
COMPARISON OF CLUSTERING ALGORITHMS IN SPEAKER
IDENTIFICATION

TOMI KINNUNEN, TEEMU KILPELÄINEN

and PASI FRÄNTI
{tkinnu, tkilpela, franti}@cs.joensuu.fi

Department of Computer Science, University of Joensuu,
Joensuu, FINLAND.

ABSTRACT

In speaker identification, we match a given (unkown)
speaker to the set of known speakers in a database. The
database is constructed from the speech samples of each
known speaker. Feature vectors are extracted from the
samples by short-term spectral analysis, and processed
further by vector quantization for locating the clusters in
the feature space. We study the role of the vector
quantization in the speaker identification system. We
compare the performance of different clustering
algorithms, and the influence of the codebook size. We
want to find out, which method provides the best
clustering result, and whether the difference in quality
contribute to improvement in recognition accuracy of the
system.

Keywords: Speech processing, speaker identification,
vector quantization, clustering.

1 INTRODUCTION

Speaker recognition is a generic term used for two related
problems: speaker identification and verification [9]. In
the identification task the goal is to recognize the
unknown speaker from a set of N known speakers. In
verification, an identity claim (e.g., a username) is given
to the recognizer and the goal is to accept or reject the
given identity claim. In this work we concentrate on the
identification task.

The input of a speaker identification system is
a sampled speech data, and the output is the index of the
identified speaker. There are three important components
in a speaker recognition system: the feature extraction
component, the speaker models and the matching
algorithm. Feature extractor derives a set of speaker-
specific vectors from the input signal. Speaker model is
then generated from these vectors for each speaker. The
matching procedure performs the comparison of the
speaker models. It is expected that the feature extraction
is the most critical component of the system but it is also
much more difficult part to be designed than the matching
procedure.

In this work, we study the role of the vector
quantization in a VQ-based speaker identification system
[13]. We aim at solving this subproblem and give an
answer to the question of which clustering algorithm we
should use, and how large codebooks should be used. If
we manage to do this, then we could fix this part of the
algorithm and concentrate on more important
subproblems of the system in the future.

We study the performance of several clustering
algorithms, including three well known methods: LBG,
PNN, and self-organizing maps (SOM), and few newer
methods such as iterative splitting and randomized local
search (RLS). We want to find out, which methods
provide the best clustering results, and whether the
difference in quality contributes to an improvement in the
recognition accuracy of the identification system.

2 SPEAKER IDENTIFICATION SYSTEM

The structure of a VQ-based speaker identification system
is illustrated in Fig. 1. There are two phases in the speaker
identification: training and recognition. In the training
phase, a mathematical model (VQ codebook in our case)
is constructed for each speaker from their speech samples
and the models are stored in the database. In recognition
phase, the speech data of an unknown speakers is
analyzed and the best matching model is searched from
the database.

The analysis of the speech signals is based on short-
term spectral analysis. The speech signal is decomposed
into short fixed-length speech frames, which form the
feature vectors. The feature extraction process is
described more detailed in the Section 3.

The extracted feature vectors are processed further by
vector quantization for locating the clusters in the feature
space and for reducing the amount of data. The input of
vector quantization is the set of feature vectors X and the
output is a codebook C that consists of the cluster
centroids, denoted as code vectors. The codebook
represents the speaker model by approximating the
distribution of the feature vectors in the feature space.

Fig. 1: Structure of the VQ-based speaker identification system.

The identification procedure is formulated as follows:

1. Compute the set of feature vectors X = { } ix

2. FOR EACH speaker model DO iC

Compute the distortion = d(X,) between X

and .
iD iC

iC

3. Identify the index of the unknown speaker Id as the
one with the smallest distortion, i.e.

}{argmin
,...,1

iD
Ni

Id

 . (2.1)

The distortion measure d in the second step approximates
the dissimilarity between the codebook

and the vector set

. We use the most intuitive distortion

measure; map each vector in X to the nearest code vector
in and compute the average of these distances:

},...,,{ 21 iKiiiC ccc
},...,,{ 21 LX xxx

iC

),(min
1

),(
1

1
ikjE

L

j

K

k
i d

L
CXd cx

 , (2.2)

where is the Euclidean metric: Ed

dim

1

2)(),(
i

iiEd yxyx (2.3)

The distortion measure (2.2), known as the mean square
error (MSE), gives also a measure for the quality of the
codebook constructed from the training set X.

Note that in training phase we generate codebooks for
the speakers, but in the recognition phase we perform a
direct comparison between the set of feature vectors the
codebooks to the codebooks of the known speakers. This
arises the question whether we need the codebooks at the
first place.

There are two good reasons for this: memory and time
requirements. Computational load of the identification
process becomes too high if we do not reduce the amount
of data. It is very important to remove this kind of
bottlenecks from a real-time speaker identification
system. Memory consumption could also be a restricting
factor in case of very large databases.

We assume that the feature vectors discriminate well
the different acoustical units in the speech signal; similar
phonemes (vectors) are located near to each other in the

feature space while different phonemes are far away from
each other. When we perform the clustering of the feature
vectors, we obtain efficient mean values of these different
short-term acoustical units. The codebooks of different
speakers may have some vectors very close to each other,
but it is expected that there are enough dissimilar vectors
so that the matching process can differentiate between
codebooks of different speakers.

3 FEATURE EXTRACTION

Next, we describe the procedure for computing the
feature vectors c(n) from a given speech signal s(n). The
most commonly used features in speaker recognition
systems are the features derived from the cepstrum [1].
Furui [8] was the first who applied cepstral analysis in
speaker recognition.

Pre-emphasis

The speech is processed by a high-emphasis filter
before input to the cepstrum analysis. This is due to the
well-known fact that the higher frequencies contain more
speaker-dependent information than the lower
frequencies. We use a high pass filter whose transfer
function is

11)(azzH . (2.4)

Framing

The analysis of a discrete-time speech signal is based
on short-term spectral analyses. This means that the
signal is first divided into fixed-length short frames, e.g.
20 milliseconds. Adjacent frames usually overlap, e.g. by
10 milliseconds. After framing, these short-length ”sub-
signals” are considered as independent signals. For each
frame, a fixed-length feature vector is computed, which
describes the acoustic behavior of that particular frame.

Before frequency analysis, we apply a window
function to the frames. The most simple windowing
function is the rectangular window, i.e. ”no window at
all”. However, usually smoother functions are used, and
the most common in speech processing is the Hamming
window. Smoother functions are better than rectangular
window because the latter has abrupt discontinuities in its
endpoints, which is undesirable for the frequency analysis
[2].

Speech production modelling

Speech production can be well modeled by the
source-filter model introduced by Fant [4]. According to
the model, speech waveform is a result of two
independent components: the source signal produced by
vocal folds and the vocal tract filter which emphasizes
certain frequencies of the source signal according to how
it is configured. To be more precise, let us denote
excitation source sequence by and vocal tract filter

signal as . The resulting speech waveform is simply

a convolution

)(ne

)(nv

)(en)(*)(nvns . (3.1)

In frequency domain this becomes to

)()()(VS E . (3.2)

The cepstrum

Fundamental idea of the cepstrum computation in
speaker recognition is to discard the source characteristics
because they contain much less information about the
speaker identity than the vocal tract characteristics. In
practice, the exact extraction of these two nonlinearly
mixed signals e(n) and v(n) is impossible, but the
cepstrum gives a good approximation for the ”slow”
spectral variations, i.e. the envelope structure of the
signal, which characterizes the behavior of the vocal tract.
Basically cepstrum computation is a deconvolution
operator, which decomposes the signal into its source and
filter characteristics. For the details about the way the
cepstrum is computed, see e.g. [2].

The result of the deconvolution is a sequence of
cepstral coefficients , where M is the

desired number of coefficients. Coefficient

corresponds to the total energy of the frame and thus
contains no speaker information. Usually is discarded

or used for normalization. In the cepstral domain, we use
term liftering to point out that we want to ”lifter” out
those coefficients that describe fast spectral variations, i.e.
the harmonic structure. In cepstral vector, lower
coefficients describe the envelope structure and higher
coefficients the harmonic structure [2].

},...,,{ 110 Mccc

0c

0c

3 VECTOR QUANTIZATION OF THE
FEATURE VECTORS

There are two important design questions in vector
quantization: the method for generating the codebook,
and the size of the codebook. Next, we study known
clustering algorithms for codebook generation. The
question about the codebook size is issued in Section 4.

The clustering problem is defined as follows. Given a

set of feature vectors X = { | i = 1,...,L} , partition the

data set into K << L clusters such that similar vectors are
grouped together and vectors with different features
belong to different groups. The codebook

ix

},..., Kc{ 1C c can then be constructed from the cluster

representatives, which are the vector averages of each
cluster.

We consider the following clustering algorithms:

 Random: Random codebook,
 GLA: Generalized Lloyd algorithm [11],
 SOM: Self-organizing maps [12],

 PNN: Pairwise nearest neighbor [3],
 Split: Iterative splitting technique [5],
 RLS: Randomized local search [7]

Random: A random codebook can be generated by
selecting K random feature vectors. It serves as a point of
comparison.

GLA: Generalized Lloyd algorithm (also known as
LBG) starts with an initial codebook, which is iteratively
improved until a local minimum is reached. In the first
step, each feature vector is mapped to the nearest code
vector in the current codebook. In the second step, the
code vectors are recalculated as the centroids of the new
partitions. The algorithm is iterated as long as
improvement is achieved.

SOM: Self-organizing maps is a neural network
approach to the clustering. The neurons in the network are
connected with a 1-D or 2-D structure, and they
correspond to the codevectors. The feature vectors are
feed to the network by finding the nearest codevector for
each input vector. The best matched codevector and its
neighboring vectors (according to the network structure)
are updated by moving it towards the input vector. After
processing the training set by a predefined number of
times, the neighborhood size is shrunk and the entire
process is repeated until the neighborhood shrinks to zero.

PNN: Pairwise nearest neighbor generates the
codebook hierarchically. It starts by initializing each
training vector as a separate code vector. Two code
vectors are merged at each step of the algorithm and the
process is repeated until the desired size of the codebook
is obtained. The code vectors to be merged are always the
ones whose merge increase the distortion least. We use
the fast exact PNN method introduced in [6].

Split: An opposite, top-down approach starts with a
single cluster including all the feature vectors. New
clusters are then created one at a time by dividing existing
clusters. The splitting process is repeated until the desired
number of clusters is reached. The divisive approach
usually requires much less computation than the PNN.
The best known approach for the splitting is to use
principal component analysis (PCA). This method gives
comparable results to that of the PNN with much faster
algorithm.

RLS: Randomized local search algorithm starts with a
random codebook, which is then improved by a
predefined number of iterations. At each step, a new
candidate solution is generated using the following
operations. The clustering structure of the current solution
is first modified using so-called random swap technique,
in which a randomly chosen code vector is replaced by
another randomly chosen input vector. The partition of
the new solution is then adjusted in respect to the
modified codebook. Two iterations of the GLA are then
applied to fine-tune the trial solution. The candidate is
evaluated and accepted if it improves the previous

solution. The algorithm is iterated for a fixed number of
iterations.

4 EXPERIMENTAL RESULTS

We collected a speaker database of 25 speakers (14 males
+ 11 females). Speech was recorded in a laboratory
environment with a PC computer. For each speaker we
recorded two utterances of Finnish speech: one for
training and the other for recognition. Every speaker read
the same sentences. Summary of the speech database is
given in Table 1.

Table 1: Summary of the speaker database.

Speakers 25 (14 M + 11 F)
Avg. duration of training utterance 66.5 s
Avg. duration of recognition utterance 17.7 s
Sampling & quantization 11.025 kHz, 16 bits.

Before analysis, the speech files were anti-alias
filtered and downsampled to 8.0 kHz. After that, silent
parts were removed using short-term energy calculations.
The feature extraction itself was performed as follows:
remove DC offset, high-emphasis filtering with

, and, finally, perform short-term mel-

cepstrum analysis with a 30 ms Hamming-window, with
10 ms shift. The number of mel-cepstral coefficients
(dimension of feature vectors) were selected as 12. As
usually, coefficient was discarded.

195.01)(zzH

0c

We evaluated the performance of the five different
clustering algorithms of Section 3. As the measure of
quality for a given VQ codebook, we use the mean
squared error between the training set and the resulting
codebook . The resulting MSE-values are shown in

Fig. 2 and 3 with two different sizes of codebook (K=64
and K=256).

iC

The results show that there are only a small difference
between the best clustering algorithms. Even the standard
GLA method gave MSE-values close to that of the best
method, RLS. The corresponding identification rates are
shown in Fig. 4 and 5. The choice of the clustering
method have only a marginal effect on the identification
rate.

The effect of the codebook size is illustrated in Fig. 6
and 7 for the best method (RLS) and for the random
codebook. The identification rates clearly increases with
respect to the codebook size. If it is set to 128 or higher,
even with the random codebook the method is capable of
identifying 96% of the speakers, which corresponds to
a single miss-classification. With the best clustering
methods (RLS, SPLIT), the identification rate does not
improve anymore for codebooks of sizes > 64.

Finally, the running times for generating the
codebooks are shown in Fig. 8. If the database can be
constructed off-line, the running times are hardly
significant. The RLS method takes slightly longer time
than the rest of the methods because it was tuned for
quality and not for speed. If the running time was critical,
then the SPLIT method would be a good choice.

Codebook size = 64

11.2 10.6 10.6 10.7 10.3

17.2

0

2

4

6

8

10

12

14

16

18

Random SOM GLA SPLIT PNN RLS

M
S

E

Fig. 2: Quality of the codebook (scaled MSE-values)

using different clustering algorithms. K=128.

Codebook size = 256

7.2
6.6 6.4 6.4 6.2

10.3

0

2

4

6

8

10

12

Random SOM GLA SPLIT PNN RLS

M
S

E

Fig. 3: Quality of the codebook (scaled MSE-values)

using different clustering algorithms. K=256.

Codebook size = 64

88

90

92

94

96

98

100

Random SOM GLA SPLIT PNN RLS

Id
e

n
ti

fi
c

a
ti

o
n

 r
a

te
 (

%
)

Fig. 4: Identification accuracy of the algorithms. K=64.

Codebook size = 256

88

90

92

94

96

98

100

Random SOM GLA SPLIT PNN RLS

Id
e

n
ti

fi
c

a
ti

o
n

 r
a

te
 (

%
)

Fig. 5: Identification accuracy of the algorithms. K=256.

5 CONCLUSIONS

We evaluated the performance of five different
clustering algorithms for VQ-based speaker identification.
We noticed that the MSE-values of the codebooks
produced by the algorithms were only marginally
different, and the corresponding recognition rates were
rather similar.

The easiest way for improving the identification
accuracy was to increase the codebook size high enough.
No side-effect was observed due to the increase, except
the increase in the running. However, codebooks of size
greater than 64 did not have any further impact as the
identification rate already reached 100%.

We conclude that the fastest algorithm (SPLIT) should
be used if the speaker database is very large and running
time important. Otherwise, we recommend to use the best
algorithm (RLS) because it is simpler to implement and,
after all, it gave the best codebooks even though the
difference was only marginal for our database.

It is noted that the speaker database was relatively
small, the speech samples were quite long, and they were
generated in laboratory conditions. Future experiments
must therefore be made in more demanding environments
in order to obtain more conclusive results.

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128 256

codebook size

M
S

E

Random

RLS

Fig. 6: Quality of the codebook as a function of the
codebook size.

[2] Deller Jr. J.R., Proakis J.G., Hansen J.H.L.:
Discrete-Time Processing of Speech Signals.
(Macmillan Publishing Company, New York, 2000).

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256

codebook size

Id
en

ti
fi

ca
ti

o
n

 a
cc

u
ra

cy
 (

%
)

RLS
SPLIT

Random

[3] W.H. Equitz, “A new vector quantization clustering
algorithm”, IEEE Trans. on Acoustics, Speech, and
Signal Processing, 37 (10): 1568-1575, October
1989.

[4] G. Fant: Acoustic Theory of Speech Production,
(Mouton, The Hague, 1960).

[5] P. Fränti, T. Kaukoranta and O. Nevalainen, “On the
splitting method for vector quantization codebook
generation”, Optical Engineering, 36 (11): 3043-
3051, November 1997.

[6] P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S.
Chang, “Fast and memory efficient implementation
of the exact PNN”, IEEE Trans. on Image
Processing, 9 (5): May 2000.

Fig. 7: Identification accuracy of the algorithms as
a function of the codebook size.

0.0

0.1

1.0

10.0

100.0

1000.0

2 4 8 16 32 64 128 256

codebook size

ru
n

 t
im

e
(s

)

RLS

GLA

PNN

SOM

SPLIT

[7] P. Fränti and J. Kivijärvi, “Randomized local search
algorithm for the clustering problem”, Pattern
Analysis and Applications. (to appear)

[8] S. Furui: “Cepstral analysis technique for automatic
speaker verification”. IEEE Trans. on Acoustics,
Speech and Signal Processing, 29(2): 254-272,
1981.

[9] S. Furui: ”Recent advances in speaker recognition”.
Pattern Recognition Letters, 18: 859-872, 1997.

[10] A. Gersho and R.M. Gray, Vector Quantization and
Signal Compression. (Kluwer Academic Publishers,
Dordrecht, 1992). Fig. 8: Run times of the clustering algorithms.

[11] Y. Linde, A. Buzo and R.M. Gray, “An algorithm
for vector quantizer design”. IEEE Trans. on
Communications, 28 (1): 84-95, January 1980.

REFERENCES

[12] N.M. Nasrabadi and Y. Feng, "Vector quantization
of images based upon the Kohonen self-organization
feature maps", Neural Networks, 1: 518 (1988).

[1] Bogert B.P., Healy M.J.R., Tukey J.W.: ”The
frequency alanysis of time series for echoes:
cepstrum, pseudo-autocovariance, cross-cepstrum,
and saphe cracking”, Proc. Symposium Time Series
Analysis, John Wiley and Sons, NY, 209-243, 1963.

[13] F.K. Soong, A.E. Rosenberg, B-H. Juang, L.R.
Rabiner: ”A vector quantization approach to speaker
recognition”. AT&T Technical Journal, 66: 14-26,
1987.

	COMPARISON OF CLUSTERING ALGORITHMS IN SPEAKER IDENTIFICATION
	ABSTRACT
	In speaker identification, we match a given (unkown) speaker to the set of known speakers in a database. The database is constructed from the speech samples of each known speaker. Feature vectors are extracted from the samples by short-term spectral analysis, and processed further by vector quantization for locating the clusters in the feature space. We study the role of the vector quantization in the speaker identification system. We compare the performance of different clustering algorithms, and the influence of the codebook size. We want to find out, which method provides the best clustering result, and whether the difference in quality contribute to improvement in recognition accuracy of the system.

	1 INTRODUCTION
	2 SPEAKER IDENTIFICATION SYSTEM
	3 FEATURE EXTRACTION
	Pre-emphasis
	The speech is processed by a high-emphasis filter before input to the cepstrum analysis. This is due to the well-known fact that the higher frequencies contain more speaker-dependent information than the lower frequencies. We use a high pass filter whose transfer function is
	. (2.4)
	Framing
	Speech production modelling
	The cepstrum

	3 VECTOR QUANTIZATION OF THE FEATURE VECTORS
	4 EXPERIMENTAL RESULTS
	5 CONCLUSIONS
	REFERENCES

