimensionality of
1000 and an HLDA dimensionality of 180. An analysis of the af-
fecting factors suggests that (1) mother tongue traits are relatively
more pronounced in older speakers when speaking a second lan-
guage than in younger speakers. Detection cost decreases relatively
by 16% from the age group [11–20] years to [61–70] years and (2)
mother tongue detection from speakers with a higher proficiency
in Finnish is more difficult than those with a lower proficiency. The
highest foreign accent accuracy is attributed to speakers with the
lowest grade, while the lowest accuracy is attributed to speakers
with the highest grade.

[II]: The proposed foreign accent recognition technique based on
manner of articulation achieves a 16% relative reduction in EER
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over the state-of-the-art SDC-MFCC1 i-vector baseline system. Con-
catenating contextual information in the forms of delta and double
delta features to manner feature streams results in a further 12%
relative reduction in EER over the manner-based system.

[III]: The results indicate that dialect recognition accuracy in the
younger age group is considerably lower than in the older age
group, suggesting that the dialect in the younger group has leveled.
Further, the results suggest that the manner of articulation system
outperforms the baseline SDC-MFCC system2 in the younger age
group by a 32% relative decrease in the detection cost. This suggests
that an attribute-based system is more robust against age-related
leveling effects within the younger group.

[IV]: The findings of this publication can be summarized as follows:
(1) Foreign accent recognition results of the FSD corpus suggest that
the best performance is obtained by using manner attribute fea-
tures with i-vector methodology, yielding 45% and 15% relative re-
ductions in the average detection cost over the conventional GMM-
UBM and state-of-the-art i-vector approaches with SDC-MFCC fea-
tures, respectively; (2) Analysis on the effect of training set size
and test utterance length reveals that the attribute-based foreign ac-
cent recognition system outperforms the spectral-based system in
all of the evaluated cases (independently of the amount of train-
ing data and test utterance length); (3) A 14% relative reduction
in the detection cost is obtained by incorporating contextual infor-
mation; (4) Manner- and place-based systems outperform the SDC-
MFCC-based i-vector system for English data, yielding 15% and
8% relative reductions in the average detection cost, respectively;
(5) Concatenating SDC-MFCC features with the attribute feature
streams further improves foreign accent recognition results and fi-
nally, (6) When comparing the performance between the proposed
attribute system and the state-of-the-art spectral i-vector system, the

1Acoustic SDC-MFCC features are formed by appending MFCC features to
SDC features.

2The baseline SDC-MFCC system is realized with the GMM-UBM approach
using acoustic SDC-MFCC features.
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Table 7.2: Summary of the previous studies on foreign accent recog-
nition. CR = classification rate (in %), EER = equal error rate (in %).

Method (features+modeling) Language (#accents) Evaluation
Phonemes+Trajectory [148] English (5) 90 CR (pair-wise)

Spectral+SVM [149] Chinese+Spanish (25) 17.50 EER, ∼60 CR
Spectral+i-vector [150] English (5) 58 CR

Phonetic+GMM-UBM [113, 151] English (7) ∼54 CR
Spectral+i-vector [I] Finnish (9) 12.60 EER, ∼69 CR

Attributes+i-vector [IV] Finnish (8) 9.21 EER, ∼72 CR
Attributes+i-vector [IV] English (7) 11.09 EER, ∼70 CR

attribute system outperforms the spectral i-vector system on 7 out
of 8 accents with a statistical significance level of 5%.

[V]: The proposed OOS selection method outperforms the classical
one-class SVM by a 16% relative reduction in EER. Furthermore, in-
tegrating the proposed method into the open-set LID task yields a
15% relative reduction in the detection cost in comparison to treat-
ing all of the development data as additional data in order to train
the OOS model.

Comparison with other studies

Table 7.2 summarizes several previous studies on foreign ac-
cent recognition. As previously mentioned, there are several dif-
ferent forms of accents. However, this thesis focuses on foreign ac-
cent, namely, the type of language variation which occurs when
non-native speakers use the characteristics of their L1 in L2, and
as such, the author has attempted to do a representative sampling
of the available research literature in order to place the achieved re-
sults within the context of competing or state-of-the-art approaches.
However, in Table 7.2, due to the differences in datasets and eval-
uation metrics, the achieved foreign accent recognition results are
not directly comparable with the literature. Thus, the evaluation
numbers should be cautiously compared.

Comparing classification rate (CR) and EER numbers in [IV]
and [I] with [149], one may note that they are reasonably simi-

Dissertations in Forestry and Natural Sciences No 241 67



Advances in Automatic Foreign Accent Recognition

lar. Similarly, CR numbers in [IV] and [I] are comparable with
the CR reported in [150]. In a number of recent studies [113, 151],
authors have integrated phonetic vowel information into conven-
tional GMM-UBM framework in order to discriminate between 7
foreign accented English speeches. While, the authors have adopted
a phone recognizer in order to extract vowels from speech, their
findings, in demonstrating the usefulness of phonetic knowledge
in order to characterize foreign accents in an acoustic-based frame-
work, are in line with the findings of this thesis.
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8 Conclusion

This thesis focused on the problem of automatic foreign accent
recognition, that is, the task of identifying the mother tongue of
a non-native speaker given a speech utterance spoken in his or her
second language. Given that attribute features were used earlier in
speech and language recognition tasks, this dissertation has signif-
icantly contributed to the adaptation of such methodology to the
task of automatic foreign accent recognition. Using attribute fea-
tures, we proposed a unified acoustic and phonotactically-inspired
approach which benefits from both acoustic and phonotactic knowl-
edge in order to discriminate between foreign spoken accents. We
also proposed an i-vector representation framework to model the
attribute feature streams. The key findings achieved in this work
can be summarized as follows:

1. Incorporating phonotactically-inspired knowledge to the
state-of-the-art spectral feature extraction methods, in the
form of attribute features, significantly improves foreign ac-
cent recognition accuracy.

2. Appending temporal context in the forms of delta and double
delta features to the attribute feature streams, substantially
improves foreign accent recognition accuracy. Further, by ap-
plying a PCA over the temporal window of several frames, we
were able to incorporate longer context size into the attribute
feature streams, resulting in the best recognition results.

3. Training the system’s hyper-parameters, such as universal
background model, total variability matrix and dimensional-
ity reduction projection matrices, from non-matched datasets
yields poor recognition accuracy in comparison to training
them from application-specific dataset with matched lan-
guage.
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4. In regards to an analysis of the factors affecting foreign ac-
cent recognition results, older speaker groups show lower de-
tection error rates than younger ones, suggesting that mother
tongue traits might be more preserved in older speakers when
speaking L2 than younger speakers. Further, detecting foreign
accents from those who have higher language proficiency in
L2 are found to be more difficult than those with lower L2
language proficiency grades. Where (or how) an L2 is spo-
ken, i.e. in university, at work, at home or as a hobby, does
not have a considerable effect on the detection error rates.

5. Analyzing the effects of training set size and test utterance
length on the overall foreign accent recognition performance
suggests that the proposed attribute-based foreign accent
recognition system outperforms the spectral system in all of
the tested cases.

6. Selecting the most representative OOS data from a large set of
unlabeled data to model OOS classes results in higher iden-
tification accuracy compared with pooling out of the entire
unlabeled data to train an additional OOS class in an open-
set LID task. Integrating our proposed OOS selection method
into an open-set LID task relatively decreases the identifica-
tion cost.

It should also be noted that the foreign accent recognition results
reported in this dissertation were achieved on the two selected L2
languages, Finnish and English. The system developed in this thesis
can be used for foreign accent recognition in other languages al-
though similar results may not be achieved. One of the limitations
of the proposed attribute-based foreign accent recognition system is
that the bank of speech attribute detectors ignore the correlation be-
tween the attribute classes which might be useful for foreign accent
discrimination.

Regarding future work, there is still room for improvement in
the attribute based detectors. In particular, alternative acoustic fea-
tures would be desirable to investigate for the training of the neural
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network attribute detectors. Furthermore, with a renewed interest
in DNN and their superior performance in language and speaker
recognition tasks, it might be beneficial to adopt similar approaches
to our foreign accent recognition tasks, specifically, in order to im-
prove attribute detector accuracy [152]. Further, the performance
of the proposed foreign accent recognition approach is investigated
for extremely short utterances (i.e. less than 3 seconds). Finally, to
reduce time complexity of the proposed OOS data selection method
in large datasets, a random sampling of the data is a potential solu-
tion which can be investigated.
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[143] N. Brümmer, “Focal Multi-class: Toolkit for Evalua-
tion, Fusion and Calibration of Multi-class Recognition
Scores,” (online), available: https://sites.google.com/

site/nikobrummer/focalmulticlass.

[144] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and
M. Przybocki, “The DET Curve in Assessment of Detec-

Dissertations in Forestry and Natural Sciences No 241 87



Advances in Automatic Foreign Accent Recognition

tion Task Performance,” in Proc. of EUROSPEECH (1997), pp.
1895–1898.

[145] “Finnish National Foreign Language Certificate Corpus,” (on-
line), available: http://yki-korpus.jyu.fi.

[146] NIST, “The NIST Year 2008 Speaker Recognition Evaluation
Plan,” Technichal Report (2008).

[147] “Satakunta in Speech - the Current Finnish Di-
alects in the Area of Satakunta,” (online), available:
www.utu.fi/en/units/hum/units/finnishandfinnougric/

research/projects/Pages/Satankuntainthespeech.aspx.

[148] P. Angkititraku and J. H. L. Hansen, “Advances in Phone-
based Modeling for Automatic Accent Classification,” in IEEE
Transactions on Audio, Speech and Language Processing, Vol. 14
(2006), pp. 634–646.

[149] M. K. Omar and J. Pelecanos, “A Novel Approach to De-
tecting Non-native Speakers and Their Native Language,” in
Proc. of ICASSP (2010), pp. 4398–4401.

[150] M. H. Bahari, R. Saeidi, H. Van hamme, and D. van Leeuwen,
“Accent Recognition Using i-Vector, Gaussian Mean Super-
vector, Guassian Posterior Probability for Spontaneous Tele-
phone Speech,” in Proc. of ICASSP (2013), pp. 7344–7348.

[151] Z. Ge, Y. Tan, and A. Ganapathiraju, “Accent Classification
with Phonetic Vowel Representation,” in Proc. of ACPR (2015),
pp. 529–533.
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Abstract

i-Vector based recognition is a well-established technique in state-of-the-art speaker and language recognition but its use in dialect and
accent classification has received less attention. In this work, we extensively experiment with the spectral feature based i-vector system on
Finnish foreign accent recognition task. Parameters of the system are initially tuned with the CallFriend corpus. Then the optimized
system is applied to the Finnish national foreign language certificate (FSD) corpus. The availability of suitable Finnish language corpora
to estimate the hyper-parameters is necessarily limited in comparison to major languages such as English. In addition, it is not imme-
diately clear which factors affect the foreign accent detection performance most. To this end, we assess the effect of three different com-
ponents of the foreign accent recognition: (1) recognition system parameters, (2) data used for estimating hyper-parameters and (3)
language aspects. We find out that training the hyper-parameters from non-matched dataset yields poor detection error rates in compar-
ison to training from application-specific dataset. We also observed that, the mother tongue of speakers with higher proficiency in Finn-
ish are more difficult to detect than of those speakers with lower proficiency. Analysis on age factor suggests that mother tongue
detection in older speaker groups is easier than in younger speaker groups. This suggests that mother tongue traits might be more pre-
served in older speakers when speaking the second language in comparison to younger speakers.
� 2014 Elsevier B.V. All rights reserved.

Keywords: Foreign accent recognition; i-Vector; Language proficiency; Age of entry; Level of education; Where second language is spoken

1. Introduction

Foreign spoken accents are caused by the influence of
one’s first language on the second language (Flege et al.,
2003). For example, an English–Finnish bilingual speaker
may have an English accent in his/her spoken Finnish
because of learning Finnish later in life. Non-native
speakers induce variations in different word pronunciation
and grammatical structures into the second language

(Grosjean, 2010). Interestingly, these variations are not
random across speakers of a given language, because the
original mother tongue is the source of these variations
(Witteman, 2013). Nevertheless, between-speaker differ-
ences, gender, age and anatomical differences in vocal tract
generate within-language variation (Witteman, 2013).
These variations are nuisance factors that adversely affect
detection of the mother tongue.

Foreign accent recognition is a topic of great interest in
the areas of intelligence and security including immigration
and border control sites. It may help officials to detect trav-
elers with a fake passport by recognizing the immigrant’s
actual country and region of spoken foreign accent
(GAO, 2007). It has also a wide range of commercial
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applications including services based on user-agent voice
commands and targeted advertisement.

Similar to spoken language recognition (Li et al., 2013),
various techniques including phonotactic (Kumpf and
King, 1997; Wu et al., 2010) and acoustic approaches
(Bahari et al., 2013; Scharenborg et al., 2012; Behravan
et al., 2013) have been proposed to solve the foreign accent
detection task. The former uses phonemes and phone distri-
butions to discriminate different accents; in practice, it uses
multiple phone recognizer outputs followed by language
modeling (Zissman, 1996). The acoustic approach in turn
uses information taken directly from the spectral character-
istics of the audio signals in the form of mel-frequency ceps-

tral coefficient (MFCC) or shifted delta cepstra (SDC)
features derived from MFCCs (Kohler and Kennedy,
2002). The spectral features are then modeled by a “bag-
of-frames” approach such as universal background model

(UBM) with adaptation (Torres-Carrasquillo et al., 2004)
and joint factor analysis (JFA) (Kenny, 2005). For an excel-
lent recent review of the current trends and computational
aspects involved in general language recognition tasks
including foreign accent recognition, we point the interested
reader to (Li et al., 2013).

Among the acoustic systems, total variability model or i-

vector approach originally used for speaker recognition
(Dehak et al., 2011a), has been successfully applied to lan-
guage recognition tasks (González et al., 2011; Dehak
et al., 2011b). It consists of mapping speaker and channel
variabilities to a low-dimensional space called total vari-

ability space. To compensate intersession effects, this tech-
nique is usually combined with linear discriminant analysis

(LDA) (Fukunaga, 1990) and within-class covariance

normalization (WCCN) (Kanagasundaram et al., 2011).
The i-vector approach has received less attention in dia-

lect and accent recognition systems. Caused by more subtle
linguistic variations, dialect and accent recognition are gen-
erally more difficult than language recognition (Chen et al.,
2010). Thus, it is not obvious how well i-vectors will
perform on these tasks. However, more fundamentally,
the i-vector system has many data-driven components for
which training data needs to be selected. It would be tempt-
ing to train some of the hyper-parameters on a completely
different out-of-set-data (even different language), and
leave only the final parts – training and testing a certain
dialect or accent – to the trainable parts. This is also moti-
vated by the fact that there is a lack of linguistic resources
available for languages like Finnish, comparing to English
for which corpora from NIST1 and LDC2 exist.

The i-vector based dialect and accent recognition has
previously been addressed in (DeMarco and Cox, 2012;
Bahari et al., 2013). DeMarco and Cox (2012) addressed
a British dialect classification task with fourteen dialects,
resulting in 68% overall classification rate while (Bahari

et al., 2013) compared three accent modeling approaches
in classifying English utterances produced by speakers of
seven different native languages. The accuracy of the
i-vector system was found comparable as compared to
the other two existing methods. These studies indicate that
the i-vector approach is promising for dialect and foreign
accent recognition tasks. However, it can be partly
attributed to availability of massive development corpora
including thousands of hours of spoken English utterances
to train all the system hyper-parameters. The present study
presents a case when such resources are not available.

Comparing with the prior studies including our own
preliminary analysis (Behravan et al., 2013), the new
contribution of this study is a detailed account into factors
affecting the i-vector based foreign accent detection. We
study this from three different perspectives: parameters,
development data, and language aspects. Firstly, we study
how the various i-vector extractor parameters, such as the
UBM size and i-vector dimensionality, affect accent detec-
tion accuracy. This classifier optimization step is carried
out using the speech data from the CallFriend corpus
(Canavan and Zipperle, 1996). As a minor methodological
novelty, we study applicability of heteroscedastic linear dis-

criminant analysis (HLDA) for supervised dimensionality
reduction of i-vectors. Secondly, we study data-related
questions on our accented Finnish language corpus. We
explore how the choices of the development data for
UBM, i-vector extractor and HLDA matrices affect accu-
racy; we study whether these could be trained using a dif-
ferent language (English). if the answer turn out positive,
the i-vector approach would be easy to adopt to other lan-
guages without recourse to the computationally demanding
steps of UBM and i-vector extractor training. Finally, we
study language aspects. This includes three analyses:
ranking of the original accents in terms of their detection
difficulty, study of confusion patterns across different
accents and finally, relating recognition accuracy with four
affecting factors such as Finnish language proficiency, age
of entry, level of education and where the second language
is spoken.

Our hypothesis for the Finnish language proficiency is
that recognition accuracy would be adversely affected by
proficiency in Finnish. In other words, we expect higher
accent detection errors for speakers who speak fluent
Finnish. For the age of entry factor, we expect that the
younger a speaker enters a foreign country, the higher
the probability of fluency in the second language. Thus,
we hypothesize that it is more difficult to detect the speak-
er’s mother tongue in younger age groups than in older
ones. This hypothesis is reasonable also because older peo-
ple tend to keep their mother tongue traits more often than
younger people (Munoz, 2010). Regarding the education
factor, we hypothesize that mother tongue detection is
more difficult in higher educated speakers than in lower
educated ones. Finally, We also hypothesize that mother
tongue detection is more difficult for the person who con-
sistently use their second languages for social interaction

1 http://www.itl.nist.gov/iad/mig/tests/spk/.
2 http://www.ldc.upenn.edu/.
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as compared to the speakers who do not use their second
language in regular basis for social interaction.

2. System components

Fig. 1 shows the block diagram of the method used in
this work. The i-vector system consists of two main part:
front-end and back-end. The former consists of cepstral
feature extraction and UBM training, whereas the latter
includes sufficient statistics computation, training of the
T-matrix, i-vector extraction, dimensionality reduction
and scoring.

2.1. i-vector system

i-Vector modeling (Dehak et al., 2011a) is inspired by
the success of joint factor analysis (JFA) (Kenny et al.,
2008) in speaker verification. In JFA, speaker and channel
effects are independently modeled using eigenvoice (speaker
subspace) and eigenchannel (channel subspace) models:

M ¼ mþ VyþUx; ð1Þ

where M is the speaker supervector, m is a speaker and
channel independent supervector created by concatenating
the centers of UBM and low-rank matrices V and U repre-
sent, respectively, linear subspaces for speaker and channel
variability in the original mean supervector space. The
latent variables x and y are assumed to be independent
of each other and have a standard normal distributions,
i.e. x � Nð0; IÞ and y � Nð0; IÞ. Dehak et al. (2011a)
found that these subspaces are not completely independent,

therefore a combined total variability modeling was
introduced.

In the i-vector approach, the GMM supervector (M) of
each accent utterance is decomposed as (Dehak et al.,
2011a),

M ¼ mþ Tw; ð2Þ

where m is again the UBM supervector, T is a low-rank
rectangular matrix, representing between-utterance vari-
ability in the supervector space, and w is the i-vector, a
standard normally distributed latent variable drawn from
Nð0; IÞ. The T matrix is trained using a similar technique
which is used train V in JFA, except that each training
utterance of a speaker model is treated as belonging to dif-
ferent speakers. Therefore, in contrast to JFA, the T matrix
training does not need speaker or dialect labels. To this
end, i-vector approach is an unsupervised learning method.
The i-vector w is estimated from its posterior distribution
conditioned on the Baum–Welch statistics extracted from
the utterance using the UBM (Dehak et al., 2011a).

The i-vector extraction can be seen as a mapping from a
high-dimensional GMM supervector space to a low-
dimensional i-vector that preserves most of the variability.
In this work, we use 1000-dimensional that are further
length normalized and whitened (Garcia-Romero and
Espy-Wilson, 2011).

Cosine scoring is commonly used for measuring
similarity of two i-vectors (Dehak et al., 2011a). The cosine
score t of the test i-vector, wtest, and the i-vectors of target
accent a; wa

target, is defined as their inner product
hwtest;w

a
targeti and computed as follows:
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Fig. 1. The block diagram of the method used in this work.
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t ¼
ŵT

test ŵa
target

kŵtestk kŵa
targetk

; ð3Þ

where ŵtest is,

ŵtest ¼ ATwtest; ð4Þ

and A is the HLDA projection matrix (Loog and Duin,
2004) to be detailed below in Section 2.2. Further, ŵa

target

is the average i-vector over all the training utterances in
accent a, i.e.

ŵa
target ¼

1

N a

XNa

i¼1

ŵa
i ; ð5Þ

where N a is the number of training utterances in accent a

and ŵa
i is the projected i-vector of training utterance i from

accent a, computed the same way as (4).
Obtaining the scores fta; a ¼ 1; . . . ; Lg for a particular

test utterance compared with all the L target accent models
of accent a, those scores are further post-processed as
(Brümmer and van Leeuwen, 2006):

t0ðaÞ ¼ log
expðtaÞ

1
L�1

P
k–a expðtkÞ

; ð6Þ

where t0ðaÞ is the detection log-likelihood ratio or final
score used in the detection task.

2.2. Reducing the i-vector dimensionality

As the extracted i-vectors contain both intra- and
between-accent variations, the aim of dimensionality
reduction is to project the i-vectors onto a space where
between-accent variability is maximized and intra-accent
variability is minimized. Traditionally, LDA is used to per-
form dimensionality reduction where, for R-class classifica-
tion problem, the maximum projected dimension is R� 1.

As (Loog and Duin, 2004) argue, these R� 1 dimensions
do not necessarily contain all the discriminant information
for the classification task. Moreover, LDA separates only
the class means and it does not take into account the dis-
criminatory information in the class covariances. In recent
years, an extension of LDA, heteroscedastic linear discrim-
inant analysis (HLDA), has gained popularity in speech
research community. HLDA, unlike LDA, deals with dis-
criminant information presented both in the means and
covariance matrices of classes (Loog and Duin, 2004).

HLDA was originally introduced in (Kumar, 1997) for
auditory feature extraction, and later applied to speaker
(Burget et al., 2007) and language (Rouvier et al., 2010)
recognition with the purpose of reducing dimensionality
of GMM supervectors and acoustic features, respectively.
In this work, we also use it to reduce the dimensionality
of extracted i-vectors. For completeness, we briefly summa-
rize the HLDA technique below.

In the HLDA technique, the i-vectors of dimension n are
projected into first p < n rows, dj¼1...p, of n� n HLDA

transformation matrix denoted by A. The matrix A is esti-
mated by an efficient row-by-row iteration method (Gales,
1999), whereby each row is iteratively estimated as,

d̂k ¼ ckGk�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

ckGk�1cT
k

s
: ð7Þ

Here, ck is the kth row vector of the co-factor matrix
C ¼j A j A�1 for the current estimate of A and

Gk ¼

PJ
j¼1

Nj

dkbRðjÞdT
k

bRðjÞ k 6 p;

N

dkbRdT
k

bR k > p;

8><>: ð8Þ

where bR and bRðjÞ are estimates of the class-independent
covariance matrix and the covariance matrix of the jth
model, Nj is the number of training utterances of the jth
model and N is the total number of training utterances.
To avoid near-to-singular covariance matrices in HLDA
training process, principal component analysis (PCA) is
first applied (Loog and Duin, 2004; Rao and Mak, 2012)
and the PCA-projected features are used as the inputs to
HLDA. The dimension of PCA is selected in such a man-
ner that most of the principal components are retained
and within-models scatter matrix becomes non-singular
(Loog and Duin, 2004).

2.3. Within-class covariance normalization

To compensate for unwanted intra-class variations in
the total variability space, within-class covariance normal-
ization (WCCN) (Hatch et al., 2006) is applied to the
extracted i-vectors. To this end, a within-class covariance
matrix, K, is first computed using,

K ¼ 1

L

XL

a¼1

1

Na

XN a

i¼1

ðwa
i � waÞðwa

i � waÞT; ð9Þ

where wa is the mean i-vector for each accent a; L is the
number of target accents and Na is the number of training
utterances for the accent a. The inverse of K is then used to
normalize the direction of the projected i-vectors in the
cosine kernel. This is equivalent to projecting the i-vector
subspace by the matrix B obtained by Cholesky decompo-
sition of K�1 ¼ BBT.

3. Experimental setup

3.1. Corpus

We use Finnish national foreign language certificate

(FSD) corpus (University of Jyväskylä, 2000) to perform
foreign accent classification task. The corpus consists of
official language proficiency tests for foreigners interested
in Finnish language proficiency certificate for the purpose
of applying for a job or citizenship. All the data has been
recorded by language experts. Generally, the test is
intended for evaluating test-takers’ proficiency in listening
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comprehension, reading comprehension, speaking, and
writing. This test can be taken at basic, intermediate and
advanced levels. The test-takers choose the proficiency level
at which they wish to participate. The difference between
the levels is the extent and variety of expression required.
At the basic level, it is important that test-takers convey
their message in a basic form, while in the intermediate
level, richer expression is required. More effective and nat-
ural expressions should be presented in the advanced level.
However, communication purposes, i.e. functions and
questions, are more or less the same at all levels. Table 1
shows the grading scale at each level of the tests in this
corpus.3

For our purposes, we selected Finnish responses
corresponding to 18 foreign accents. Unfortunately, as
the number of utterances in some accents was not large
enough, a limited number of eight accents – Russian, Alba-
nian, Arabic, English, Estonian, Kurdish, Spanish, and
Turkish – with enough data were chosen for the experi-
ments. However, the unused accents were utilized in
training the hyper-parameters of the i-vector system, the
UBM and the T-matrix.

To perform the recognition task, each accent set is ran-
domly partitioned into a training and a test subset. To
avoid speaker and session bias, the same speaker was not
placed into the test and train subsets. The test subset corre-
sponds to (approximately) 40% of the utterances, while the
training set corresponds to the remaining 60%. The original
audio files, stored in MPEG-2 Audio Layer III (mp3) com-
pressed format, were decompressed, resampled to 8 kHz
and partitioned into 30-s chunks. Table 2 shows the distri-
bution of train and test files in each target accent.

The NIST SRE 20044 corpus was chosen as the out-of-
set-data for hyper-parameter training. For our purposes,
1000 gender-balanced utterances were randomly selected
from this corpus to train the UBM and T-matrix. We note
that this is an American English corpus of telephone-qual-
ity speech.

Unlike UBM and T-matrix, training the HLDA projec-
tion matrix requires labeled data. Since accent labels are
not represented in the NIST corpus, we use the CallFriend

corpus (Canavan and Zipperle, 1996) to train HLDA. This
corpus is a collection of unscripted conversations of 12 lan-
guages recorded over telephone lines. It includes two dia-
lects for each target language available. All utterances are

organized into training, development and evaluation sub-
sets. For our purposes, we selected all the training utter-
ances from dialects of English, Mandarin and Spanish
languages and partitioned them into 30-s chunks, resulting
in approximately 4000 splits per each subset. All audio files
have 8 kHz sampling rate.

3.2. Front-end configuration

The front-end consists of concatenation of MFCC and
SDC coefficients (Kohler and Kennedy, 2002). To this
end, speech signals framed with 20 ms Hamming window
with 50% overlap are filtered by 27 mel-scale filters over
0–4000 Hz frequency range. RASTA filtering (Hermansky
and Morgan, 1994) is applied to log-filterbank energies.
Seven first cepstral coefficients (c0–c6) are computed using
discrete cosine transform. The cepstral coefficients are fur-
ther processed using utterance-level cepstral mean and var-
iance normalization (CMVN) and vocal tract length
normalization (VTLN) (Lee and Rose, 1996), and con-
verted into 49-dimensional shifted delta cepstra (SDC) fea-
ture vectors with 7-1-3-7 configuration parameters (Kohler
and Kennedy, 2002). These four parameters correspond to,
respectively, the number of cepstral coefficients, time delay
for delta computation, time shift between consecutive
blocks, and number of blocks for delta coefficient concate-
nation. Removing non-speech frames, the 7 first MFCC
coefficients (including c0) are further concatenated to
SDCs to obtain 56-dimensional feature vectors.

In a preliminary experiment on our evaluation corpus
FSD (Behravan, 2012), the combined feature set is shown
to give a relative decrease in EER of more than 30% as
compared to the only SDC feature based technique.

3.3. Objective evaluation metrics

System performance is reported in terms of both average
equal error rate (EERavg) and average detection cost (Cavg)
(Li et al., 2013). EER indicates the operating point on
detection error trade-off (DET) curve (Martin et al.,
1997) at which false alarm and miss rates are equal. EER
per target accent is computed in a manner that other
accents serve as non-target trials. Average equal error rate

Table 1
Grades within different levels in the FSD corpus.

Levels Grades

Basic 0 1 2
Intermediate 3 4
Advanced 5 6

Table 2
Train and test files distributions in each target accent in the FSD corpus.

Accent No. of train files No. of test files No. of speakers

Spanish 47 25 15
Albanian 56 29 19
Kurdish 61 32 21
Turkish 66 34 22
English 70 36 23
Estonian 122 62 38
Arabic 128 66 42
Russian 556 211 235

Total 1149 495 415

3 The FSD corpus is available by request from http://yki-korpus.jyu.fi/.
Filelists used in this study are available by request from the first author.

4 http://catalog.ldc.upenn.edu/LDC2006S44.
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(EERavg) is computed by taking the average over all the L

target accent EERs.
Cavg, in turn, is defined as follows (Li et al., 2013),

Cavg ¼
1

L

XL

a¼1

CDETðLaÞ; ð10Þ

where CDETðLaÞ is the detection cost for subset of test seg-
ments trials for which the target accent is La:

CDETðLaÞ ¼ CmissP tarP missðLaÞ þ Cfað1� P tarÞ

� 1

L� 1

X
m–a

P faðLa; LmÞ: ð11Þ

P miss denotes the miss probability (or false rejection rate),
i.e. a test segment of accent La is rejected as not being in
that accent. P faðLa; LmÞ is the probability when a test seg-
ment of accent Lm is detected as accent La. It is computed
for each target/non-target accent pairs. Cmiss and Cfa are
costs of making errors and are set to 1. P tar is the prior
probability of a target accent and is set to 0.5.

4. Results

We first optimize the i-vector parameters in the context
of dialect and accent recognition tasks. For this purpose,
we utilize the CallFriend corpus. The results are summa-
rized in Table 3.

In Fig. 2, we show EER as a function of HLDA output
dimension. We find that the optimal dimension of the
HLDA projected i-vectors is 180 and too aggressive reduc-
tion in dimension decreases accuracy. We also find that
accuracy improves with the increase of i-vector dimension-
ality as Table 4 shows. Furthermore, our results showed
that the UBM with smaller size outperforms larger UBM
as Table 5 shows. Based on these previous findings,
UBM size, i-vector size and output dimensionality are set
to 512, 1000 and 180, respectively.

4.1. Effect of development data on i-vector hyper-parameters

estimation

Table 6 shows the results on the FSD corpus when the
hyper-parameters are trained from different datasets. Here,
WCCN and score normalization are not applied. By con-
sidering the first row with matched language as a baseline
(13.37% EERavg), we observe the impact of each of the
hyper-parameter training configurations as follows:

� Effect of HLDA (row 1 vs row 2): EERavg increases to
18.28% (relative increase of 37%).
� Effect of T-matrix (row 1 vs 3): EERavg increases to

20.98% (relative increase of 57%).
� Effect of UBM (row 1 vs 4): EERavg increases to 23.85%

(relative increase of 78%).
� Effect of UBM and T-matrix (row 1 vs 5): EERavg

increases to 26.76% (relative increase of 101%).

In the light of these findings, it seems clear that the
‘early’ system hyper-parameters (UBM and T-matrix) have
a much larger role and they should be trained from as clo-
sely matched data as possible; we see that when all the
hyper-parameters are trained from the FSD corpus, the
highest accuracy is achieved. The most severe degradation
(101%) is attributed to the joint effect of UBM and T-
matrix and the least severe (37%) to HLDA, T-matrix
(57%) and UBM (78%) falling in between. It is instructive
to recall the order of computations: sufficient statistics
from UBM ! i-vector extractor training ! HLDA train-
ing. Since all the remaining steps depend on the “bottle-
neck” components, i.e. UBM and T-matrix, it is not
surprising that they have the largest relative effect.

The generally large degradation relative to the baseline
set-up with matched data is reasonably explained by the

Table 3
The i-vector system’s optimum parameters as reported in (Behravan et al.,
2013).

i-vector parameters Search range and optima

UBM size 256, 512, 1024, 2048, 4096
i-vector dimensionality 200, 400, 600, 800, 1000

HLDA dimensionality 50, 100, 150, 180, 220, 300, 350, 400
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Fig. 2. Equal error rates at different dimensions of the HLDA projected i-
vectors in the CallFriend corpus as reported in (Behravan et al., 2013).

Table 4
Performance of the i-vector system in the CallFriend corpus for selected i-
vector dimensions (EER in %, form). UBM has 1024 Gaussians as
reported in (Behravan et al., 2013).

i-vector dim. English Mandarin Spanish

200 23.20 20.49 20.87
400 22.60 19.11 20.21
600 21.30 18.45 19.63
800 19.83 16.31 18.63

1000 18.01 14.91 16.01
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large differences between type of data of evaluation corpus
(FSD) and hyper-parameter estimation corpora (NIST
SRE and CallFriend). FSD consists of Finnish language
data recorded with close-talking microphones in a
classroom environment. Even though speech is very clear,
background babble noise from the other students is evident
in all the recordings. This is contrast to the NIST SRE and
CallFriend corpora where most of the speech files are
recorded over telephone line and babble noise is less
common.

The results of Table 6 were computed with WCCN and
score normalization turned off. Let us now turn our atten-
tion to these additional system components. Firstly, Table 7
shows the effect of score normalization when all the hyper-
parameters are trained from the FSD corpus (i.e., row 1 of
Table 6). EERavg decreases from 13.37% to 13.01%, which
indicates a slightly increased recognition accuracy when the
scores are normalized in the backend.

Secondly, Table 8 shows the joint effect of WCCN and
HLDA on the recognition performance when all the
hyper-parameters are trained from the FSD corpus (i.e.,
row 1 of Table 6). In addition to that, score normalization
is also applied. EERavg decreases from 17.10% to 12.60%
when both HLDA and WCCN are applied. The worst case

is when HLDA is turned off and WCCN is turned on. This
is because turning off HLDA leads to inaccurate estimation
of covariance matrix in higher dimensional i-vector space.

4.2. Comparing i-vector and GMM-UBM systems

In order to have a baseline comparison between the i-
vector approach and the classical accent recognition sys-
tems, we used conventional GMM-UBM system with
MAP adaptation similar to the work presented in
(Torres-Carrasquillo et al., 2004). GMM-UBM system is
simpler and computationally more efficient in comparison
to the i-vector systems. Map adaptation consists of single
iteration for adapting the UBM to each dialect model using
SDC + MFCC features. It requires updating only centers
of UBM. The testing is a fast scoring process described
in (Reynolds et al., 2000) to score the input utterance to
each adapted foreign accent models by selecting top five
Gaussians per speech frame.

Table 9 shows the result of GMM-UBM system with
four different UBM sizes. Increasing the number of Gaus-
sians results in higher recognition accuracy. Table 10 fur-
ther compares the best recognition accuracies achieved by
both recognizers. In the i-vector system, the best recogni-
tion accuracy, i.e. EERavg of 12.60%, is achieved with all
the hyper-parameters trained from the FSD corpus and
HLDA, WCCN and score normalization being turned
on. On the other hand, the best GMM-UBM recognition
accuracy, EERavg of 17.00%, is achieved with UBM order
2048 when score normalization is applied. The results indi-
cate that the i-vector system outperforms the conventional
GMM-UBM system with 25% relative improvements in
terms of EERavg at the cost of higher computational time
and additional development data.

4.3. Detection performance per target language

In the previous section, we analyzed the overall average
recognition accuracy. Now, here we focus on performance
for each individual foreign accent. In order to compensate
the lack of sufficient development data in reporting these
results, we used the previously unused accents in the FSD
corpus to train UBM, T-matrix and HLDA. These unused
accents are Chinese, Dari, Finnish, French, Italian, Somali,
Swedish and Misc5 corresponding to 210 speakers and
1110 utterances in total. Further, to increase the number
of test trials in the classification stage, we report the results
using a leave-one-speaker-out (LOSO) protocol. As dem-
onstrated in the pseudo code below, for every accent, each
speaker’s utterances are held out one at a time and the
remaining utterances are used in modeling the ŵtarget as in
Eq. (5). The held-out utterances are used as the evaluation
utterances.

Table 5
Performance of the i-vector system in the CallFriend corpus for five
selected UBM sizes (EER in %, form). i-vectors are of dimension 600 as
reported in (Behravan et al., 2013).

UBM size English Mandarin Spanish

256 21.12 17.93 19.00

512 21.61 17.91 19.15
1024 21.30 18.45 19.63
2048 23.81 21.15 22.01
4096 23.89 21.57 22.66

Table 6
EERavg and Cavg � 100 performance for effect of changing datasets in
training the i-vector hyper-parameters. (WCCN and score normalization
turned off.)

UBM T matrix HLDA EERavg% Cavg � l00 Iderror%

Database used for training

FSD FSD FSD 13.37 7.04 33.65

FSD FSD CallFriend 18.28 7.49 38.29
FSD NIST FSD 20.98 7.83 40.30
NIST FSD FSD 23.85 8.15 42.91
NIST NIST FSD 26.76 8.41 44.67

Table 7
Effect of score normalization on the recognition performance. (HLDA and
WCCN turned on and off, respectively.)

Score normalization EERavg% Cavg � 100 Iderror%

No 13.37 7.04 33.65
Yes 13.01 6.94 32.85

5 Refers to those utterances in which the spoken foreign accent is not
clear.
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Algorithm 1. Leave-one-speaker-out (LOSO)

Let A ¼ fa1; a2; . . . ; aLg be the set of L target accents
Let SðaiÞ be the set of speakers in target accent ai

ŵa
target defines the i-vectors of target accent a after HLDA
and WCCN.

for ai 2 A do

for sj 2 SðaiÞ {Held-out test speaker} do

Let S0 ¼ SðaiÞ � sj {Remove the speaker being
tested}

Form ŵa
target using the i-vectors in set S0, Eq. (5)

Compute cosine scores hwsj
test;w

a
targeti {w

sj
test are the test i-

vectors of speaker sj}
end for

end for

Normalize scores per each target accent, Eq. (6)

Table 11 shows the language wise results. The results
suggest that certain languages which do not belong to the
same sub-family as Finnish are easier to detect. Turkish
achieves the highest recognition accuracy, whereas English
shows highest error rate. The recognition accuracy is con-
sistent among Albanian, Arabic, Kurdish and Russian lan-
guages. Cavg is bigger than the results already given in
Table 10. Note that in Table 11, the unused accents are
used to train UBM, T-matrix and HLDA. This induces
mismatch between model training data and the hyper-
parameter training data. Which is not the case in Table 10.

Fig. 3 further exemplifies the distribution of scores for
three selected languages of varying detection difficulties.
The histograms are plotted with the same number of bins,
50. For visualization purposes, the width of bins in the
non-target score histogram was set smaller than in the tar-
get score histogram. The score distribution explains the dif-
ferences between EERs. For example, in case of Turkish as
the easiest and English as the most difficult detected accent,

the overlap between the target and the non-target scores is
higher in the latter.

Here, the problem is treated as foreign accent identifica-
tion task. Table 12 displays the confusion matrix corre-
sponding to Table 11. In all the cases, majority of the
detected cases corresponds to the correct class (i.e., the
entries in the diagonal). Taking Turkish as the language
with the highest recognition accuracy, out of the 11 mis-
classified Turkish test segments, 7 were misclassified as
Arabic. This might be because Turkey is bordered by two
Arabic countries, Syria and Iraq, and Turkish shares com-
mon features with Arabic. Regarding Spanish, out of the
27 misclassified test segments, 9 were detected as Arabic.
It is possibly due to the major influence of Arabic on Span-
ish. In particular, numerous words of Arabic origin are
adopted in the Spanish language.

To analyze further reasons why some languages are
harder to detect, we first compute the average target lan-
guage score on a speaker-by-speaker basis. To measure
the degree of speaker variation, we show the standard devi-
ation of these average scores in Table 13, along with the
corresponding EER and CDET values. The results indicate
that languages with more diverse speaker populations, hav-
ing speaker-dependent biases in the detection scores, are
more difficult to handle. It does not yet explain why certain
languages, such as Russian, have a larger degree of speaker
variation, but suggests that there will be space for further
research in speaker normalization techniques.

4.4. Factors affect foreign accent recognition

We are interested to find out what factors affect the for-
eign accent recognition accuracies. The rich metadata
available in the FSD corpus includes language proficiency,
speaker’s age, education and the place where the second
language is spoken. In the following analysis, we used the

Table 8
The joint effect of WCCN and HLDA on the recognition accuracy. (Score
normalization turned on.)

HLDA WCCN EERavg% Cavg � 100 Iderror%

No No 17.70 7.04 39.58
Yes No 13.01 6.94 32.85
No Yes 19.00 7.31 41.55
Yes Yes 12.60 6.85 30.85

Table 9
Recognition performance of GMM-UBM system with different UBM
sizes.

UBM size EERavg% Cavg � 100

256 19.94 11.02
512 19.03 10.56

1024 18.20 10.12
2048 17.00 9.46

Table 10
Comparison between the best recognition accuracy in the GMM-UBM
and i-vector system. (Score normalization turned on for the both cases.)

Recognition system EERavg% Cavg � 100 Iderror%

GMM-UBM 17.00 9.46 43.65
i-vector 12.60 6.85 30.85

Table 11
Per language results in terms of EER% and CDET�100 for the i-vector
system.

Accents EER% CDET � 100

Turkish 11.90 6.35
Spanish 16.49 6.92
Albanian 18.76 7.00
Arabic 18.98 7.17
Kurdish 19.37 7.19
Russian 19.68 7.21
Estonian 20.05 7.52
English 23.60 8.00
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whole set of scores from the LOSO experiment and
grouped them to different categories according to each
metadata variable at a time.

Language proficiency

To find out the impact of language proficiency, we take
the sum of spoken and written Finnish grades in the FSD
corpus as a proxy of the speaker’s Finnish language profi-
ciency. The objective was to find out how speakers’ lan-
guage proficiency and their detected foreign accent are
related. Fig. 4 shows Cavg for each grade group. As hypoth-
esized, the lowest Cavg is attributed to speakers with the
lower grade (5) and the highest accuracy to speakers with
the higher grade (8). This indicates that detecting the for-
eign accents from speakers with higher proficiency in Finn-
ish is considerably more difficult than speakers with lower
proficiency.

In addition, we looked at language proficiency across
different target languages. We study the average language
proficiency grade across the speakers in different languages
(Table 14). For the three most difficult languages to detect,
Russian, Estonian and English, the average language pro-
ficiency grades are higher than the rest of languages, sup-
porting the preceding analysis.

Age of entry
Age is one of the most important effective factors in

learning a second language (Krishna, 2008). The common
notion is that younger adults learn the second language
more easily than older adults. (Larsen-Freeman, 1986)
argues that during the period of time between birth and
the age when a children enters puberty, learning a second
language is quick and efficient. In the second language
acquisition process, one of the affecting factors relates to
the experience of immigrants, such as the age of entry
and the length of residence (Krishna, 2008). We analyze
the relationship between the age of entry and the foreign
accent recognition results. To analyze the effect of age to
foreign accent detection, we categorized the detection
scores into six age groups with 10 years age interval
(Fig. 5). Our hypothesis was that mother tongue detection
is easier in older people than younger ones. The results sup-
port this hypothesis. Cavg decreases from 5.30 (a relative

Fig. 3. Distribution of scores for Turkish, Russian and English accents.

Table 12
Confusion matrix of the results corresponding to Table 11.

Predicted label

Turk. Span. Alba. Arab. Kurd. Russ. Esto. Engl.

True label

Turk. 50 0 1 7 0 1 0 2
Span. 1 58 1 11 2 3 7 2
Alba. 1 0 61 9 1 5 11 1
Arab. 4 2 14 110 7 7 12 4
Kurd. 5 1 1 5 50 6 3 6
Russ. 51 21 51 26 2 369 13 28
Esto. 5 5 7 15 1 6 117 15
Engl. 7 3 3 6 3 7 9 59
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decrease of 16%) to 4.45 from the age group [11–20] to [61–
70]. This indicates that the mother tongue detection in
older age groups could be easier than in the younger age
groups.

Level of education

According to Gardner’s socio-educational model
(Gardner, 2010), intrinsic motivation to learn a second lan-
guage is strongly correlated to educational achievements.
The objective was to find out how speakers’ level of educa-
tion and their detected foreign accent might be related. To
analyze the effect of education, we categorized the detec-
tion scores into different levels of education groups. We
hypothesized that people with higher level of education

speak the second language more fluently than lower edu-
cated people. As a consequence, mother tongue detection
for higher educated people is relatively difficult. But the
results in Fig. 6 in fact show the opposite; the highest Cavg

belongs to elementary school and the lowest to university
education. However, Cavg is somewhat similar for the high
school, vocational school, and polytechnic level of
education.

Table 13
The standard deviation of the average target language score on a speaker-
by-speaker basis along with the corresponding EER and CDET results.

Accents Standard deviation EER% CDET � 100

Turkish 0.1205 11.90 6.35
Spanish 0.1369 16.49 6.92
Albanian 0.1380 18.76 7.00
Arabic 0.1505 18.98 7.17
Kurdish 0.1392 19.37 7.19
Russian 0.1402 19.68 7.21
Estonian 0.1621 20.05 7.52
English 0.1667 23.60 8.00
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Fig. 4. Cavg � 100 for different grade groups in the language proficiency
measurement.

Table 14
The average language proficiency grade across the speakers in different
languages along with the corresponding EER and CDET results.

Accents Grade EER% CDET � 100

Turkish 6.09 11.90 6.35
Spanish 6.20 16.49 6.92
Albanian 5.78 18.76 7.00
Arabic 5.73 18.98 7.17
Kurdish 5.71 19.37 7.19
Russian 6.30 19.68 7.21
Estonian 7.02 20.05 7.52
English 6.34 23.60 8.00
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Fig. 5. Cavg � 100 for different age groups. Age refers to age of entry to
foreign country. Number of utterances for the age group [11–20],
[21,30], . . . , [61–70] is 46, 342, 535, 239, 100, 12, respectively.
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Fig. 6. Cavg � 100 for different level of education groups.
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Fig. 7. Cavg � 100 for different places where the second language is
spoken.
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Where second language is spoken

Finally, we were also interested to observe whether the
place or situation, where the second language is spoken,
affects foreign accent detection or not. To this end, we cat-
egorized the scores into four groups based on the level of
social interaction: home, hobbies, study and work. We
hypothesized that the places with more social interactions
between people, the mother tongue traits will be less in
the second spoken language, therefore making it more dif-
ficult to detect the mother tongue. Fig. 7 shows the Cavg for
different places where the second language is spoken. The
results indicate no considerable sensitivity to the situation
where the second language is spoken.

5. Conclusion

In this work, we studied how the various i-vector extrac-
tor parameters, data set selections and the speaker’s lan-
guage proficiency affects foreign accent detection accuracy.
Regarding parameters, highest accuracy was achieved using
UBMs with 512 Gaussians, i-vector dimensionality of 1000
and HLDA dimensionality of 180. These are similar to those
reported in general speaker and language recognition litera-
ture, except for the higher-than-usual i-vector dimensional-
ity of 1000.

Regarding data, we found that the choice of the UBM
training data is the most critical part, followed by T-matrix
and HLDA. This is understandable since the earlier system
components affect the quality of the remaining steps. In all
cases, the error rates increased unacceptably high for mis-
matched sets of hyper-parameter training. Thus, our answer
to the question whether hyper-parameters could be reason-
ably trained from mismatched language and channel is neg-
ative. The practical implication of this is that the i-vector
approach, even though producing reasonable accuracy,
requires careful data selection for hyper-parameter training
– and this is not always feasible.

Applying within-class covariance normalization fol-
lowed by score normalization technique further increased
the i-vector system performance by 6% relative improve-
ments in terms of Cavg. We also showed that the i-vector
system outperforms the conventional GMM-UBM system
by 28% relative decrease in terms of Cavg.

In our view, the most interesting contribution of this
work is the analysis of language aspects. The results, bro-
ken down by the accents, clearly suggested that certain lan-
guages which do not belong to the same sub-family as
Finnish are easier to detect. Turkish was the easiest (CDET

of 6.35) while for instance Estonian, a language similar to
Finnish, yielded CDET of 7.52. The most difficult language
was English with CDET of 8.00. In general, confusion
matrix revealed that phonetically similar languages are
more often confused.

Our analysis on affecting factors suggested that language
proficiency and age of entry affect detection performance.
Specifically, accents produced by fluent speakers of Finnish
are more difficult to detect. Speaker group with the lowest

language grade 5 yielded Cavg of 4.75 while the group with
grade 8 yielded Cavg of 6.76. Analysis of the age of entry, in
turn, indicated that mother tongue detection in older
speakers is easier than younger speakers. The age group
[61–70] years yielded Cavg of 4.45 while the group with
age interval [11–20] years old yielded Cavg of 5.31.

After optimizing all the parameters, the overall EERavg

and Cavg were 12.60% and 6.85, respectively. These are
roughly an order of magnitude higher compared to state-
of-the-art text-independent speaker recognition with i-vec-
tors. This reflects the general difficulty of the foreign accent
detection task, leaving a lot of space for future work on
new feature extraction and modeling strategies. While these
values are unacceptably high for security applications, the
observed correlation between language proficiency and
recognition scores suggests potential applications for
automatic spoken language proficiency grading.
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González, D.M., Plchot, O., Burget, L., Glembek, O., Matejka, P., 2011.
Language recognition in ivectors space. In: INTERSPEECH 2011:
12th Annual Conference of the International Speech Communication
Association, Florence, Italy, August 27–31, pp. 861–864.

Grosjean, F., 2010. Bilingual: Life and Reality. Harvard University Press.
Hatch, A.O., Kajarekar, S.S., Stolcke, A., 2006. Within-class covariance

normalization for SVM-based speaker recognition. In: INTER-
SPEECH 2006, ICSLP, Ninth International Conference on Spoken
Language Processing, Pittsburgh, PA, USA, September 17–21, pp.
1471–1474.

Hermansky, H., Morgan, N., 1994. RASTA processing of speech. IEEE
Trans. Speech Audio Process. 2 (4), 578–589.

Kanagasundaram, A., Vogt, R., Dean, D., Sridharan, S., Mason, M.,
2011. i-vector based speaker recognition on short utterances. In:
INTERSPEECH 2011, 12th Annual Conference of the International
Speech Communication Association, Florence, Italy, August 27–31,
pp. 2341–2344.

Kenny, P., 2005. Joint Factor Analysis of Speaker and Session Variability:
Theory and Algorithms. Technical Report CRIM-06/08-13.

Kenny, P., Ouellet, P., Dehak, N., Gupta, V., Dumouchel, P., 2008. A
study of interspeaker variability in speaker verification. IEEE Trans.
Audio, Speech Lang. Process. 16 (5), 980–988.

Kohler, M.A., Kennedy, M., 2002. Language identification using shifted
delta cepstra. In: 45th Midwest Symposium on Circuits and Systems,
vol. 3, pp. III-69–72.

Krishna, B., 2008. Age as an affective factor in second language
acquisition. Engl. Specif. Purp. World 21 (5), 1–14.

Kumar, N., 1997. Investigation of Silicon-auditory Models and General-
ization of Linear Discriminant Analysis for Improved Speech Recog-
nition. Ph.D. Thesis, Baltimore, Maryland.

Kumpf, K., King, R.W., 1997. Foreign speaker accent classification using
phoneme-dependent accent discrimination models and comparisons

with human perception benchmarks. In: Fifth European Conference
on Speech Communication and Technology, EUROSPEECH,
Rhodes, Greece, September 22–25, pp. 2323–2326.

Larsen-Freeman, D., 1986. Techniques and Principles in Language
Teaching. Oxford University Press, New York.

Lee, L., Rose, R.C., 1996. Speaker normalization using efficient frequency
warping procedures. In: Proceedings of the Acoustics, Speech, and
Signal Processing, May 7–10, pp. 353–356.

Li, H., Ma, B., Lee, K.-A., 2013. Spoken language recognition: from
fundamentals to practice. Proc. IEEE 101 (5), 1136–1159.

Loog, M., Duin, R.P.W., 2004. Linear dimensionality reduction via a
heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans.
Pattern Anal. Mach. Intell. 26 (6), 732–739.

Martin, A.F., Doddington, G.R., Kamm, T., Ordowski, M., Przybocki,
M.A., 1997. The DET curve in assessment of detection task perfor-
mance. In: EUROSPEECH 1997, 5th European Conference on Speech
Communication and Technology, Rhodes, Greece, September 22–25,
pp. 1895–1898.

Munoz, C., 2010. On how age affects foreign language learning. Adv. Res.
Lang. Acquisit. Teach., 39–49.

Rao, W., Mak, M.-W., 2012. Alleviating the small sample-size problem in
i-vector based speaker verification. In: 8th International Symposium
on Chinese Spoken Language Processing, Kowloon Tong, China,
December 5–8, pp. 335–339.

Reynolds, D.A., Quatieri, T.F., Dunn, R.B., 2000. Speaker verification
using adapted Gaussian mixture models. Digital Signal Process. 10 (1–
3), 19–41.

Rouvier, M., Dufour, R., Linarès, G., Estève, Y., 2010. A language-
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ABSTRACT

We propose a hybrid approach to foreign accent recognition
combining both phonotactic and spectral based systems by
treating the problem as a spoken language recognition task.
We extract speech attribute features that represent speech and
acoustic cues reflecting foreign accents of a speaker to obtain
feature streams that are modeled with the i-vector method-
ology. Testing on the Finnish Language Proficiency exam
corpus, we find our proposed technique to achieve a signif-
icant performance improvement over the state-of-the-art sys-
tems using only spectral based features.

Index Terms— Speech attributes, i-vector, foreign accent
recognition, language recognition

1. INTRODUCTION

In automatic foreign accent recognition, we aim to detect
speaker’s mother tongue (L1) when he or she is speaking
in another language (L2) [1]. When speaking in L2, the
speaker’s accent is usually colored by the learned patterns in
L1 [2]. When the native language is spoken instead, it can
be said to vary in terms of its regional dialects and accents.
Dialect refers to linguistic variations of a language, while
accent refers to different ways of pronouncing a language
within a community [3]. In the NIST language recognition
evaluation (LRE) scenarios, dialect and accent recognition
have been included as sub-tasks. As an example, the most
recent LRE 2011 covered four different Arabic dialects as
target languages [4]. Foreign accent recognition, however,
differs from common accent recognition in two major dis-
tinctions. Firstly, non-native speaker’s accentedness partly
depends on the language proficiency [2]. Secondly, the L2
is a noisy channel through which the identity of the mother
tongue is transmitted.

In this study we treat foreign accent recognition as a
language recognition task typically accomplished via ei-
ther acoustic or phonotactic modeling [5]. In the former
approach, acoustic features, such as shifted delta cepstra

This work was partially supported by Academy of Finland (projects
253000 and 253120).

(SDC), are used with bag-of-frames models, such as univer-
sal background model (UBM) with adaptation [6, 7]. The
latter is based on the hypothesis that dialects or accents differ
in terms of their phone sequence distributions. It uses phone
recognizer outputs, such as n-gram statistics, together with a
language modeling back-end [8, 9].

Among the choices for acoustic modeling, the recent i-
vector paradigm [10] has proven successful in both speaker [10,
11], language [12], and accent recogntion [13]. It extracts a
low-dimensional representation of the sequence of feature
vectors. Session and channel variability is typically tack-
led with techniques such as linear discriminant analysis
(LDA). The i-vectors from spectral features have been used
in dialect and foreign accent characterization. In [14], L1
of the non-native English speakers was recognized using
multiple spectral systems, including i-vectors with different
back-ends. The i-vector based system outperformed other
compared methods most of the time. In [1], it was found
out that the i-vector system using SDCs outperformed other
methods in recognizing Finnish non-native accents.

In language recognition, spectral features with i-vector
based systems have been seen to outperform the classical
phonotactic language recognition [4]. However, knowledge
based modeling, such as phonotactic features, are known
to be linguistically and phonetically relevant [5]. However,
the front-end of the phonotactic system needs a tokenizer
that will turn the utterance into a sequence of “phonetic
letters” [15, 16]. An ad-hoc approach is to use a phone rec-
ognizer developed for one language, such as Hungarian, and
apply it to all phonotactic recognition tasks [17].

In the present work, we argue that, especially in foreign
accent recognition, a universal phonetic tokenizer is prefer-
able. It will be able to find differences between the unknown
L1 and the known L2. For example, Spanish L1 speaker
trying to pronounce Finnish word “stressi” (stress) will typ-
ically lead to /e/ placed as a prefix, leading to “estressi”. In
this case, detecting a vowel in the beginning of the word is
a cue for Spanish L1. We then propose to use speech at-
tributes [18, 19, 20] to represent a language-universal set of
units to be modeled. In addition, we avoid the early quantiza-
tion of the attribute detector scores by computing an i-vector
from the detector score vector streams.
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Fig. 1. The internal structure of an attribute detector is shown.
Energy trajectories are fed into the left-context and right-
context ANNs. A merger then combines the outputs gener-
ated by those two neural networks and produced the final at-
tribute posterior probabilities.

2. SPEECH ATTRIBUTE EXTRACTION

2.1. Choice and Extraction of Attribute Features

The set of speech attributes used in this work is mainly acous-
tic phonetic features, and it comprises five manner of articu-
lation classes (glide, fricative, nasal, stop, and vowel), and
voicing. Those attributes could be identified from a particular
language and shared across many different languages, so they
could also be used to derive a universal set of speech units.
Furthermore, data-sharing across languages at the acoustic
phonetic attribute level is naturally facilitated by using these
attributes, so more reliable language-independent acoustic pa-
rameter estimation can be anticipated [21]. In [16], it was also
shown that these attributes can be used to compactly charac-
terize any spoken language along the same lines as in the au-
tomatic speech attribute transcription (ASAT) paradigm for
automatic speech recognition (ASR) [20]. Therefore, we be-
lieve that it can also be useful to characterize speaker accent.

Data-driven detectors are used to spot speech cues em-
bedded in the speech signal. An attribute detector converts
an input utterance into a time series that describes the level
of presence (or level of activity) of a particular property of
an attribute over time. A bank of six detectors is used in
this work, each detector is individually designed for spotting
of a particular event. Each detector is realized with three
single hidden layer feed-forward ANNs (artificial neural net-
works) organized in a hierarchical structure and trained on
sub-band energy trajectories that are extracted with a 15 band
uniform mel-frequency filterbank. For each critical band
a window of 310ms centered around the frame being pro-
cessed is considered and split in two halves: left-context and
right-context [22]. Two independent front-end ANNs (“lower
nets“) are trained on those two halves and generate left- and
right-context speech attribute posterior probabilities, respec-
tively. The outputs of the two lower nets are then sent to the
third ANN that acts as a merger and gives the attribute-state
posterior probability of the target speech attribute. Figure 1
shows the detector architecture in detail.
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Fig. 2. Remaining variance after PCA. Comparing stacked
context sizes 5, 8, 12, 20 and 30 frames.

2.2. Long-term Attribute Extraction

Each attribute detector outputs probabilities p(H
(i)
target|f),

p(H
(i)
anti|f) and p(H

(i)
noise|f), of target class i, non-target

and noise model, given a speech frame f . All these prob-
abilities sum to one. We then form a new feature vector x
by concatenating each of these posteriors of each six tar-
get classes. Since language and dialect recognizers benefit
from an inclusion of long temporal context, it is natural to
study similar ideas for attribute modeling. The first idea is
to compute SDCs from the attribute features, treating them
analogous to cepstral coefficients. But since this is diffi-
cult to interpret, we study a simple feature stacking. To this
end, let x(t) denote the 18-dimensional (6 attributes × 3
features) attribute vector at frame t. We form a sequence
of new p = 18 × C dimensional stacked vectors x̃C(t) =
(x(t)∗,x(t+ 1)∗, . . . ,x(t+C − 1)∗)∗, t = 1, 2, . . . , where
C is the context size and ∗ stands for transpose. Principal
component analysis (PCA) is used to project each x̃C(t) onto
the first d � p eigenvectors corresponding to the largest
eigenvalues of the sample covariance matrix. We estimate the
PCA basis from the same data as the UBM and the T-matrix,
after VAD.We set d to retain 99 % of the cumulative variance.
As Fig. 2 indicates, d varies from ∼20 to ∼100, with larger
dimensionality assigned to longer context as one expects.

3. RECOGNIZING FOREIGN ACCENTS

3.1. I-vector Modeling

We now shortly review i-vector extraction. It is grounded
on the universal background model (UBM), which is a
M -component Gaussian mixture model parametrized by
{wm,mm,Σm},m = 1, . . . ,M , where we have mixture
weight, mean vector and covariance matrix, respectively.
We here restrict the covariance matrix to be diagonal. The
i-vector model is defined for the UBM component m as [10]:

sm = mm + V my + εm, (1)

where V m is the sub-matrix of the total variability matrix,
y is the latent vector, called an i-vector, εm is the residual
term and sm is the m’th sub-vector of the utterance depen-
dent supervector. The εm is distributed as N (0,Σm), where



Σm is a diagonal matrix. Given all these definitions, poste-
rior density of the y, given the sequence of observed feature
vectors, is Gaussian. Expectation of the posterior is the ex-
tracted i-vector. Hyperparameters of the i-vector model, mm

and Σm are copied directly from UBM and V m are estimated
by EM algorithm from the same corpus as is used to estimate
the UBM.

3.2. Scoring against Accent Models

We use cosine scoring [23] between two i-vectors ytest and
ytarget to match test utterance to target L2 language model.
Cosine score is given by the dot product 〈ŷtest, ŷtarget〉,

score(ytest,ytarget) =
ŷT
test . ŷtarget

‖ŷtest‖ ‖ŷtarget‖
, (2)

where A is the HLDA projection matrix trained by using all
training utterances and ŷtest is,

ŷtest = ATytest. (3)

In order to model ŷtarget, we followed the same strategy used
in [4], where ŷtarget is defined as

ŷtarget =
1

Nd

Nd∑

i=1

ŷid, (4)

whereNd is the number of training utterances in dialect d, and
ŵi is the projected i-vector of training utterance i for accent
d computed the same way as in (3).

4. EXPERIMENTAL SETUP

4.1. Corpora

The “stories” part of the OGI Multi-language telephone
speech corpus [24] was used to train the articulatory de-
tectors. This corpus has phonetic transcriptions for six lan-
guages: English, German, Hindi, Japanese, Mandarin, and
Spanish. Data from each language were pooled together to
obtain: 5.57 hours for the training set, and 0.52 hours for the
validation set.

A series foreign accent recognition experiments was per-
formed on the FSD corpus [25] which was developed to as-
sess Finnish language proficiency among adults of different
nationalities. These selected the oral responses portion of the
exam, corresponding to 18 foreign accents. Since the number
of utterances is small, 9 accents — Russian, Albanian, Arabic,
Chinese, English, Estonian, Kurdish, Spanish, and Turkish —
with enough available data were used. The unused accents
are, however, used in training the UBM and the Vm-matrices.
For our purposes, each accent set is randomly split into a test
and a train set. The test set consists of (approximately) 30% of
the utterances, while the training set consists of the remaining

Table 1. Train and test file distributions in the FSD corpus.

Accent #train files #test files #speakers
Spanish 60 25 15
Albanian 67 30 19
Kurdish 83 35 21
Turkish 84 34 22
English 92 37 23
Estonian 153 63 38
Arabic 166 67 42
Russian 599 211 235

Table 2. Sliding window context experiments with PCA as a
dimensionality reduction.

PCA features Pooled EER (%) Cavg × 100

(C = 5, d = 23) 10.65 4.82
(C = 20, d = 50) 10.44 4.71
(C = 30, d = 96) 8.73 4.47

70% to train foreign accent recognizers. The raw audio files
were partitioned into 30 sec chunks and re-sampled to 8 KHz.
Statistics of the test and train portions are shown in Table 1.

4.2. Attribute Detector Design

One-hidden-layer feed forward multi-layer perceptrons (MLPs)
were used to implement each attribute detector shown in Fig-
ure 1. The number of hidden nodes with a sigmoidal activa-
tion function is 500. MLPs were trained to estimate attribute
posteriors, and the training data were separated into “feature
present,” “feature absent,” and “other” regions for every pho-
netic class used in this work. The classical back-propagation
algorithm with a cross-entropy cost function was adopted
to estimates the MLP parameters. To avoid over-fitting, the
reduction in classification error on the development set was
adopted as the stopping criterion. The attribute detectors
employed in this work were actually just those used in [21].

4.3. Evaluation Protocol

System performance is reported in terms of equal error rate
(EER) and average detection cost (Cavg) [5]. Results are re-
ported per each accent for a cosine scoring classifier. Cavg is
defined as [5],

Cavg =
1

J

M∑

j=1

CDET(Lj), (5)

where CDET(Lj) is the detection cost for subset of test seg-
ments trials for which the target accent is Lj and J is the



Table 3. Summary of results and compared against baseline
spectral system, results are shown in pooled EER and Cavg.

Features (dimensionality) Pooled EER (%) Cavg × 100

SDC+MFCC(56) 15.00 7.00
Attribute(18) 12.54 5.07

Attribute+∆(36) 11.33 4.79
Attribute+∆+∆∆(54) 11.00 4.59

PCA features(96) 8.73 4.47

number of target languages. The per target accent cost is then,

CDET(Lj) = CmissPtarPmiss(Lj)

+ Cfa(1− Ptar)
1

J − 1

∑

k 6=j

Pfa(Lj , Lk).(6)

The miss probability (or false rejection rate) is denoted by
Pmiss, i.e., a test segment of accent Li is rejected as being
in that accent. On the other hand Pfa(Li, Lk) denotes the
probability when a test segment of accent Lk is accepted as
being in accent Li. It is computed for each target/non-target
accent pairs. Measures, Cmiss and Cfa, are costs of making
errors and both were set to 1. Ptar is the prior probability of
a target accent and was set to 0.5.

5. EXPERIMENTS AND RESULTS

First we experimented with different context sizes (C =
5, 20, 30). Feature vectors were concatenated and PCA di-
mensionality reduction was trained on the held out data.
Output dimensionality (d) was set to retain 99% percent of
the cumulative variance. In Table 2 we see that increasing
the context size from 5 to 30 will decrease the both pooled
EER and Cavg. We also attempted to use context as large as
40 frames, which resulted to a numerical problems in UBM
computation. Output dimensionality of 124 was too large
with respect to the available data, so we observed singular
Gaussian components.

We applied the context size 30 to the following experi-
ments (see Table 3). We contrasted the above mentioned sys-
tem to the baseline SDC+MFCC based system in [1]. In addi-
tion to sliding window based context modeling, we also em-
ploy standard ∆ and ∆∆ to attribute feature vectors. We no-
tice that increasing the context size using ∆ and ∆∆ features
improves marginally over not using the context at all. A large
30-frame context brought forth an improvement. All systems
based on speech attributes improved substantially over the
baseline. In Table 4 we show the per target accent error rates,
in EER and CDET. We notice that there is a large variation in
error rates, where Turkish and Albanian are easiest and Rus-
sian and Estonian are the hardest to recognize.

We also studied the relative importance of individual
speech attributes to system performance in Fig. 3. No context
was used, so raw pooled EER is 12.54%. We left out one by

Table 4. Per-language results for PCA features (30,96). The
results are given in EER and CDET.

Features EER (%) CDET × 100
Spanish 9.00 4.10
Turkish 3.82 2.01

Albanian 4.34 2.48
English 8.11 4.20
Arabic 7.46 4.04
Russian 15.54 8.17
Kurdish 8.57 4.67
Estonian 12.70 6.11
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Fig. 3. Exclusion experiment, where relative change is shown
when one attribute is left out.

one all attributes, so we had 15-dimensional feature vectors.
We noticed that voicing, stop and vowels are individually
beneficial (leaving any one of them out will decrease the
system performance). On the other hand, glide, nasal and
fricative are not individually useful. We also noticed that in
terms of conclusions, pooled EER and Cavg agree. Useful-
ness of vowels in contrast to other features can be explained
by the fact that Finnish has a very large vowel space (with 8
vowels) including vowel lengthening. It can create difficulties
for L2 speakers to hit the correct vowel target, thus showing
the L1 influence.

6. CONCLUSION

We proposed speech attributes as features for foreign accent
recognition. Instead of using speech attributes directly in a
phonotactic system, we modeled the sequence of speech at-
tribute feature vectors using the i-vector methodology. The
key idea is to treat foreign accent recognition as a language
recognition task and use universal speech attributes. Speech
attributes are employed because their statistics can differ con-
siderably from one language to another. Indeed, all attribute
feature configurations improved over the spectral-only base-
line system. Moreover, adding context information allowed
substantially better results. So far, we have only used man-
ner of articulation features, yet place of articulation can fur-
ther enhance accent recognition performance, as shown in
[16]. As a future work, experiments on English foreign ac-
cent recognition will be carried out. Furthermore, the possi-
ble beneficial effect of combining SDC- and attribute-based
information will be investigated.
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Abstract
We adopt automatic language recognition methods to study di-
alect levelling — a phenomenon that leads to reduced struc-
tural differences among dialects in a given spoken language. In
terms of dialect characterisation, levelling is a nuisance variable
that adversely affects recognition accuracy: the more similar
two dialects are, the harder it is to set them apart. We address
levelling in Finnish regional dialects using a new SAPU (Sa-
takunta in Speech) corpus containing material from Satakunta
(South-Western Finland) between 2007 and 2013. To define
a compact and universal set of sound units to characterize di-
alects, we adopt speech attributes features, namely manner and
place of articulation. It will be shown that speech attribute dis-
tributions can indeed characterise differences among dialects.
Experiments with an i-vector system suggest that (1) the at-
tribute features achieve higher dialect recognition accuracy and
(2) they are less sensitive against age-related levelling in com-
parison to traditional spectral approach.
Index Terms: Finnish language, dialect levelling, social fac-
tors, native dialects, dialect detection, attributes detection, i-
vector modelling.

1. Introduction
Dialect refers to linguistic variations of a standard spoken lan-
guage [1]. Over the years, stereotypical differences among
dialects of the same spoken language have become smoother
and smoother [2] due several co-occurring factors such as lan-
guage standardisation, industrialisation (increased people mo-
bility) and modernisation (mass media diffusion) [2, 3]. The
reduction of peculiar differences among dialects is referred to
as levelling [4, 5]. Levelling is a common phenomenon in lan-
guages. For example, the effect of levelling due to language
standardisation can be seen in the phoneme /d/ that is a stan-
dard variant in Finnish and also in Pori and Rauma dialects. It
has dialectal phonemes in all other dialects of this region, but
shows levelling for instance in Honkilahti. That is, Honkilahti
has been influenced by the standard Finnish.

In fact, spoken sentences produced by speakers of regional
dialects may still be characterised by dialect-specific cues, but
levelling weakens such cues, making automatic dialect recog-
nition a hard task. In our task of dialect characterisation, we
consider levelling to be a nuisance factor to be compensated
for. The problem is analogous to foreign accent recognition
[6, 7, 8, 9], where the speakers’s second language (L2) masks
his mother tongue (L1).

Automatic dialect recognition is traditionally treated as
a language recognition problem. State-of-the-art language
recognition techniques, either acoustic [10, 11] or phonotac-
tic [12, 13, 14] ones, can be applied to regional dialect recog-
nition [15, 16]. Although the former techniques have recently
proven to attain better language recognition performance [17]
by embedding acoustic spectral features within the i-vector
framework, there are linguistic and paralinguistic cues (e.g.,
speaker’s age, vocal tract articulators) which can be used for
dialect discrimination. We, therefore, propose an articulatory-
motivated features with an i-vector method. More specifically,
so-called automatic speech attribute transcription (ASAT) ap-
proach [18, 19, 20, 21, 22] is adopted in order to generate the
features of interest for this work, and a bank of detectors is built
to detect the presence of speech attributes in a given segment
of speech. The speech attributes chosen represent a language-
universal set of units, namely manner and place of articulation
classes, detected with the help of artificial neural networks.

Indeed, we have already demonstrated that by coupling
universal attribute detectors and a state-of-the-art i-vector ap-
proach, Finnish foreign accents can be accurately discrimi-
nated [7]. Furthermore, ASAT speech attributes have been
proven useful in automatic language recognition tasks [23] and
cross-language recognition of ”unseen” languages using mini-
mal training data from the target languages [24]. The universal-
ity of our speech attributes can be better appreciated by thinking
of that our detectors were not built using ad-hoc Finnish mate-
rial. In fact, the set of attribute detectors is one used to carry
out the independent language recognition experiments reported
in [24].

A recently-collected SAPU (Satakunta in Speech) corpus
is used to validate our approach. The SAPU corpus includes 8
Finnish sub-dialects or regional dialects and hundreds of speak-
ers. The SAPU Corpus was collected in an interview setting,
where subjects interacted with the interviewer in a conversa-
tional way. However, interviewer’s speech is included in the
recording, so needed to be removed by using speaker diariza-
tion.

We study three levelling factors: age, gender and place of
birth. We first investigate how levelling affects dialect recogni-
tion accuracy. Then, the strength of levelling as a function of
the speaker’s age is investigated. We hypothesize that younger
speakers might have lost some of the stereotypical features of
their regional dialect, which might still be clear in older speak-
ers of the same region.

Copyright © 2014 ISCA 14-18 September 2014, Singapore
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2. System description
2.1. Attribute detection

The collection of information embedded into the speech sig-
nal, referred to as attributes of speech, also includes the speaker
profile encompassing gender, accent, emotional state and other
speaker characteristics, which may come useful to automati-
cally uncover the speaker’s dialect in a spoken utterance. In-
deed, speakers from different regions of a same country may
pronounce/produce nasal sounds with diverse acoustic charac-
teristics. Moreover, speakers may also use speech patterns (i.e.,
conventions of vocabulary, pronunciation, grammar, and usage
of certain words) that differ from region to region of the same
nation. In this work, the speech attributes of interest are mainly
phonetic features, and a bank of speech attribute detectors is
built to automatically extract phonetic information from the
speech signal. Specifically, five manner of articulation classes
(glide, fricative, nasal, stop, and vowel), nine place of articu-
lation classes (coronal, dental, glottal, high, labial, low, mid,
retroflex, and velar), and voicing are used. Those attributes
could be identified from a particular language and shared across
many different languages, so they could also be used to de-
rive a universal set of speech units. Furthermore, data-sharing
across languages at the acoustic phonetic attribute level is natu-
rally facilitated by using these attributes, and reliable language-
independent acoustic parameter estimation can be anticipated
[24].

Each detector is individually designed for modelling a par-
ticular speech attribute, and it is built employing three single
hidden layer feed-forward multi-layer perceptrons (MLPs) hi-
erarchically organised as described in [25]. These detectors are
trained on sub-band energy trajectories that are extracted with
a 15 band uniform Mel-frequency filterbank. For each critical
band a window of 310ms centred around the frame being pro-
cessed is considered and split in two halves: left-context and
right-context [26]. Two independent front-end MLPs (“lower
nets“) are designed on those two halves and deliver left- and
right-context speech attribute posterior probabilities, respec-
tively. Usually, the discrete cosine transform is applied to the
input of these lower nets to reduce dimensionality. The outputs
of the two lower nets are then sent to the third MLP that acts
as a merger and gives the attribute-state posterior probability of
the target speech attribute.

Overall, each detector converts an input speech signal into
a time series which describes the level of presence (or level of
activity) of a particular property of an attribute, or event, in the
input speech utterance over time. By using MLPs, the posteriori
probability of the particular attribute, given the speech signal,
is computed. Articulatory detectors are trained using the same
corpus as in [7].

2.2. I-vector modelling

I-vector modelling is rooted on Bayesian factor analysis tech-
nique which forms a low-dimensional total variability space
containing both speaker and channel variabilities [27]. In
this approach, universal background model (UBM), which is
a M -component Gaussian mixture model parameterised by
{wm,mm,Σm},m = 1, . . . ,M , where we have mixture
weight, mean vector and covariance matrix, respectively. We
restrict the covariance matrices to be diagonal. The i-vector
model is defined for the UBM component m as [27]:

sm = mm +Vmy + εm, (1)

where Vm is the sub-matrix of the total variability matrix, y
is the latent vector, called an i-vector, εm is the residual term
and sm is the m’th sub-vector of the utterance dependent su-
pervector. The εm is distributed as N (0,Σm), where Σm is a
diagonal matrix. Given all these definitions, posterior density of
the y, given the sequence of observed feature vectors, is Gaus-
sian. Expectation of the posterior is the extracted i-vector. Hy-
perparameters of the i-vector model, mm and Σm, are copied
directly from the UBM and Vm are estimated by the expecta-
tion maximization (EM) algorithm from the same corpus as is
used to estimate the UBM.

The cosine scoring method is used to compare wtest and
wtarget i-vectors [27]. Cosine score of two i-vectors wtest and
wtarget is computed as their inner product 〈wtest,wtarget〉, as

s(wtest,wtarget) =
ŵT

test ŵtarget

‖ŵtest‖ ‖ŵtarget‖
, (2)

where ŵtest is
ŵtest = ATwtest, (3)

and A is the heteroscedastic linear discriminant analysis
(HLDA) projection matrix [28] estimated from all training ut-
terances. Further, ŵtarget is defined for a given dialect as,

ŵtarget =
1

Nd

Nd∑

i=1

ŵid, (4)

where Nd is the number of training utterances in dialect d and
ŵid is the projected i-vector of training utterance i from di-
alect d, computed the same way as (3). Obtaining {sd, d =
1, . . . , N} scores for test utterances of dialect d, and total num-
ber of targeted models, N, scores are post-processed as [29]:

s′(d) = log
exp(sd)

1
N−1

∑
k �=d exp(sk)

(5)

s′(d) is the detection log-likelihood ratio and is used in the
detection task.

3. Evaluation setup
3.1. Corpora

SAPU (Satakunta in Speech) corpus have been used to perform
a series of experiments in this study. The data recorded in Sa-
takunta, in southwestern Finland 2007-2013, in an interview
setting. The topics were related to informants life and home
region. Currently, the corpus consists of 282 recordings (231
hours 31 minutes)1.

Satakunta region is divided into two distinctive dialectal re-
gions, Southwestern dialects and the dialects of Häme. For our
purposes, we selected 8 dialects — Luvia, Kokemäki, Honki-
lahti, Pori, Eurajoki, Rauma, Harjavalta, and Ulvila — with
enough available data. All the audio files were partitioned into
wave files of 30 seconds in duration, and downsampled to 8 kHz
sampling rate. Table 1 shows the train and test files distributions
within each dialects. There is no speaker overlap between train-
ing and test files.

1Corpus is located at the University of Turku the Syntax Archives
server and is available by request.
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Table 1: Training and test files distribution in the SAPU corpus.

Dialect #Train files #Test files #Speakers
Luvia 386 315 31

Kokemäki 689 438 27
Honkilahti 845 413 24

Pori 341 289 15
Eurajoki 256 237 13
Rauma 237 64 9

Harjavalta 66 65 4
Ulvila 113 36 4

Figure 1: Speaker diarization scheme. S0 is the majority class
(interviewee) and S1 is the minority class (interviewer).

3.2. Diarization

Two speakers are generally involved in the interviews. Speaker
diarization [30] aims at 1) segmenting the audio stream into
speech utterances, and 2) grouping all utterances belonging to
the same speaker. In this study, diarization is mainly inspired
by [31]. After noise reduction2, a bidirectional audio source
segmentation is applied using both generalized likelihood ratio
(GLR) [32] and Bayesian information criterion (BIC). The re-
sulting segments serve as an initial set of clusters that feed the
clustering process.

This clustering is a variant of the Gaussian Mixture Model
(GMM) system widely used for speaker recognition. The uni-
versal background model (UBM) is trained using all speech ut-
terances from all recordings. To cope with short duration clus-
ters, only 32 Gaussian components are used. Finally, the major
cluster is selected and used for dialect recognition.

Fig. 1 shows the diarization scheme for a sample audio file.
For this example, S0 is the majority class (interviewee) and S1
is the minority class (interviewer).

3.3. Measurement metrics

System performance is reported in terms of equal error rate
(EER) and average detection cost (Cavg). EER corresponds to
the operating point where false alarm and miss probabilities are
equal. We report averaged EER across dialect-specific EERs.
Cavg is defined as,

Cavg =
1

J

M∑

j=1

CDET(Lj), (6)

where CDET(Lj) is the detection cost for subset of test seg-
ments trials for which the target dialect is Lj and J is the num-
ber of target languages. The per target dialect cost is computed

2http://www1.icsi.berkeley.edu/Speech/papers/qio/

as,

CDET(Lj) = CmissPtarPmiss(Lj)

+ Cfa(1− Ptar)
1

J − 1

∑

k �=j

Pfa(Lj , Lk)(7)

The miss probability (or false rejection rate) is denoted by
Pmiss, i.e., a test segment of dialect Li is rejected as being in
that dialect. On the other hand Pfa(Li, Lk) denotes the prob-
ability when a test segment of dialect Lk is accepted as being
in dialect Li. It is computed for each target/non-target dialect
pairs. Cmiss and Cfa are costs of making errors and both were
set to 1. Ptar is the prior probability of a target dialect and was
set to 0.5.

4. Results
4.1. Finnish dialect detection

We introduce speech attribute based systems in dialect recogni-
tion task and contrast it with baseline shifted delta cepstra and
Mel frequency cepstral coefficients (SDC+MFCC), and single
attribute (manner or place) system in Table 2. The parameters
and combination (SDC and MFCC) were optimised in [6]. We
also present results for attributes stacked across multiple frames.
That is, we stack the estimated attribute feature vectors (either
place or manner) across K neighboring frames to create a high-
dimensional context feature vector. As discussed in detail in [7],
the dimensionality of the context vector is reduced with princi-
pal component analysis (PCA). The PCA bases are trained from
the same utterances as the universal background model (UBM),
with 99% variance retained by the leading eigenvectors. In this
work, we found that the PCA of context size C = 10 gives
the best result on attributes. The PCA manner outperforms the
baseline SDC+MFCC by 25% relative improvement consider-
ing Cavg. It also outperforms single manner and place attributes
by 15% and 23% relative improvements, respectively. The place
PCA is found not to be effective. This seems to contradict our
earlier finding on another corpus [7]. While the exact reason is
presently unknown, we note that the automatically determined
PCA dimensionality for place attributes is smaller than in [7].

Literature of regional automatic dialect recognition is lim-
ited. In a study by DeMarco and Cox [15], SDC based i-vector
system was used to classify fourteen British accents resulting
32% Iderr, which is comparable to 36% Iderr in Table 2. Later
they improved the error rate to 19% by a very large scale fu-
sion [16].

Table 2: Summary of results and compared against baseline
spectral system, results are shown in average EER (Avg EER),
Cavg and identification error rate (Iderr). C and d are context
size and feature dimensionality, respectively.

Features (dimensionality) Avg EER (%)Cavg × 100Iderr (%)
SDC+MFCC (56) 14.20 5.31 36.08

Manner (18) 13.47 4.76 29.88
Place (27) 16.12 5.18 34.16

Manner+Place (45) 13.67 4.58 29.16
PCA Manner (C=10,d=30) 12.52 4.00 29.01
PCA Place (C=10,d=13) 17.60 5.64 37.65
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4.2. Levelling analysis

Here, we will further analyze the averaged detection results in
terms of age groups. Fig. 2 presents the results per age group;
that is, we choose a subset of original trials constrained to a
given age group. We notice that the dialect in the younger age
groups is considerably more difficult recognize than in the older
age groups. The result indicates that the dialect of younger
speakers has levelled. On the other hand, PCA manner con-
siderably outperforms baseline SDC+MFCC for the youngest
age group. It implies that attribute system is robust against the
age related levelling for younger speakers.

[11-20] [21-30] [31-40] [41-50] [51-60]0

1

2

3

Age group

C
av

g
*

10
0

SDC+MFCC
Manner
PCA manner

Figure 2: Cavg at different age groups.

We investigated more closely the cuts in the age group 11-
20 that are correctly recognized by PCA Manner but incorrectly
recognized by the spectral system, totalling 83 cuts from 19 dif-
ferent individuals. We show the example in Fig. 3, of one 30
seconds cut from a female speaker who is from Honkilahti mu-
nicipality, however, in this cut she is recognized as being from
Rauma by the spectral system. In this example, she says ”mum
mielest se” (in my opinion), where we notice word-final /n/ as-
similated to bilabial nasal /m/. This would not happen in the
Pori region dialects. Such an assimilation is typical for all the
Southwestern Dialects (including Luvia and when preceded by
bilabial phoneme /m/ Honkilanti). Of three detector scores per
attribute we show here only the target score for clarity. We no-
tice the nasal component is strong in the middle /m/, where di-
alectal difference shows.

Fric

Glide

Nasal

Stop

Voiced

Vowel
m u m i e

Figure 3: Target detection scores for the Manner of articulation
detectors shown for the portion of ”mum mielest se” (in my
opinion).

It is interesting to see how much the attribute detection er-
rors affect the dialect recognition performance for age group
between 11 to 20 years old. Table 3 shows the confusion matrix
of PCA manner system for this age group. Honkilahti is of-
ten misclassified as being Kokemäki, Pori, Eura; and Kokemäki
being often misclassified as Ulvila. For Honkilahti dialects, the
misclassification comes from the common prosodic features. on
the other hand, Ulvila and Kokemäki are both Häme dialects.

Fig.4 shows how Cavg is affected by gender and region of

Table 3: Confusion matrix of PCA manner system for age group
between 11 and 20 years old. (There are no Eue, Rau and Har
test utterances available for this age group.)

Predicted label 
Luv Kok Hon Por Eur Rau Har Ulv 

T
ru

e 
la

be
l Luv 35 3 7 4 6 10 1 1 

Kok 21 30 18 23 16 2 23 27 
Hon 23 41 168 48 57 23 24 20 
Por 7 0 8 23 8 0 1 6 
Ulv 2 7 7 3 0 1 1 9 

birth for different systems. The dialectal differences of females
is easier to recognize than for males. Similar to age analy-
sis, PCA manner outperforms baseline SDC+MFCC and man-
ner system. According to [33], various phonological and lexi-
cal forms and the syntactic-pragmatic features identified occur
more often in women’s than men’s speech. Taking region of
birth, results disagree with the common notion that those living
in their home region have stronger dialects than those who have
migrated from their home region. According to [34], language
use of some migrated speakers show great situational varia-
tion. While there are always significant differences between the
speakers of the same community, sometimes migrated speakers
may speak even more dialectically. This kind of dialectal boost-
ing appears specially in emphatic and affective occasions, when
speaker talks with another person from the same region about
the home region and people living there. The recordings of this
corpus were recorded by the assistants born and raised in the
same region.

SDC+MFCC Manner PCA manner
0

1

2

3

4

5

6
Cavg vs. gender

C av
g

*1
00

SDC+MFCC Manner PCA manner
0

1

2

3

4

5

6
Cavg vs. region of birth

Same dialect as
region of birth
Different dialect with
region of birth

Female
Male

Figure 4: Cavg per gender and region of birth.

5. Conclusion
In this paper, we experimented with regional dialect recognition
task. In terms of absolute error rates, it was shown to be a diffi-
cult task. There are two major sources of difficulty, differences
between regional dialects are very small and the dialects are
affected by the levelling phenomenon. Three levelling effects,
age, gender and region of birth were studied in this paper. We
showed that manner of articulation based recognition system
can efficiently compensate the age levelling effect in Finnish
dialect recognition. Furthermore, adding context information to
manner attributes considerably improved the results.
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[26] P. Schwarz, P. Matějaka, and J. Cernock, “Hierarchical struc-
tures of neural networks for phoneme recognition,” in ICASSP,
Toulouse, France, 2006, pp. 325–328.

[27] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech and Language Processing, pp. 788–798,
2011.

[28] M. Loog and R. P. W. Duin, “Linear dimensionality reduction
via a heteroscedastic extension of LDA: The chernoff criterion,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, pp. 732–739, 2004.

[29] N. Brummer and D. Van Leeuwen, “On calibration of language
recognition scores,” in Speaker and Language Recognition Work-
shop, 2006. IEEE Odyssey 2006: The, June 2006, pp. 1–8.

[30] X. Anguera Miro, S. Bozonnet, N. Evans, C. Fredouille, G. Fried-
land, and O. Vinyals, “Speaker diarization: A review of recent
research,” Audio, Speech, and Language Processing, IEEE Trans-
actions on, vol. 20, no. 2, pp. 356–370, Feb 2012.

[31] E. Khoury, C. Senac, and J. Pinquier, “Improved speaker diariza-
tion system for meetings,” in Acoustics, Speech and Signal Pro-
cessing, 2009. ICASSP 2009. IEEE International Conference on.
IEEE, 2009, pp. 4097–4100.

[32] C. Barras, X. Zhu, S. Meignier, and J. Gauvain, “Multistage
speaker diarization of broadcast news,” Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, vol. 14, no. 5, pp. 1505–
1512, Sept 2006.

[33] R. Lakoff, Language and woman’s place, ser. Harper colophon
books. Harper & Row, 1975.

[34] P. Nuolijrvi, Kieliyhteisn vaihto ja muuttajan identiteetti., ser. Ti-
etolipas. Helsinki: SKS., 1986.

2169



Paper IV
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i-Vector Modeling of Speech Attributes for
Automatic Foreign Accent Recognition
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Abstract—We propose a unified approach to automatic foreign
accent recognition. It takes advantage of recent technology
advances in both linguistics and acoustics based modeling tech-
niques in automatic speech recognition (ASR) while overcom-
ing the issue of a lack of a large set of transcribed data
often required in designing state-of-the-art ASR systems. The
key idea lies in defining a common set of fundamental units
“universally” across all spoken accents such that any given
spoken utterance can be transcribed with this set of “accent-
universal” units. In this study, we adopt a set of units describing
manner and place of articulation as speech attributes. These
units exist in most spoken languages and they can be reliably
modeled and extracted to represent foreign accent cues. We
also propose an i-vector representation strategy to model the
feature streams formed by concatenating these units. Testing
on both the Finnish national foreign language certificate (FSD)
corpus and the English NIST 2008 SRE corpus, the experimental
results with the proposed approach demonstrate a significant
system performance improvement with p-value < 0.05 over those
with the conventional spectrum-based techniques. We observed
up to a 15% relative error reduction over the already very
strong i-vector accented recognition system when only manner
information is used. Additional improvement is obtained by
adding place of articulation clues along with context information.
Furthermore, diagnostic information provided by the proposed
approach can be useful to the designers to further enhance the
system performance.

Index Terms—Attribute detectors, i-vector system, Finnish
corpus, English corpus.

I. INTRODUCTION

AUTOMATIC foreign accent recognition is the task of
identifying the mother tongue (L1) of non-native speak-

ers given an utterance spoken in a second language (L2) [1].
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The task attracts increasing attention in the speech community
because accent adversely affects the accuracy of conventional
automatic speech recognition (ASR) systems (e.g., [2]). In
fact, most existing ASR systems are tailored to native speech
only, and recognition rates decrease drastically when words
or sentences are uttered with an altered pronunciation (e.g.,
foreign accent) [3]. Foreign accent variation is a nuisance
factor that adversely affects automatic speaker and language
recognition systems as well [4], [5]. Furthermore, foreign
accent recognition is a topic of great interest in the areas
of intelligence and security, including immigration screening
and border control sites [6]. It may help officials detect a
fake passport by verifying whether a traveler’s spoken foreign
accent corresponds to accents spoken in the country he claims
he is from [6]. Finally, connecting customers to agents with
similar foreign accent in targeted advertisement applications
may help create a more user-friendly environment [7].

It is worth noting that foreign accents differ from re-
gional accents (dialects), since the deviation from the standard
pronunciation depends upon the influence that L1 has on
L2 [8]. Firstly, non-native speakers tend to alter some phone
features when producing a word in L2 because they only
partially master its pronunciation. To exemplify, Italians often
do not aspirate the /h/ sound in words such as house, hill,
and hotel. Moreover, non-native speakers can also replace an
unfamiliar phoneme in L2 with the one considered as the
closest in their L1 phoneme inventory. Secondly, there are
several degrees of foreign accent for the same native language
influence according to L1 language proficiency of the non-
native speaker [9], [10]: non-native speaker learning L2 at
an earlier age can better compensate for their foreign accent
factors when speaking in L2 [11].

In this study, we focus on automatic L1 detection from spo-
ken utterances with the help of statistical pattern recognition
techniques. In the following, we give a brief overview and
current state-of-the-art methods before outlining our contri-
butions. It is common practice to adopt automatic language
recognition (LRE) techniques to the foreign accent recognition
task. Indeed, the goal of an LRE system is to automatically
detect the spoken language in an utterance, which we can
parallel with that of detecting L1 in an L2 utterance. Automatic
LRE techniques can be grouped into to main categories: token-
based (a.k.a, phonotactic) and spectral-based ones. In the
token-based approach, discrete units/tokens, such as phones,
are used to describe any spoken language. For example,
parallel phone recognition followed by language modeling
(PPRLM) [12] approach employs a bank of phone recognizers
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Fig. 1: An example showing the detection score differences in the three selected attributes from a Hindi and a Finnish speaker.
Both speakers utter the same sentence ’Finland is a land of interesting contrasts’. Speech segments are time-aligned with
dynamic time warping (DTW). The Finnish speaker shows higher level of activity in fricative in comparison to the Hindi
speaker. However, in the Hindi speech utterance, the level of activity in stop is higher than in the Finnish utterance.

to convert each speech utterance into a string of tokens. In the
spectral-based approach a spoken utterance is represented as a
sequence of short-time spectral feature vectors. These spectral
vectors are assumed to have statistical characteristics that
differ from one language to another [13], [14]. Incorporating
temporal contextual information to the spectral feature stream
has been found useful in the language recognition task via
the so-called shifted-delta-cepstral (SDC) features [15]. The
long-term distribution of language-specific spectral vectors is
modeled, in one form or another, via a language- and speaker-
independent universal background model (UBM) [16]. In the
traditional approaches [16], [17], language-specific models are
obtained via UBM adaptation while the modern approach
utilizes UBMs to extract low-dimensional i-vectors [18]. I-
vectors are convenient for expressing utterances with varying
numbers of observations as a single vector that preserves
most utterance variations. Hence, issues such as session nor-
malization are postponed to back-end modeling of i-vector
distributions.

Table I shows a summary of several studies on foreign
accent recognition. In [1], the accented speech is charac-
terized using acoustic features such as frame power, zero-
crossing rate, LP reflection coefficients, autocorrelation lags,
log-area-ratios, line-spectral pair frequencies and LP cepstrum
coefficients. 3-state hidden Markov models (HMMs) with
a single Gaussian density were trained from these features
and evaluated on spoken American English with 5 foreign
accents reporting 81.5% identification accuracy. The negative
effects of non-native accent in ASR task were studied in
[19]. Whole-word and sub-word HMMs were trained on either
native accent utterances or a pool of native and non-native
accent sentences. The use of phonetic transcriptions for each
specific accent improved speech recognition accuracy. An
accent dependent parallel phoneme recognizer was developed
in [20] to discriminate native Australian English speakers and
two migrant speaker groups with foreign accents, whose L1’s

were either Levantine Arabic or South Vietnamese. The best
average accent identification accuracies of 85.3% and 76.6%
for accent pair and three accent class discrimination tasks were
reported, respectively. A text-independent automatic accent
classification system was deployed in [5] using a corpus
representing five English speaker groups with native American
English, and English spoken with Mandarin Chinese, French,
Thai and Turkish accents. The proposed system was based
on stochastic and parametric trajectory models corresponding
to the sequence of points reflecting movements in the speech
production caused by coarticulation. This system achieved an
accent classification accuracy of 90%.

All the previous studies used either suprasegmental model-
ing, in terms of trajectory model or prosody, or phonotactic
modeling to recognize non-native accents. Recently, spectral
features with i-vector back-end were found to outperform
phonotactic systems in language recognition [18]. Spectral
features were first used by [21] in a L1 recognition task. The
non-native English speakers were recognized using multiple
spectral systems, including i-vectors with different back-ends
[21], [23]. The i-vector system outperformed other methods
most of the time, and spectral techniques based on i-vector
model are thus usually adopted for accent recognition. The
lack of large amount of transcribed accent-specific speech
data to train high-performance acoustic phone models hinders
the deployment of competitive phonotactic foreign accent
recognizers. Nonetheless, it could be argued that phonotactic
methods would provide valuable results that are informative
to humans [24]. Thus, a unified foreign accent recognition
framework that gives the advantages of the subspace mod-
eling techniques without discharging the valuable information
provided by the phonotactic-based methods is highly desirable.

The automatic speech attribute transcription (ASAT) frame-
work [25], [26], [27] represents a natural environment to make
these two above contrasting goals compatible, and is adopted
here as the reference paradigm. The key idea of ASAT is
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TABLE I: Summary of the previous studies on foreign accent recognition and the present study.

Study Spoken language #accents #speakers #utterances Features Model
Hansen and Arslan [1] American English 4 27 N/A Prosodic HMM
Teixeira et al. [19] British English 5 20 20 Phonotactic HMM
Kumpf and King [20] Australian English 3 67 3950 Phonotactic HMM
Angkititraku and Hansen [5] English 5 179 N/A Phoneme sequence Trajectory-model
Bahari et al. [21] English 5 265 359 Spectral GMM supervector
Behravan et al. [22], [10] Finnish 9 450 1973 Spectral i-vector modeling
Present study Finnish (FSD) 8 415 1644 Attributes i-vector modeling
Present study English (NIST) 7 348 1262 Attributes i-vector modeling

to use a compact set of speech attributes, such as fricative,
nasal and voicing to compactly characterize any L2 spoken
sentence independently of the underlying L1 native language.
A bank of data-driven detectors generates attribute posterior
probabilities, which are in turn modeled using an i-vector
back-end, treating the attribute posteriors as acoustic features.
A small set of speech attributes suffices for a complete
characterization of spoken languages, and it can therefore
be useful to discriminate accents [28]. For example, some
sister languages, e.g., Arabic spoken in Syria and Iraq, only
have subtle differences that word-based discrimination usually
does not deliver good results. In contrast, these differences
naturally arise at an attribute level and can help foreign accent
recognition. Robust universal speech attribute detectors can
be designed by sharing data among different languages, as
shown in [29], and that bypasses the lack of sufficient labeled
data for designing ad-hoc tokenizers for a specific L1/L2
pair. Indeed, the experiments reported in this work concern
detecting Finnish and English foreign accented speech, even
though the set of attribute detectors was originally designed
to address phone recognition with minimal target-specific
training data [29]. Although speech attributes are shared across
spoken languages, the statistics of the attributes can differ
considerably from one foreign accent to another, and these
statistics improve discrimination [30]. This can be appreciated
by visually inspecting Figure 1, which shows attribute detec-
tion curves from Finnish and Hindi speakers. Although both
speakers uttered the same sentence, namely “Finnish is a land
of interesting contrasts,” differences between corresponding
attribute detection curves can be observed: (i) the fricative
detection curve tends to be more active (i.e. stays close to 1)
in Finnish speaker than in Hindi, (ii) the stop detection curve
for the Hindi speaker more often remains higher (1 or close to
1) than that for the Finnish speaker, (iii) approximant detection
curve seem instead to show similar level of activity for both
speakers.

In this work, we significantly expand our preliminary find-
ings on automatic accent recognition [31] and re-organize
our work in a systematic and, self-contained form that pro-
vides a convincing case why universal speech attributes are
worthwhile of further studies in accent characterization. The
key experiments, not available in [31], can be summarized as
follows: (i) we have investigated the effect of heteroscedastic
linear discriminant analysis (HLDA) [32] dimensionality re-
duction on the accent recognition performance and compared
and contrasted it with linear discriminant analysis (LDA), (ii)
we have studied training and test duration effects on the overall

system performance, and (iii) we have expanded our initial
investigation on Finnish data by including new experiments
on English foreign accent. Even if the single components
have been individually investigated in previous studies, e.g.,
[30], [33], [18], the overall architecture (combining the com-
ponents) presented in this paper, as well as its application to
foreign accent recognition, are novel. The key novelty of our
framework can be summarized as follows: (i) speech attributes
extracted using machine learning techniques are adopted to
the foreign accent recognition task for the first time, (ii)
a dimensionality reduction approach is used for capturing
temporal context and exploring the effect of languages, (iii)
the i-vector approach is successfully used to model speech
attributes. With respect to point (iii), Diez et al. [34], [35]
proposed a similar solution but to address a spoken language
recognition task, namely they used log-likelihood ratios of
phone posterior probabilities within the i-vector framework.
Although Diez et al.’s work has some similarities with ours,
there are several implementation differences in addition to the
different addressed task: (i) we describe different accents using
a compact set of language independent attributes, which over-
comes high computational issues caused by high-dimension
posterior scores, as mentioned in [34], (ii), we introduce
context information by stacking attribute probability vectors
together, and we then capture context variability directly in the
attribute space, and (iii) we carry out i-vector post-processing
to further improve accents discriminability. Moreover, useful
diagnostic information can be gathered with our approach, as
demonstrated in Section IV-D.

Finally in [22], [10], the authors demonstrated that i-vector
modeling using SDCs outperforms conventional Gaussian
mixture model - universal background model (GMM-UBM)
system in recognizing Finnish non-native accents. The method
proposed in [10] is here taken to build a reference baseline
system to compare with. We evaluate effectiveness of the pro-
posed attribute-based foreign accent recognition system with a
series of experiments on Finnish and English foreign accented
speech corpora. The experimental evidence demonstrates that
the proposed technique compares favorably with conventional
SDC-MFCC with i-vector and GMM-UBM approaches. In
order to enhance accent recognition performance of the pro-
posed technique, several configurations have been proposed
and evaluated. In particular, it was observed that contextual
information helps to decrease recognition error rates.
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Fig. 2: Block diagram of the proposed system. In the attribute
detectors [29], [30], [27], spectral features are fed into left-
context and right-context artificial neural networks. A merger
then combines the outputs generated by those two neural
networks and produce the final attribute posterior probabilities.
Principal component analysis (PCA) is then applied on C
consecutive frames of these posterior probabilities to create
long-term contextual features. We use i-vector approach [33]
with cosine scoring [33] to classify target accents.

II. FOREIGN ACCENT RECOGNITION

Figure 2 shows the block diagram of the proposed system.
The front-end consists of attribute detectors and building long-
term contextual features via principal component analysis
(PCA). The features created in the front-end are then used
to model target foreign accents using a i-vector back-end. In
the following, we describe the individual components in detail.

A. Speech attribute extraction

The set of speech attributes used in this work are acoustic
phonetic features, namely, five manner of articulation classes
(glide, fricative, nasal, stop, and vowel), and voicing together
with nine place of articulation (coronal, dental, glottal,
high, labial, low, mid, retroflex, velar). Attributes could be
extracted from a particular language and shared across many
different languages, so they could also be used to derive a
universal set of speech units. Furthermore, data-sharing across
languages at the acoustic phonetic attribute level is naturally
facilitated by using these attributes, so more reliable language-
independent acoustic parameter estimation can be anticipated
[29]. In [30], it was also shown that these attributes can be
used to compactly characterize any spoken language along the
same lines as in the ASAT paradigm for ASR [27]. Therefore,
we expect that it can also be useful for characterizing speaker
accents.

B. Long-term Attribute Extraction

Each attribute detector outputs the posterior probability for
the target class i, p(H

(i)
target|f), non-target, p(H

(i)
anti|f), and

noise, p(H(i)
noise|f), class given a speech frame f . As proba-

bilities, they sum up to one for each frame. A feature vector
x is obtained by concatenating those posterior probabilities
generated by the set of manner/place detectors into a single
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Fig. 3: Remaining variance after PCA. Comparing stacked
context sizes (C) 5, 8, 12, 20 and 30 frames for manner
attributes. d varies from ∼20 to ∼100, with larger dimen-
sionality assigned to longer context sizes.

vector. The final dimension of the feature vector, x, is 18 in
the manner of articulation case, for example.

Since language and dialect recognizers benefit from the
inclusion of long temporal context [36], [16], it is natural
to study similar ideas for attribute modeling as well. A
simple feature stacking approach is adopted in this paper.
To this end, let x(t) ∈ Rn denote the 18-dimensional (6
manner attributes × 3) or 27-dimensional (9 place attributes
× 3) feature attribute vector at frame t. A sequence of
q = 18C (or q = 27C, for place) dimensional stacked vectors
x̃C(t) = (x(t)>,x(t+1)>, . . . ,x(t+C−1)>)>, t = 1, 2, . . . ,
is formed, where C is the context size, and > stands for
transpose. PCA is used to project each x̃C(t) onto the first
d � q eigenvectors corresponding to the largest eigenvalues
of the sample covariance matrix. We estimate the PCA basis
from the same data as the UBM and the T-matrix, after VAD,
with 50 % overlap across consecutive x̃C(t)’s. We retain 99
% of the cumulative variance. As Figure 3 indicates, d varies
from ∼20 to ∼100, with larger dimensionality assigned to
longer context as one expects.

C. I-vector Modeling

I-vector modeling or total variability modeling, forms a low-
dimensional total variability space that contains spoken con-
tent, speaker and channel variability [33]. Given an utterance,
a GMM supervector, s, is represented as [33],

s = m+ Tw, (1)

where m is the utterance- and channel-independent component
(the universal background model or UBM supervector), T
is a rectangular low rank matrix and w is an independent
random vector of distribution N (0, I). T represents the cap-
tured variabilities in the supervector space. It is estimated
by the expectation maximization (EM) algorithm similar to
estimating the speaker space in joint factor analysis (JFA) [37],
with the exception that every training utterances of a given
model is treated as belonging to different class. The extracted
i-vector is then the mean of the posterior distribution of w.

D. Inter-session Variability Compensation

As the extracted i-vectors contain both within- and between
accents variation, we used dimensionality reduction technique
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to project the i-vectors onto a space to minimize the within-
accent and maximize the between-accent variation. To per-
form dimensionality reduction, we used heteroscedastic linear
discriminant analysis (HLDA) [32], which is considered as
an extension of linear discriminant analysis (LDA). In this
technique, i-vector of dimension n is projected into a p-
dimensional feature space with p < n, using HLDA transfor-
mation matrix denoted by A. The matrix A is estimated by an
efficient row-by-row iteration with EM algorithm as presented
in [38].

Followed by HLDA, within-class covariance normalization
(WCCN) is then used to further compensate for unwanted
intra-class variations in the total variability space [39]. The
WCCN transformation matrix, B, is trained using the HLDA-
projected i-vectors obtained by Cholesky decomposition of
BB> = Λ−1, where a within-class covariance matrix, Λ,
is computed using,

Λ =
1

L

L∑

a=1

1

N

N∑

i=1

(wa
i −wa)(w

a
i −wa)

>, (2)

where wa is the mean i-vector for each target accent a, L is
the number of target accents and N is the number of training
utterances in target accent a. The HLDA-WCCN inter-session
variability compensated i-vector, ŵ, is calculated as,

ŵ = B>A>w. (3)

E. Scoring Against Accent Models

We used cosine scoring to measure similarity of two i-
vectors [33]. The cosine score, t, between the inter-session
variability compensated test i-vector, ŵtest, and target i-vector,
ŵtarget, is computed as the dot product between them,

t =
ŵ>test ŵtarget

‖ŵtest‖ ‖ŵtarget‖
, (4)

where ŵtarget is the average i-vector over all the training
utterances of the target accent, i.e.

ŵtarget =
1

N

N∑

i=1

ŵi, (5)

where ŵi is the inter-session variability compensated i-vector
of training utterance i in the target accent.

Obtaining scores {ta, a = 1, . . . , L} for a particular test
utterance of accent a, compared against all the L target accent
models, scores are further post-processed as,

t′a = log
exp(ta)

1
L−1

∑
k 6=a exp(tk)

, (6)

where t′a is the detection log-likelihood ratio, for a particular
test utterance of accent a, scored against all the L target
accent models.

III. EXPERIMENTAL SETUP

A. Baseline System

To compare the attribute system recognition performance,
two baseline systems were built. Both systems were trained
using 56 dimensional SDC (49)-MFCC (7) feature vectors and
they use the same UBM of 512 Gaussians. The first system is
based on the conventional GMM-UBM system with adaptation
similar to [16]. It uses 1 iteration to adapt the UBM to each
target model. Adaptation consists of updating only the GMM
mean vectors. The detection scores are then generated using a
fast scoring scheme described in [40] using top 5 Gaussians.
The second system uses i-vectors approach to classify accents.
The i-vectors are of dimensionality 1000 and HLDA projected
i-vectors of dimensionality 180.

B. Corpora

The “stories” part of the OGI Multi-language telephone
speech corpus [41] was used to train the attribute detectors.
This corpus has phonetic transcriptions for six languages:
English, German, Hindi, Japanese, Mandarin, and Spanish.
Data from each language were pooled together to obtain 5.57
hours of training and 0.52 hours of validation data.

A series of foreign accent recognition experiments were
performed on the FSD corpus [42] which was developed to
assess Finnish language proficiency among adults of different
nationalities. We selected the oral responses portion of the
exam, corresponding to 18 foreign accents. Since the number
of utterances is small, 8 accents — Russian, Albanian, Arabic,
English, Estonian, Kurdish, Spanish, and Turkish — with
enough available data were used. The unused accents are,
however, used in training UBM and the T -matrix. Each accent
set is randomly split into a test and a train set. The test set
consists of (approximately) 30% of the utterances, while the
training set consists of the remaining 70% to train foreign
accent recognizers in the FSD task. The raw audio files were
partitioned into 30 sec chunks and re-sampled to 8 kHz.
Statistics of the test and train portions are shown in Table II.

The NIST 2008 SRE corpus was chosen for the experiments
on English foreign accent detection. The corpus has a rich
metadata from the participants, including their age, language
and smoking habits. It contains many L2 speakers whose
native language is not English. Since the number of utterances
in some foreign accents is small, 7 accents — Hindi (HIN),
Thai (THA), Japanese (JPN), Russian (RUS), Vietnamese
(VIE), Korean (KOR) and Chinese Cantonese (YUH) — with
enough available utterances were chosen in this study. These
accents are from the short2, short3 and 10sec portions, of the
NIST 2008 SRE corpus. We used over 5000 utterances to train
the UBM and total variability subspace in the NIST 2008 task.
Table III shows the distribution of train and test portions in the
English utterances. Speakers do not overlap between training
and testing utterances both in the FSD and NIST corpora.

C. Attribute Detector Design

One-hidden-layer feed forward multi-layer perceptrons
(MLPs) were used to implement each attribute detector. The
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TABLE II: Train and test files distributions in each target
accent in the FSD corpus. Duration is reported for only active
speech frames.

Accent #train files (hh:mm) #test files #speakers
Spanish 47 (00:26) 25 15
Albanian 60 (00:32) 29 19
Kurdish 61 (00:37) 32 21
Turkish 66 (00:39) 34 22
English 70 (00:37) 36 23
Estonian 122 (01:07) 62 38
Arabic 128 (01:15) 66 42
Russian 556 (03:15) 211 235

Total 1149 (08:46) 495 415

TABLE III: Train and test file distributions in the NIST
2008 SRE corpus. Duration is reported for only active speech
frames.

Accent #train files (hh:mm) #test files #speakers
Hindi 80 (03:39) 109 53

Russian 74 (03:32) 84 42
Korean 91 (03:05) 99 41

Japanese 53 (02:02) 73 41
Thai 70 (02:53) 93 52

Cantonese 68 (03:14) 92 50
Vietnamese 127 (04:01) 149 69

Total 563 (22:44) 699 348

number of hidden nodes with a sigmoidal activation function
is 500. MLPs were trained to estimate attribute posteriors,
and the training data were separated into ”feature present”,
”feature absent”, and ”other” regions for every phonetic class
used in this work. The classical back-propagation algorithm
with a cross-entropy cost function was adopted to estimate
the MLP parameters. To avoid over-fitting, the reduction in
classification error on the development set was adopted as the
stopping criterion. The attribute detectors employed in this
study were actually just those used in [29].

Data-driven detectors are used to spot speech cues embed-
ded in the speech signal. An attribute detector converts an input
utterance into a time series that describes the level of presence
(or level of activity) of a particular property of an attribute
over time. A bank of 15 detectors (6 manner and 9 place) is
used in this work, each detector being individually designed
to spot of a particular event. Each detector is realized with
three single hidden layer feed-forward ANNs (artificial neural
networks) organized in a hierarchical structure and trained
on sub-band energy trajectories extracted through 15-band
mel-frequency filterbank. For each critical band, a window
of 310ms centered around the frame being processed is
considered and split in two halves: left-context and right-
context [43]. Two independent front-end ANNs (“lower nets”)
are trained on those two halves to generate, left- and right-
context speech attribute posterior probabilities. The outputs of
the two lower nets are then sent to the third ANN that acts as
a merger and gives the attribute-state posterior probability of
the target speech attribute.

D. Evaluation Metrics

System performance is reported in terms of equal error
rate (EER) and average detection cost (Cavg) [44]. Results
are reported per each accent for a cosine scoring classifier.
Cavg is defined as [44],

Cavg =
1

M

M∑

j=1

CDET(Lj), (7)

where CDET(Lj) is the detection cost for subset of test
segments trials for which the target accent is Lj and M is
the number of target languages. The per target accent cost is
then,

CDET(Lj) = CmissPtarPmiss(La)

+ Cfa(1− Ptar)
1

J − 1

∑

k 6=j

Pfa(Lj , Lk). (8)

The miss probability (or false rejection rate) is denoted by
Pmiss, i.e., a test segment of accent Li is rejected as being
in that accent. On the other hand Pfa(Li, Lk) denotes the
probability when a test segment of accent Lk is accepted as
being in accent Li. It is computed for each target/non-target
accent pairs. The costs, Cmiss and Cfa are both set to 1 and
Ptar, the prior probability of a target accent, is set to 0.5
following [44].

IV. RESULTS

A. Accent Recognition Performance on the FSD corpus

Table IV reports foreign accent recognition results for
several systems on the FSD corpus. The results in the first two
rows indicate that i-vector modeling outperforms the GMM-
UBM technique when the same input features are used, which
is in line with findings in [10], [45]. The results in the last two
rows, in turn, indicate that the i-vector approach can be further
enhanced by replacing spectral vectors with attribute features.
In particular, the best performance is obtained using manner
attribute features within the i-vector technique, yielding a Cavg

of 5.80, which represents relative improvements of 45% and
15% over the GMM-UBM and the conventional i-vector ap-
proach with SDC+MFCC features, respectively. The FSD task
is quite small, which might make the improvements obtained
with the attribute system not statistically different from those
delivered by the spectral-based system. We therefore decided
to run a proper statistical significance test using a dependent
Z-test according to [46]. We applied the statistical test for
comparing per target accents EERs between attribute systems
and SDC-MFCC i-vector system. In Table V, we indicated in
boldface cases where the proposed attribute-based foreign ac-
cent recognition techniques outperform the spectral-based one.
To exemplify, Z-test results in the second column of Table V
demonstrates that the manner system significantly outperforms
the SDC-MFCC i-vector system on 7 out of 8 accents. For
the sake of completeness, we have also compared manner and
place of articulation systems, and we have reported the Z-test
results in the third column of Table V.

To verify that we are not recognizing the channel vari-
ability, we followed the procedure highlighted in [47], where
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TABLE IV: Baseline and attribute systems results in terms of
EERavg and Cavg in the FSD corpus. In parentheses, the final
dimensionality of the feature vectors sent to the back-end. In
manner system, for 7 out of 8 accents, the difference between
EERs is significant at a confidence level of 95% if Z ≥ 1.960.

Feature (dimensionality) Classifier EERavg(%) Cavg × 100
SDC+MFCC (56) GMM-UBM 19.03 10.56
SDC+MFCC (56) i-vector 12.60 6.85

Place (27) i-vector 10.37 6.00
Manner (18) i-vector 9.21 5.80

TABLE V: In the first two columns, the Z-test results per
target accent EERs at the EER threshold between the proposed
attribute- and spectral-based system performance on the FSD
corpus are reported. The difference between EERs is signifi-
cant at a confidence level of 95% if Z≥ 1.960. Boldface values
refer to cases in which our solution significantly outperforms
the SDC-MFCC system. The third column shows the same Z-
test results between manner- and place-based systems, where
manner is significantly better than place if the score is in
boldface.

Accents Place/SDC-MFCC Manner/SDC-MFCC Manner/Place
Albanian 1.1041 1.6503 2.2866
Arabic 5.9139 5.6975 1.0587
English 1.9973 4.3714 3.0224
Estonian 0.4907 2.2240 1.2108
Kurdish 5.1326 3.1453 2.2361
Russian 2.3955 5.2633 3.1523
Spanish 5.4506 2.2105 2.3521
Turkish 4.9694 1.9604 3.6600

the authors performed language recognition experiments on
speech and non-speech frames separately. The goal of the
authors was to demonstrate that if the system performance
on the non-speech frames is comparable with that attained
using speech frames, then the system is actually modeling
the channel and not language variability. Therefore, we have
first split data into speech and non-speech frames. Then we
have computed the EERavg on the non-speech frames, which
was equal to 40.51% and 40.18% in manner and place cases,
respectively. The EERavg on the speech frames was instead
equal to 8.48% and 14.20% in the manner and place systems,
respectively. These results suggest that our technique is not
modeling channel effects.

Next we explore different architectural configurations to
assess their effect on the recognition accuracy.

1) Effect of i-vector dimensionality on the FSD corpus:
In Table IV, we showed that attribute system outperforms the
baseline spectral system in foreign accent recognition. Here,
we turn our attention to the choice of i-vector dimensionality
used to train and evaluate different models. Figure 4 shows
recognition error rates on the FSD corpus as a function of
i-vector size. Results indicate that better system performance
can be attained by increasing the i-vector dimensionality up
to 1000, which is inline with the findings reported in [22].
However, further increasing the i-vector dimensionality to
1200, or 1400 degraded the recognition accuracy. For example,
Cavg increased to 6.10 and 6.60 from the initial 5.80 for the
manner-based foreign accent recognition system with i-vector
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Fig. 4: Recognition error rates as a function of i-vector
dimensionality on the FSD corpus.
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Fig. 5: Recognition error rates as a function of HLDA dimen-
sion on the FSD corpus. I-vectors are of dimensionality 1000.
For lower HLDA dimensions, i.e., 7, 20 and 60, the systems
attain lower recognition accuracies.

dimensionality of 1200 and 1400, respectively.
We also investigated the effect of HLDA dimensionality

reduction algorithm on recognition error rates using 6 different
HLDA output dimensionalities on the FSD corpus. Figure
5 shows that the optimal HLDA dimension is around 180,
yielding Cavg of 5.8 and 6 in the manner and place sys-
tems, respectively. For lower HLDA dimensions, i.e., 7, 20
and 60, the systems attain lower recognition accuracies as
shown. Comparing HLDA results in Figure 5 with LDA, the
recognition error rates increase to EERavg of 21.65% and
21.87% in manner and place systems, respectively. The output
dimensionality of LDA is then restricted to maximum of seven.

2) Effect of training set size and testing utterance length on
the FSD corpus: To demonstrate the recognition error rates
as a function of training set size in this study, we split the
Finnish training i-vectors into portions of 20%, 40%, 60%,
80% and 100% of the whole training i-vectors within each
model in such a way that each individual portion contains the
data from previous portion. Fixing the amount of test data,
we experimented with each training data portion to report
the recognition error rates as a function of training data size.
Results in Figure 6 shows that the proposed attribute-based
foreign accent recognition system outperforms the spectral-
based system in all the cases (i.e., independently of the amount
of training data). Further to see the effect of test data length
on recognition error rates, we extracted new i-vectors from
the 20%, 40%, 60%, 80% and 100% of active speech frames
and used them in evaluation. Results in Figure 7, which refers
to the FSD corpus, indicate that the proposed attribute-based
accent recognition system compares favorably to the SDC-
MFCC system in all the cases.

3) Effect of Temporal Context – FSD corpus: In Section
II-B, it was argued that temporal information may be beneficial
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Fig. 6: Recognition error rates as a function of training set
size on the FSD corpus. Increasing training set size within
each target accent models degrades recognition error rates.
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Fig. 7: Recognition error rates as a function of testing utterance
length on the FSD corpus. Different portions of active speech
segments were used to extract evaluation i-vectors.

to accent recognition. Figure 4 indicates that Cavg attains
minima at context sizes 10 and 20 frames, for the place
and manner features, respectively. Optimum for the PCA-
combined features occurs at 10 frames. Increasing the context
size beyond 20 frames negatively affects recognition accuracy
for all the evaluated configurations. In fact, we tested context
window spanning up to 40 adjacent frames, but that caused
numerical problems during UBM training, leading to singular
covariance matrices. Hence, context size in the range of 10
to 20 frames appears a suitable trade-off between capturing
contextual information while retaining feature dimensionality
manageable for our classifier back-end.

Table VI shows results for several configurations of the
proposed technique and optimal context window sizes selected
according to Figure 8. Systems using context dependent in-
formation are indicated by adding the letters CD in front of
their name. The last two rows show the result for context-
independent attribute systems for reference purposes. Table
VI demonstrates that context information is beneficial for for-
eign accent recognition. The best performance is obtained by
concatenating C=20 adjacent manner feature frames followed
by PCA to reduce the final vector dimensionality to d=48. A
14% relative improvement, in terms of Cavg, over the context-
independent manner system (last row) is obtained by adding
context information.

4) Effect of Feature Concatenation on the FSD corpus: We
now turn our attention to the effects of feature concatenation
on the accent recognition performance. The first row of
Table VII shows that Cavg of 5.70 is obtained by appending
the place features with the SDC+MFCC features, which yields
a relative improvement of 5% over the place system (third
last row). A 12% relative improvement over the manner
system (second last row) is obtained by concatenating the
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Fig. 8: Cavg as a function of the context window size on
the FSD corpus. Context dependent (CD) manner and place
features attain the minimum Cavg at context sizes 10 and 20
frames, respectively. In pre-PCA, PCA is applied to combined
manner and place vectors.

TABLE VI: Recognition results for several attribute systems
and different context window sizes. C represents the length of
context window, and d the vector dimension after PCA. PCA
can be applied either before (pre-PCA) or after (post-PCA)
concatenating manner and place vectors.

System (context, dimension) EERavg(%) Cavg × 100

CD Place (C=10, d=31) 8.87 5.55
CD post-PCA (C=10, d=70) 8.20 5.43
CD pre-PCA (C=10, d=60) 7.97 5.31
CD Manner (C=20, d=48) 7.38 5.02

Place (27) 10.37 6.00
Manner (18) 9.21 5.80

SDC+MFCC features and the manner features, yielding Cavg

of 5.13 (the second row). If context-dependent information is
used before forming the manner-based vector to be concate-
nated with the SDC+MFCC features, a further improvement is
obtained, as the third row of Table VII indicates. Specifically,
Cavg of 4.74 is obtained by using a context of 20 frames
followed by PCA reduction down to 48 dimensions (C=20,
d=48). The result represents 19% relative improvement over
the use of CD manner-only score with the same context
window and final dimensionality (last row).

For the sake of completeness, Table VII shows also results
obtained by concatenating manner and place attributes, which
is referred to as Manner+Place system. This system obtains
Cavg of 5.51, which represents 5% and 8% relative improve-
ments over the basic manner and place systems, respectively.
In contrast, no improvement is obtained by concatenating
context-dependent manner and place systems (see the row
labeled CD Manner (C=20, d=48) + CD Place (C=10, d=31))
over context-dependent manner system (last row).

5) Detection Performance versus Target Language – FSD
corpus: Table VIII shows language-wise results on the FSD
task. The so-called leave-one-speaker-out (LOSO) technique,
already used in [10], was adopted to generate these results
and to compensate for lack of sufficient data in training and
evaluation. For every target accent, each speaker’s utterances
are left out one at a time while the remaining utterances are
used in training the corresponding accent recognizer. The held-
out utterances are then used as the evaluation utterances.

The CD manner-based accent recognition system was se-
lected for this experiment, since it outperformed the place-
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TABLE VII: Results on the FSD corpus after feature concate-
nation (+). In parentheses, the final dimension of the feature
vectors sent to the back-end.

System (feature dimensionality) Performance

(SDC+MFCC) Vector + Attribute Vector EERavg(%)Cavg × 100
(SDC+MFCC) + Place (83) 9.14 5.70

(SDC+MFCC) + Manner (74) 7.78 5.13
(SDC+MFCC) + CD Manner (C=20, d=48) (104) 6.18 4.74

Feature Concatenation (+) within Attributes EERavg(%)Cavg × 100
Manner + Place (45) 8.34 5.51

CD Manner (C=20, d=48) + CD Place (C=10, d=31) (79) 8.00 5.34

Basic Accent Recognition System EERavg(%)Cavg × 100
SDC+MFCC (56) 12.60 6.85

Place (27) 10.37 6.00
Manner (18) 9.21 5.80

CD Manner (C=20, d=48) (48) 7.38 5.02

TABLE VIII: Per language results in terms of EER % and
CDET ×100 on the FSD corpus. Results are reported for the
CD Manner (C=20, d=48).

Accents EER %CDET ×100
English 15.11 7.00
Estonian 14.54 6.33
Russian 13.08 6.30
Kurdish 13.00 6.11
Arabic 12.55 6.10

Albanian 11.43 6.07
Spanish 10.74 5.75
Turkish 8.36 5.52

Total (average) 12.35 6.14

based one. Furthermore, since we have already observed that
the performance improvement obtained by combining manner-
and placed-based information is not compelling, it is preferable
to use a less complex system.

Table VIII indicates that Turkish is the easiest accent to
detect. In contrast, English and Estonian are the hardest
accents to detect. Furthermore, languages with different sub-
family from Finnish, are among the easiest to deal with.
Nonetheless, the last row of Table VIII shows an EERavg and
a Cavg higher than the corresponding values reported in Table
VI. This might be explained recalling that the unused accents
employed to train UBM, T-matrix and the HLDA in LOSO
induces a mismatch between model training data and the
hyper-parameter training data which degrades the recognition
accuracy [10].

It is interesting to study the results of Table VIII a bit deeper
to understand which language pairs are easier to confuse. Here
we treat the problem as foreign accent identification task.
Table IX shows the confusion matrix. The diagonal entries
demonstrate that correct recognition is highly likely. Taking
Turkish as the language with highest recognition accuracy, out
of 30 misclassified Turkish test segments, 10 are classified as
Arabic. That seems to be a reasonable result, since Turkey
is bordered by two Arabic countries, namely Syria and Iraq.
In addition, Turkish shares common linguistic features with
Arabic. With respect to Albanian as one of the languages in the
middle: 11 out of 26 misclassified test segment are assigned
to the Russian class. That might be explained considering

TABLE IX: Confusion matrix on the Finnish accent recog-
nition task. Results are reported for the CD manner (C=20,
d=48).

 

 

Predicted label 
TUR SPA ALB ARA KUR RUS EST ENG 

T
ru

e 
la

b
el

 

TUR 70 3 1 10 5 5 2 4 
SPA 1 51 3 8 2 2 3 2 
ALB 1 3 62 3 1 11 5 2 
ARA 12 9 7 128 10 9 8 8 
KUR 9 3 3 6 60 5 3 4 
RUS 43 30 51 20 16 379 25 26 
EST 6 8 8 12 6 13 120 13 
ENG 7 10 3 6 3 7 6 63 

 

Turkish: 100:70%: 

Spanish: 72: 70% 

Albanian: 89:69.66 

Arabic: 194:64% 

Kurdish: 93:64.52% 

Russian: 767: 0.6424 

Estonian: 184:64% 

English: 106:60% 

TABLE X: English results in terms of EERavg(%) and Cavg

on the NIST 2008 corpus. In parentheses, the final dimension-
ality of the feature vectors sent to the back-end.

Feature (dimensionality) Classifier EERavg(%)Cavg × 100
SDC+MFCC (56) GMM-UBM 16.94 9.00
SDC+MFCC (56) i-vector 13.82 7.87

Place (27) i-vector 12.00 7.27
Manner (18) i-vector 11.09 6.70

CD Manner (C=20, d=48) i-vector 10.18 6.30

that Russian has a considerable influence on the Albanian
vocabulary. Russian is one of the most difficult languages to
detect, and 43 samples are wrongly recognized as Turkish.
The latter outcome can be explained recalling that Russian has
some words with Turkish roots; moreover, the two languages
have some similarities in terms of pronunciation.

B. Results on the NIST 2008 corpus

Up to this point, we have focused on the FSD corpus to
optimize parameters. These parameters are: the UBM and i-
vector size, the HLDA dimensionality, and the context window
size. The first three parameters, i.e. UBM size 512, i-vector
dimensionality 1000 and HLDA dimensionality 180 were opti-
mized in [10] while the context window was set to C = 20 for
manner attributes based on our analysis in the present study.
We now use the optimized values to carry out experiments on
English data.

Table X compares results of the proposed and baseline
systems on the NIST 2008 SRE corpus. As above, manner-
and place-based systems outperform the SDC+MFCC-based
i-vector system, yielding 15% and 8% relative improvements
in Cavg, respectively. These relative improvements are lower
compared to the corresponding results for Finnish, which is
understandable considering that the parameters were optimized
on the FSD data. The best recognition results are obtained
using a context window of C=20 adjacent frames and dimen-
sionality reduction to d=48 features via PCA. Similar to FSD
task, different architectural alternatives are now investigated
to further boost system performance.

1) Effect of Feature Concatenation on the NIST 2008 cor-
pus: Feature concatenation results on the NIST 2008 task are
shown in Table XI. Similar to findings on FSD, accuracy is
enhanced by combining SDC+MFCC and attribute features.
The largest relative improvement is obtained by combining
SDC+MFCC and CD manner features (third row in Table
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TABLE XI: Results on the NIST 2008 corpus after feature
concatenation (+). In parentheses, the final dimensionality of
the feature vectors sent to the back-end.

System (feature dimensionality) Performance

(SDC+MFCC) Vector + Attribute Vector EERavg(%)Cavg × 100
(SDC+MFCC)+Place (83) 11.20 6.82

(SDC+MFCC)+Manner (74) 10.01 6.24
(SDC+MFCC)+CD Manner (C=20, d=48) (104) 8.56 5.73

Feature Concatenation (+) within Attributes EERavg(%)Cavg × 100
Manner+Place 10.50 6.40

Basic Accent Recognition system EERavg(%)Cavg × 100
SDC+MFCC (56) 13.82 7.87

Place (27) 12.00 7.27
Manner (18) 11.09 6.70

CD Manner (C=20, d=48) 10.18 6.30

TABLE XII: Per-language results in terms of EER % and
CDET ×100 for the i-vector system in the NIST 2008 corpus.
Results are reported for CD manner (C=20, d=48)

Accents EER %CDET ×100
Cantonese 16.48 8.46

Hindi 14.97 7.91
Vietnamese 14.04 7.30

Russian 12.09 7.57
Korean 11.54 6.96

Japanese 10.84 6.62
Thai 10.59 6.35

Total (average) 12.93 7.31

XI), yielding Cavg of 5.73. As for FSD, improvement is also
obtained by concatenating manner and place features, with
final Cavg of 6.40, which represents 7% relative improvement
over the basic configurations in the second and third last rows.
Nonetheless, higher accuracy is obtained by the CD manner
system, shown in the last row.

2) Detection Performance versus Target Language – NIST
2008 corpus: Table XII shows per-accent detection accuracy
on the NIST 2008 task. Similar to the FSD experiments, the
LOSO technique is applied to make better use of the limited
training and testing data. Cantonese attains the lowest recogni-
tion accuracy with CDET of 8.46; and the easiest accent is Thai
with CDET of 6.35. The confusion matrix is shown in Table
XIII. It is obvious that East Asian languages, such as Korean,
Japanese, Vietnamese and Thai are frequently confused with
Cantonese. For example, Thai is the easiest accent to detect,
yet 15 out of the 37 misclassified test segments were classified
as Cantonese. Thai and Cantonese are both from the same
Sino-Tibetan language family; therefore, these languages share
similar sound elements. Furthermore, the same set of numbers
from one to ten is used for both languages.

Russian and Hindi are both from the Indo-European lan-
guage group. Hence these languages have many words and
phrases in common. These similarities might explain why 12
out of 36 misclassified Russian segments were classified as
Hindi. Similarly, 14 out of 48 misclassified Hindi segments
were assigned to the Russian language.

TABLE XIII: Confusion matrix of the English results corre-
sponding to Table XII. Results are reported for CD manner
(C=20, d=48)

 

 

Predicted label 
THA JPN KOR RUS VIE HIN CAN 

T
ru

e 
la

b
el

 

THA 126 3 4 3 4 8 15 
JPN 3 98 4 2 7 2 10 
KOR 3 5 145 6 7 5 17 
RUS 4 3 3 120 4 12 10 
VIE 10 16 6 6 200 4 33 
HIN 4 4 6 14 5 128 15 
CAN 15 10 11 6 14 6 96 

C. Effect of Individual Attribute on Detection Performance

We now investigate the relative importance of each in-
dividual manner attribute and the voiced attribute on both
FSD and NIST 2008. We selected manner-based system as it
outperformed place-based system both in both FSD and NIST
2008 (Tables IV and X). A 15-dimensional feature vector is
formed by leaving out one of these attributes one at a time.
The full i-vector system is then trained from scratch using the
feature vectors without the excluded attribute. By comparing
the change in EERavg and Cavg of such system relative to
the system utilizing all the 15 features allows us to quantify
the relative importance of that attribute. When no context
information is used, EERavg and Cavg are 9.21% and 5.80,
respectively.

Figure 9a reveals that excluding vowel, stop, voiced, or
fricative attributes increases both Cavg and EERavg, indicating
the importance of these attributes. In contrast, nasal and glide
are not individually beneficial, since both Cavg and EERavg

show a negative relative change. Finnish has a very large
vowel space (with 8 vowels) including vowel lengthening.
Non-native Finnish speakers may thus have troubles when
trying to produce vowels in a proper way, and that shows the
L1 influence. This may explain why vowels are individually
useful in foreign accent recognition for Finnish.

Figure 9b shows that all speech attributes are individually
useful in detecting L2 in an English spoken sentence. We recall
that EERavg and Cavg are 11.09% and 6.70, respectively,
when no context information is used. Hence, leaving out any
of these attributes from the final feature vector, increases
the error rates. Fricative and vowel are individually most
important, while, voiced and stop attributes are less important.
It is known that pronouncing English fricatives is difficult
for some L2 speakers [48], [49]. For example, some Russian
speakers pronounce dental fricatives /D/ and /T/ as /t/ and
/d/, respectively [50]. With respect to the vowel class, some
East Asian speakers find it difficult to pronounce English
vowels, thus producing L1 influence. For example, English
contains more vowel sounds than Chinese languages [51]. This
may cause Chinese learners of English to have difficulties
with pronunciation. Koreans may also have also difficulty
pronouncing the sound /O/ which does not exist in Korean
language and is frequently substituted with the sound /o/ in
Korean [52].
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Fig. 9: Exclusion experiment: relative change in the error rates
as one attribute is left out. Positive relative change indicates
increment in the error rates.

D. Diagnostic Information of Attribute Features

Besides improving the accuracy of state-of-the-art automatic
foreign accent recognizer, the proposed technique provides
a great deal of diagnostic information to pinpoint why it
works well in one instance and then fail badly in another. To
exemplify, Figure 10 shows analysis of two different spoken
words uttered by native Russian and Cantonese speakers in the
NIST 2008 SRE corpus on which the proposed attribute-based
technique was successful, but the spectral-based SDC+MFCC
technique failed. Figure 10a shows the spectrogram along
with fricative and the approximant detection curves for the
word “will” uttered by a native Russian speaker. Although /w/
belongs to the approximant class, the corresponding detection
curve is completely flat. In contrast, a high level of activity is
seen in the fricative detector. This can be explained noting that
Russian does not have the consonant /w/, and Russian speakers
typically substitute it with /v/ [53], which is a fricative
consonant. Figure 10b, in turn, signifies that consonant sounds,
except nasals and semivowels, are all voiceless in Cantonese
[54]. Although /c/ (pronounced as a /k/) and /tu/ (pronounced
as a /tS/) are voiced consonants in English, voicing activity is
less pronounced in the time frame spanning the /c/ and /tu/
consonants, which is a specific feature of Cantonese speakers
[54].

Incidentally, such information could also be useful in
computer-assisted language learning system to detect mispro-
nunciations and give some proper feedback to the user.

V. CONCLUSION

In this paper, an automatic foreign language recognition
system based on universal acoustic characterization has been
presented.

Taking inspiration from [30], the key idea is to describe
any spoken language with a common set of fundamental units
that can be defined “universally” across all spoken languages.
Phonetic features, such as manner and place of articulation, are
chosen to form this unit inventory and used to build a set of
language-universal attribute models with data-driven modeling
techniques.

The proposed approach aims to unify within a single
framework phonotactic and spectral based approach to au-
tomatic foreign accent recognition. The leading idea is to
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(a) Native Russian speaker substitutes approximant
/w/ with fricative /v/.
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Fig. 10: The informative nature of the proposed accent recog-
nition system for two spoken utterances from native Russian
and Cantonese speakers. For these utterances, attribute-based
technique has been successful but the spectral-based technique
has failed.

take the advantages of the subspace modeling techniques
without discharging the valuable information provided by the
phonotactic-based methods. To this end, a spoken utterance is
processed through a set of speech attribute detectors in order
to generate attribute-based feature streams representing foreign
accent cues. These feature streams are then modeled within the
state-of-the-art i-vector framework.

Experimental evidence on two different foreign accent
recognition tasks, namely Finnish (FSD corpus) and English
(NIST 2008 corpus), has demonstrated the effectiveness of the
proposed solution, which compares favourably with state-of-
the-art spectra-based approaches. The proposed system based
on manner of articulation has achieved a relative improvement
of 45% and 15% over the conventional GMM-UBM and the i-
vector approach with SDC+MFCC vectors, respectively, on the
FSD corpus. The place-based system has also outperformed
the SDC+MFCC-based i-vector system with a 8% Cavg rela-
tive improvement. The difficulty at robust modeling of place
of articulation causes that smaller relative improvement. It
was also noticed that context information improves system
performance.

We plan to investigate how to improve the base detector
accuracy of place of articulation. In addition, we will investi-
gate phonotactic [55] and deep learning language recognition
systems [56] in the foreign accent recognition task. Especially,
we are interested to find out whether in terms of classifier
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fusion complementary information exist in those systems and
our proposed method.
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Abstract
Current language identification (LID) systems are based on an i-
vector classifier followed by a multi-class recognition back-end.
Identification accuracy degrades considerably when LID sys-
tems face open-set data. In this study, we propose an approach
to the problem of out of set (OOS) data detection in the context
of open-set language identification. In our approach, each unla-
beled i-vector in the development set is given a per-class outlier
score computed with the help of non-parametric Kolmogorov-
Smirnov (KS) test. Detected OOS data from unlabeled devel-
opment set is then used to train an additional model to repre-
sent OOS languages in the back-end. The proposed approach
achieves a relative decrease of 16% in equal error rate (EER)
over classical OOS detection methods, in discriminating in-set
and OOS languages. Using support vector machine (SVM) as
language back-end classifier, integrating the proposed method
to the LID back-end yields 15% relative decrease in identifica-
tion cost in comparison to using all the development set as OOS
candidates.

1. Introduction
Language identification (LID) is the task of automatically iden-
tifying whether a known target language is being spoken in a
given speech utterance [1]. Over the past years, several methods
have been developed to perform LID tasks, including phonotac-
tic [2] and acoustic ones [3]. The former uses phone recognizers
to tokenize speech utterances into discrete units followed by n-
gram statistics accumulation and language modeling back-end
[4, 1]. The latter uses spectral characteristics of languages in a
form of acoustic features such as shifted delta cepstral (SDC)
coefficients [5, 6]. Gaussian mixture models (GMMs) [7] and
support vector machines (SVMs) [8] are often used as classi-
fiers. Recently, i-vectors [9] based on bottleneck features [10]
have also been extensively explored.

State-of-the-art LID systems [11, 12, 10] achieve high iden-
tification accuracy in closed-set tasks, where the language of a
test segment corresponds to one of the known target (in-set) lan-
guages. But in open-set LID tasks, where the language of a test
segment might not be any of the in-set languages, accuracy of-
ten degrades considerably [13, 14]. In open-set LID, the objec-
tive is to classify a test segment into one of the pre-defined in-
set languages or a single out-of-set (OOS) language (or model).
Open-set LID is more applicable in real-life scenarios, where
speech may come from any language. For example, in multi-
lingual audio streaming and broadcasting, it is necessary to fil-
ter languages which do not belong to any of the modeled target
languages [15].

Different approaches have been explored for OOS model-
ing both in open-set speaker identification (SID) and LID sys-
tems. In the context of open-set SID, the objective is to decide

whether to accept or reject a speaker as being one of the en-
rolled speakers. The authors of [16, 17] used the knowledge
of universal background model (UBM) to represent the OOS
speakers. Each in-set speaker is modeled using Gaussian mix-
ture models (GMMs) with a UBM and maximum a posteriori
(MAP) speaker adaptation [18]. During classification, if any
of the in-set speakers is selected, the test speaker is labeled as
in-set; otherwise, the UBM has the highest score and the test
speaker is classified as OOS. Authors in [19] proposed a system
which first finds the best-matched model for a test speaker using
vector quantization (VQ) based recognition system [20]. Then,
a set-score is formed using support vector machine (SVM) clas-
sifier. Finally, a vector distance measurement for each enrolled
speaker is used to accept or reject the test speaker as in-set class.

A few prior studies have been carried out on open-set LID
tasks as well, as summarized in Table 1. To model OOS lan-
guages in open-set LID tasks, some approaches make use of
additional OOS speech data derived from languages different
from the target (in-set) languages [21, 22]. This additional OOS
data is then used for training an OOS model. Obtaining addi-
tional data is often done in a supervised or semi-supervised way,
which can be time consuming or leads to further sub-problems
such as representative data selection to model the OOS lan-
guages. The authors of [21] proposed a method for com-
pact OOS candidate language selection based on knowledge
of world-language distance. In specific, candidate OOS data
came from different language families having different prosody
characteristics from the target languages. This method achieved
8.4% relative improvement in classification performance over a
baseline system with a random selection of OOS candidates. In
[22], a target-independent (TI) Gaussian was trained using de-
velopment data of all target languages, to represent the OOS
languages. Further, adopting maximum mutual information
(MMI) [23] approach in [14] allows training an additional OOS
Gaussian model using only in-set data. The trained OOS model
improved the detection cost considerably, however, the impact
of training the OOS model using actual OOS data was not in-
vestigated.

A practical key question in representing the OOS data is
how to select the most representative OOS candidates to model
OOS languages from a large set of unlabeled data. While
random selection might be one option, in this study we at-
tempt to specifically identify ”higher quality” OOS utterances.
To achieve this, we present a simple approach to find such
OOS candidates in i-vector space [9], based on non-parametric
Kolmogorov-Smirnov (KS) test [25, 26]. It gives each i-vector
a per-class outlier score representing the confidence that an i-
vector corresponds to an OOS language. This approach is fast
and in contrast to [21, 22], requires no prior language labels of
the additional data which may not be available in the real-world
applications [27].
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Table 1: Summary of the previous studies on open-set language identification task. Different approaches for selecting out-of-set (OOS)
data include using in-set data [14], using all development data [22], selecting labeled out-of-set data [21], pooling additional data
[13, 24] and finally selecting from unlabeled data (present study).

Study Data OOS selection OOS modeling
Zhang and Hansen [21] NIST LRE 2009 Supervised candidate selection General Gaussian back-end
BenZeghiba et al. [22] NIST LRE 2007 All development data as OOS General Gaussian back-end
McCree [14] NIST LRE 2011 No OOS detection Gaussian discriminative training using in-set data
Torres-Carrasquillo et al. [13] NIST LRE 2009 Additional OOS data Several spectral and token classifiers
Torres-Carrasquillo et al. [24] NIST LRE 2007 Additional OOS data Several spectral and token classifiers
Present study NIST i-vector challenge 2015 OOS selection from unlabeled data Gaussian, cosine and SVM classifiers

2. Open-set language identification
In closed-set LID, the objective is to classify a test segment
X into one of the pre-defined set of target (in-set) languages
{Lm|m = 1, ...,M}, where M is total number of target lan-
guages. To classify X , the decision of the most similar language
L̃ is chosen to maximize the a posteriori probability [28],

L̃ = argmax
1≤m≤M

p(Lm|X) = argmax
1≤m≤M

p(X|Lm)p(Lm), (1)

where the language likelihood p(X|Lm) and language a priori
probability p(Lm) are assumed known. In open-set LID, the
objective is to classify X into one of the M +1 languages, with
M in-set languages and a single additional OOS language (or
model).

Figure 1 shows a block diagram of a general open-set LID
system used in this paper. OOS data selection block performs
OOS detection on unlabeled development data to find best rep-
resentative OOS data for training an additional OOS model.

Fr
on

t-
en

d 
pr

oc
es

si
ng

 

i-v
ec

to
r e

xt
ra

ct
io

n 

i-v
ec

to
r p

os
t-

pr
oc

es
si

ng
 Target 

Models 

Out-of-set 
Model 

Cl
as

si
fic

at
io

n 

Decision 

Out-of-set data 
selection 

Unlabeled data 

Figure 1: Block diagram of open-set language identification.
The best-limited out-of-set (OOS) candidates are selected from
the unlabeled development data for OOS modeling. We propose
a simple method based on Kolmogorov-Smirnov test to find out-
of-set data in the i-vector space.

In this study, we use i-vectors to represent utterances and
consider the following three back-end language classifiers:
Gaussian [22, 29], cosine [30] and SVM scoring [8, 31], to
model both the target and the OOS languages. In the first case,
for a given test i-vector, wtest, the log-likelihood for a target
language m is computed as

llmwtest
= (Σ−1µm)Twtest − 1

2
µT

mΣ−1µm (2)

where µm is the sample mean vector of target language m, and
Σ is a shared covariance matrix common for all the languages.
Having access to the training i-vectors, we form the maximum
likelihood estimates of Σ and µm’s, and use Eq. (2) to compute
a language similarity score.

Cosine scoring is a dot product between test i-vector, wtest,
and language model mean, µm

scoremwtest
=

wT
test µm

||wtest|| ||µm||
. (3)

In addition, we used one-versus-all version of support vec-
tor machine (SVM) classifier with second order polynomial ker-
nel [31] after experimenting with different kernel types. In the
training phase, all samples of a target language and OOS lan-
guages are considered as positive instances with all the other
languages corresponding to negative instances. The number of
class separators equals the number of target languages plus one,
the last coming from the OOS model. During testing phase, the
highest score of a separator determines the class label of a test
segment.

A simple LID baseline system is to treat the problem as
a closed-set task without the OOS model. NIST has provided
such a system in the download package of the recent 2015 lan-
guage recognition i-vector challenge [32]. It is based on cosine
scoring in which development data is used to estimate global
mean and covariance to center and whiten the evaluation i-
vectors. We will refer to this closed-set LID system as the NIST
baseline in our results, in contrast to the open-set systems con-
taining an additional OOS model.

3. Out-of-set data selection for OOS
modeling

The objective in OOS detection is to assign each i-vector with
an outlier score, higher value indicating higher confidence that
the i-vector is an OOS observation (none of the known target
languages). Since the main aim of this study is to select most
representative OOS candidates to model OOS languages, we
investigate three commonly used OOS detection methods, in
general outlier detection context, as our baselines: (i) one-class
SVM, (ii) k-nearest neighbour (kNN) and (iii) distance to clus-
ter centroid. Each of these methods provides an outlier score for
each of the scored unlabeled utterances. Then, for the purpose
of OOS modeling (Figure 1), we apply 3-sigma-rule [33] for
OOS selection, provided that the distribution of outlier scores
for these three methods can be assumed normal.

3.1. One-class SVM

SVMs [34] are most commonly used as two-class classifiers.
An SVM projects the data into a high-dimensional space and
finds a linear separator between classes. In contrast, one-class
SVM was proposed for out-of-set detection in [35]. In the
training phase, the detector constructs a decision boundary to
achieve maximum separation between the training points and
the origin. A given unlabeled utterance is then projected into
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the same high-dimensional space. The distance between the un-
labeled utterance and the linear separator is used as the outlier
score. We use LIBSVM1 (version 3.21) to train an individual
one-class SVM for each in-set class using the polynomial ker-
nel [34] and the default parameters of the software package.
The maximum score over in-set languages determines the out-
lier score for a given unlabeled utterance.

3.2. K-nearest neighbour (kNN)

In this technique, the outlier score for an observation is com-
puted by the sum of its distances from its k nearest neighbours
[36]. In this study, for each unlabeled utterance, the outlier
scores are computed using k = 3 within each in-set language
using Euclidean distance. Then, the maximum of outlier scores
over all the in-set languages is used as the outlier score for that
utterance.

3.3. Distance to class centroid

This is a simple classical approach to detect OOS data [37]. We
assume that OOS data are far away from the class centroids. For
instance, if the data follows a normal distribution, observations
beyond two or three standard deviations above and below the
class mean can be considered as OOS data [37]. This technique
consists of two steps. First, the centroid of each in-set language
is computed. Then, the distance between a data to the class cen-
troid is computed as the outlier score. The maximum distance
over all the in-set languages determines the outlier score for a
given unlabeled utterance. We consider the in-set languages as
different classes and the mean of each class as class centroids.
Euclidean distance is chosen to compute the distance between
each test data and the class means.

4. Proposed method
By now we have reviewed three commonly used OOS detection
methods. Here we propose a simple and effective technique
to find OOS data in the i-vector space. To this end, we adopt
the non-parametric Kolmogorov-Smirnov (KS) test [25, 26]. It
is used to decide whether a sample is drawn from a popula-
tion with a known distribution (one-sample KS test) or to com-
pare whether two samples have the same underlying distribution
(two-sample KS test).

For any i-vector, wi, the distances of wi to other i-vectors
in language m has an empirical cumulative distribution function
(ECDF) Fwi(x) evaluated at x. The KS statistic between i-
vector wi and any other i-vector wj in m can be computed by

KS(wi,wj) = max
x
|Fwi(x)− Fwj (x)| (4)

Given language m with the total number of instances N ,
the outlier score for i-vector wi is then defined as the average
of these KS test statistics:

KSE(wi) =
1

N − 1

N∑

j=1
j 6=i

KS(wi,wj) (5)

The average of KS statistics in Eq. (5), lies between 0 and
1; value close to 1 correspond to points with higher likelihood of
being an OOS. Algorithm 1 shows a pseudo-code for computing
the outlier score for a particular unlabeled i-vector.

1https://www.csie.ntu.edu.tw/˜cjlin/libsvm/

Algorithm 1 Outlier score computation for an unlabeled i-
vector using KSE.

Let L = {l1, l2, . . . , lM} be the set of M in-set languages
Let Wm = {wm1,wm2, . . . ,wmN} be the set of i-vectors
in in-set language lm
Input w as an unlabeled i-vector
for lm ∈ L do

temp← 0
for wmk ∈Wm do

KS ← compute KS value between w and wmk using
Eq. (4)
temp← temp+KS

end for
KSE[m]← divide temp by N − 1, Eq. (5)

end for
outlierscore ← Multiply KSE[m] by -1 and select the
maximum value

Figure 2 shows the distribution of per-language (in-set) and
OOS KSE values for Dari and French. For inset values, only i-
vectors of these languages were used to plot the distributions (in
other words, i-vectors i and j in Eqs. (4) and (5) are both from
the same languages). KSEs within each language have values
close to zero. For the OOS KSE values in Figure 2, a set of
i-vectors which do not belong to these languages were used to
plot the same distributions (in other words, i-vector i does not
belong to the language class of i-vector j, in Eqs. (4) and (5)).
These i-vectors are considered as OOS to these languages. As
expected, the KSE values tend to values close to 1.

(a) (b)

Figure 2: Distribution of in-set and OOS KSE values for two
different languages, a) Dari and b) French. KSEs within each
language have values close to zero. KSE values for OOS i-
vectors tend towards one.

The Table 2 further demonstrates how we label data to eval-
uate our OOS detectors. Let us consider five i-vectors and their
computed KSE values, given three in-set languages. The first
three rows correspond to in-set utterances and the last two rows
to OOS utterances. If the true language is one of the inset lan-
guages, label is set to 1 (e.g. the first row of Table 2), and to
0 otherwise (e.g. the last row of Table 2). The KSE values of
each unlabeled utterance is multiplied by -1 and the maximum
value is selected as the outlier score.

Following this method, we use box plot [33] to select OOS
i-vectors. Box plot uses the median and the lower and upper
quartiles defined as 25th and 75th percentiles. The lower quar-
tile, median and upper quartile are often denoted by Q1, Q2 and
Q3, respectively. In this study, unlabeled i-vectors with outlier
scores above a threshold set at, Q3+ 2.5× IQ, are selected for
OOS modeling. Interquartile range or IQ denotes the difference
(Q3−Q1).
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Table 2: Example of test utterance labeling for the evaluation of
OOS data detection task given multiple inset languages. KSE
values for each data is computed according to Eq. (5). 

Data_Id True language 
KSE values 

Greek Dari  Urdu 
In-set/OOS 

1 Greek  0.29    0.82   0.84 Inset 

2 Dari  0.91    0.11   0.79 Inset 

3 Urdu  0.85    0.92   0.21 Inset 

4 Spanish  0.74    0.79   0.64 OOS 

5 Farsi  0.81    0.56   0.77 OOS 

5. Experimental set-up
5.1. Training, development and evaluation data

In this study, we used i-vectors provided by the National In-
stitute of Standards and Technology (NIST) in their 2015 lan-
guage i-vector machine learning challenge [32]. It is based on
the i-vector system developed by the Johns Hopkins Univer-
sity Human Language Technology Center of Excellence in con-
junction with MIT Lincoln Laboratory [6]. Table 3 shows the
distribution of development, training and test sets provided in
the challenge. The development set consists of 6500 unlabeled
i-vectors intended for general system tuning. The training set
consists of a set of 300 i-vectors for each of the 50 target lan-
guages, corresponding to 15000 training utterances in total. The
test segments include 6500 unlabeled i-vectors corresponding to
all of the target languages and an unspecified number of OOS
languages. The i-vectors are of dimensionality 400.

Table 3: Distribution of training, development and test sets from
the NIST 2015 language i-vector machine learning challenge.
The i-vectors are derived from conversational telephone and
narrowband broadcast speech data.

Dataset #i-vectors #languages label
Training set 15000 50 labeled

Development set 6500 n/a unlabeled
Test set 6500 50+OOS labeled

To evaluate the OOS detection methods, we need both in-
set and OOS data. Since only the training set has labels, we
further split it into three portions of non-overlapped utterances.
We name them a development, training and test portion to make
a distinction between them and the original training, develop-
ment and test sets provided by NIST. Table 4 shows the distri-
bution of these portions in our study. Training and development
portions include non-overlapped utterances of same languages.
These languages are called in-set languages and correspond to
30 different languages. Test portion consists of utterances corre-
sponding to all of those 30 in-set languages plus utterances from
20 additional languages. We call these 20 languages as OOS
languages and their corresponding utterances as OOS data.

Figure 3 further shows the Venn diagram illustrating the
data overlap, i.e. individual utterances and languages, between
training, development and test portions. The development por-
tion is used for general OOS data detection tuning, such as pa-
rameter setting for one-class SVM and threshold setting to iden-
tify OOS data in the LID task. Training and test portions are

Table 4: Distribution of development, training and test portions
for the out-of-set (OOS) data detection task. All portions are
subsets of the original NIST 2015 LRE i-vector challenge train-
ing set.

In-set Out-of-set
Total number of languages 30 20
Count of dev. portion files 1500 —

Count of training portion files 6000 —
Count of test portion files 1500 6000

used for building and evaluating OOS data detectors, respec-
tively.

Training 
portion

Dev. 
portion

Test 
portion

Utterance overlap

(a)

Test portion

Training  and 
Dev. portions

Language overlap

(b)

Figure 3: Venn diagram illustrating the data overlap between
training, development and test portions, all being subsets of the
original NIST 2015 LRE i-vector challenge training set. a) Ut-
terance overlap. b) Language overlap.

5.2. i-Vector post-processing

The sample mean and the sample covariance of the unlabeled
development set are computed to center and whiten all the i-
vectors [38]. Then, length-normalization [38] is applied to
project all the i-vectors onto a unit ball. These i-vectors are then
further transformed using principal component analysis (PCA)
[39], keeping the 99% of the cumulative variance. The resulting
i-vector dimensionality is 391, just slightly smaller than origi-
nal 400. Then, linear discriminant analysis (LDA) [6] is applied
to reduce the dimensionality of i-vectors to the maximum num-
ber of classes minus one, in our case 49 dimensions. Following
PCA and LDA, within-class covariance normalization (WCCN)
[40] is used as a supervised transformation technique to fur-
ther suppress unwanted within-language variation. For open-
set LID, the projection matrices of PCA, LDA and WCCN are
computed using the training set. The order of post-processing
techniques follows the same order as [6].

5.3. Tasks and performance measure

We use detection error tradeoff (DET) curve [41] to evaluate the
OOS data detection performance. It plots the false acceptance
rate (FAR) versus false rejection rate (FRR), using a normal
deviate scale. Here the task is to identify those test portion data
which do not conform to any of the training portion classes.

The performance measure of open-set LID task as defined
in the NIST 2015 language recognition i-vector challenge task
is defined as follows [32]:
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Cost =
(1− Poos)

N

N∑

k=1

Perror(k) + Poos × Perror(oos) (6)

where Perror(k) = (#errors class k
#trials class k

), N = 50, and Poos =
0.23.

Open-set LID is performed using the training and test sets
(not portions) for model training and evaluation, respectively.
Detected OOS data from the development set is then used for
OOS modeling.

6. Results
In order to evaluate our proposed OOS selection method, we
separate the experiments into two parts. First, we evaluate the
performance of the proposed and the baseline OOS detectors.
Then, we assess the open-set language identification task with
the OOS model trained by the additional data selected by our
proposed OOS detector.

6.1. Stand-alone out-of-set data selection

Figure 4 shows the impact of parameter k on kNN-based OOS
detection task, in terms of EER. As shown, no considerable
change is observed by changing the value of k. For the remain-
ing experiments, we arbitrarily fix k = 3.

1 3 5 7 9 11 13 15
30

31

32

33

34

35

36

k value

E
E

R
 (

%
)

Impact of  k on kNN-based OOS detection

Figure 4: Impact of k value on kNN-based OOS detection
method in terms of EER (%). No improvement is observed by
increasing k.

Next, as KSE is based on the distribution of distances be-
tween points, here we study the impact of different distance
metrics [42] on our proposed OOS detector. To this end, we
vary the distance metric used in computing ECDFs in Eq. (4).
Figure 5 shows the results. Euclidean and city-block distances
achieve the highest performance with EERs of 28.80% and
28.46%, respectively. For the cosine distance with EER of
32.27% and Pearson correlation distance with EER of 32.35%,
the performance degradation is more pronounced. For the re-
maining experiments, we fix the Euclidean distance metric.

Figure 6 shows the DET curve comparison between the pro-
posed KSE and the three baseline methods on the test portion
data. The results indicate that the proposed KSE method out-
performs the baselines in terms of EER. KSE outperforms kNN
and one-class SVM by 14% and 16% relative EER reductions,
respectively. From the baselines, the distance to class mean
method obtains the lowest performance with EER of 36.34%.
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Figure 5: Performance of proposed OOS detection method un-
der different distance metrics. Euclidean and city-block dis-
tances achieve the highest performance.
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Figure 6: Comparison between the performance of the pro-
posed OOS detection and three different baseline methods. KSE
method shows the best performance compared to baseline meth-
ods.

Now we turn our attention to the effects of system fusion on
the OOS detection performance at the score level. To this end,
we adopt linear score fusion function optimized with the cross-
entropy objective [43] using the BOSARIS Toolkit [44]. We
use our development portion to find optimal classifier weights.
Figure 7 shows the results of fusion of KSE to baseline OOS
detection methods (2-way score fusion) on the test portion data.
Interestingly, fusion of KSE to baseline systems improves the
accuracy substantially. A relative decrease of 27% over KSE is
achieved by fusing KSE and one-class SVM, yielding EER of
20.93%. EER of 28.25% is obtained by fusing KSE and kNN,
yielding relative decrease of 2% and 16% over KSE and kNN,
respectively. Fusion of all four methods (4-way score fusion)
achieves EER of 22.09%, i.e. relative decrease of 23% and 27%
over KSE and fusion of all baseline OOS detection methods (3-
way score fusion), respectively.

6.2. Language identification

Up to this point, we have discussed OOS data detection accu-
racy. Now we turn our attention to the full language identifica-
tion system in Figure 1 with the OOS model being trained by the
additional data selected using one of the OOS detection meth-
ods. Table 5 shows the identification results for both closed-set
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Figure 7: Fusion of KSE to baseline OOS detection methods.
Fusion of KSE to one-class SVM yields the best performance.
“All methods without KSE” refers to the score fusion of one-
class SVM, kNN, and distance to class mean methods (3-way
score fusion). “All four methods” indicates fusion of all four
methods including KSE (4-way score fusion).

and open-set LID systems for different classifiers. The rows of
Table 5 differ based on the data selected for target-independent
OOS modeling. Rows 2 and 3 correspond to systems in which
the data of all the training and development sets are used for
OOS modeling, respectively, inspired by the work described in
[22]. Row 4 corresponds to pooling the data in both develop-
ment and training sets. The proposed selection method refers to
OOS data selection using KSE. Finally, for reference purposes,
the last row shows the closed-set results, where the language of
a test segment can be only one of the target languages (no OOS
modeling is performed).

We observe, firstly, that integrating the proposed selection
method to open-set LID system with an SVM language classi-
fier outperforms the other systems. The lowest identification
cost achieved, 26.61, outperforms the NIST baseline system
by 33% relative improvement. Using all the training or de-
velopment data for OOS modeling does not necessarily lead
to considerable improvement over closed-set results. For ex-
ample, taking Gaussian scoring and training data (second row),
identification cost decreases from 37.07 in closed-set to 34.15
in open-set, yielding a relative improvement of 8%. Further-
more, assuming an open-set LID system based on random OOS
data selection (first row), the proposed method achieves a rel-
ative improvement of 17% using SVM language classifier2. It
is worth mentioning that since test set contains a considerable
amount of OOS utterances, the closed-set LID system incor-
rectly classifies them as one of the target languages. This ex-
plains why the closed-set LID system generally underperforms
the open-set one.

Now, we treat the open-set LID as a binary classification
task, discriminating in-set and OOS test data. In-set test data
refers to those test files having the same language labels as one
of the target languages. Table 6 shows the confusion matrix
of in-set/OOS classification using KSE and three different lan-
guage classifiers. Results correspond to the fifth row of Table
5. The results indicate that from 1500 OOS test data, 1012
are classified correctly as OOS using KSE with SVM language

2Training the OOS model with known identities of OOS languages
was not possible since NIST had not provided the class labels of the
development set utterances.

Table 5: Language identification results for both open-set and
closed-set set-ups. Rows differ based on the data used for OOS
modeling. Results are reported based on identification cost,
lower cost indicating higher performance. Numbers in paren-
theses indicate amounts of selected data for OOS modeling. The
results are reported from the evaluation online system provided
by the NIST in the i-vector challenge.

Data selected for OOS modeling (#) Cosine Gaussian SVM
Random (1067) 36.25 34.20 32.11

Training (15000) 36.35 34.15 32.61
Development [22] (6431) 36.10 32.87 31.23
Training+Dev. (21431) 36.46 33.38 31.74

proposed selection method (1067) 34.28 32.23 26.61
Closed-set (no OOS model) 39.59* 37.07 37.23

*From the NIST baseline result

Table 6: Confusion tables for in-set and OOS classification us-
ing KSE with three different language classifiers corresponding
to the fifth row of Table 5. In total, test set corresponds to 5000
and 1500 in-set and OOS data, respectively.
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classifier. This number is 317 and 49 for Gaussian and cosine
scoring, respectively.

Fixing SVM as the best language classifier, Table 7 com-
pares the results of using different OOS detectors for OOS mod-
eling in our open-set LID task. For comparison, we also include
the closed-set LID results based on SVM in the last row of Ta-
ble 7. The open-set LID system based on KSE outperforms the
other methods, in terms of identification cost. Using KSE as
an OOS detector brings relative improvements of 9% and 13%
over kNN and one-class SVM, respectively.

Table 7: Open-set language identification results for different
OOS data selection methods using SVM language classifier.
Results are reported based on identification cost, lower cost in-
dicating higher performance. The results are reported from the
evaluation online system provided by the NIST in the i-vector
challenge.

Method used for OOS modeling Cost
KSE 26.61
kNN 29.33

One-class SVM 30.66
Distance to class mean 31.48

Closed-set 37.23
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7. Conclusion
We focused on the problem of OOS data selection in the i-vector
space in the context of open-set LID problem. We proposed an
approach based on non-parametric Kolmogorov-Smirnov test to
effectively select OOS candidates from an unlabeled develop-
ment set. Our proposed OOS detection method outperforms the
one-class SVM baseline by 16% relative improvement, in terms
of EER. We then used OOS candidates to train an additional
model to represent the OOS languages in the open-set LID task.
The baseline system was realized by using all the development
and/or training data as OOS candidates. Using SVM as lan-
guage classifier, with the proposed OOS data selection method,
identification cost was relatively decreased by 15% over using
all the development set as OOS candidates in the open-set LID
task.

In our future work, we plan to explore possible ex-
tensions of the Kolmogorov-Smirnov test, such as weighted
Kolmogorov-Smirnov test, to improve OOS detection accuracy.
In addition, we will investigate clustering and modeling of KSE
scores.
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