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ABSTRACT 

In speaker identification, we match a given (unkown) 
speaker to the set of known speakers in a database. The 
database is constructed from the speech samples of each 
known speaker.  Feature vectors are extracted from the 
samples by short-term spectral analysis, and processed 
further by vector quantization for locating the clusters in 
the feature space. We study the role of the vector 
quantization in the speaker identification system. We 
compare the performance of different clustering 
algorithms, and the influence of the codebook size. We 
want to find out, which method provides the best 
clustering result, and whether the difference in quality 
contribute to improvement in recognition accuracy of the 
system. 
 
Keywords: Speech processing, speaker identification, 
vector quantization, clustering. 
 

1 INTRODUCTION 

Speaker recognition is a generic term used for two related 
problems: speaker identification and verification [9]. In 
the identification task the goal is to recognize the 
unknown speaker from a set of N known speakers. In 
verification, an identity claim (e.g., a username) is given 
to the recognizer and the goal is to accept or reject the 
given identity claim. In this work we concentrate on the 
identification task. 

The input of a speaker identification system is 
a sampled speech data, and the output is the index of the 
identified speaker. There are three important components 
in a speaker recognition system: the feature extraction 
component, the speaker models and the matching 
algorithm. Feature extractor derives a set of speaker-
specific vectors from the input signal. Speaker model is 
then generated from these vectors for each speaker. The 
matching procedure performs the comparison of the 
speaker models. It is expected that the feature extraction 
is the most critical component of the system but it is also 
much more difficult part to be designed than the matching 
procedure. 

In this work, we study the role of the vector 
quantization in a VQ-based speaker identification system 
[13]. We aim at solving this subproblem and give an 
answer to the question of which clustering algorithm we 
should use, and how large codebooks should be used. If 
we manage to do this, then we could fix this part of the 
algorithm and concentrate on more important 
subproblems of the system in the future. 

We study the performance of several clustering 
algorithms, including three well known methods: LBG, 
PNN, and self-organizing maps (SOM), and few newer 
methods such as iterative splitting and randomized local 
search (RLS). We want to find out, which methods 
provide the best clustering results, and whether the 
difference in quality contributes to an improvement in the 
recognition accuracy of the identification system. 

2 SPEAKER IDENTIFICATION SYSTEM 

The structure of a VQ-based speaker identification system 
is illustrated in Fig. 1. There are two phases in the speaker 
identification: training and recognition. In the training 
phase, a mathematical model (VQ codebook in our case) 
is constructed for each speaker from their speech samples 
and the models are stored in the database. In recognition 
phase, the speech data of an unknown speakers is 
analyzed and the best matching model is searched from 
the database.  

The analysis of the speech signals is based on short-
term spectral analysis. The speech signal is decomposed 
into short fixed-length speech frames, which form the 
feature vectors. The feature extraction process is 
described more detailed in the Section 3. 

The extracted feature vectors are processed further by 
vector quantization for locating the clusters in the feature 
space and for reducing the amount of data. The input of 
vector quantization is the set of feature vectors X and the 
output is a codebook C that consists of the cluster 
centroids, denoted as code vectors. The codebook 
represents the speaker model by approximating the 
distribution of the feature vectors in the feature space.  

 



 
 

Fig. 1: Structure of the VQ-based speaker identification system. 
 

 
The identification procedure is formulated as follows: 

1. Compute the set of feature vectors X = { } ix

2. FOR  EACH speaker model  DO iC

Compute the distortion  = d(X, ) between X 
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3. Identify the index of the unknown speaker Id as the 
one with the smallest distortion, i.e. 
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The distortion measure d in the second step approximates 
the dissimilarity between the codebook 

and the vector set 

. We use the most intuitive distortion 

measure; map each vector in X to the nearest code vector 
in and compute the average of these distances: 
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where  is the Euclidean metric: Ed
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The distortion measure (2.2), known as the mean square 
error (MSE), gives also a measure for the quality of the 
codebook constructed from the training set X.  

Note that in training phase we generate codebooks for 
the speakers, but in the recognition phase we perform a 
direct comparison between the set of feature vectors the 
codebooks to the codebooks of the known speakers. This 
arises the question whether we need the codebooks at the 
first place.  

There are two good reasons for this: memory and time 
requirements. Computational load of the identification 
process becomes too high if we do not reduce the amount 
of data. It is very important to remove this kind of 
bottlenecks from a real-time speaker identification 
system. Memory consumption could also be a restricting 
factor in case of very large databases. 

We assume that the feature vectors discriminate well 
the different acoustical units in the speech signal; similar 
phonemes (vectors) are located near to each other in the 



feature space while different phonemes are far away from 
each other. When we perform the clustering of the feature 
vectors, we obtain efficient mean values of these different 
short-term acoustical units. The codebooks of different 
speakers may have some vectors very close to each other, 
but it is expected that there are enough dissimilar vectors 
so that the matching process can differentiate between 
codebooks of different speakers. 

3 FEATURE EXTRACTION 

Next, we describe the procedure for computing the 
feature vectors c(n) from a given speech signal s(n). The 
most commonly used features in speaker recognition 
systems are the features derived from the cepstrum [1]. 
Furui [8] was the first who applied cepstral analysis in 
speaker recognition. 

Pre-emphasis  

The speech is processed by a high-emphasis filter 
before input to the cepstrum analysis. This is due to the 
well-known fact that the higher frequencies contain more 
speaker-dependent information than the lower 
frequencies. We use a high pass filter whose transfer 
function is 
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Framing 

The analysis of a discrete-time speech signal is based 
on short-term spectral analyses. This means that the 
signal is first divided into fixed-length short frames, e.g. 
20 milliseconds. Adjacent frames usually overlap, e.g. by 
10 milliseconds. After framing, these short-length ”sub-
signals” are considered as independent signals. For each 
frame, a fixed-length feature vector is computed, which 
describes the acoustic behavior of that particular frame.  

Before frequency analysis, we apply a window 
function to the frames. The most simple windowing 
function is the rectangular window, i.e. ”no window at 
all”. However, usually smoother functions are used, and 
the most common in speech processing is the Hamming 
window. Smoother functions are better than rectangular 
window because the latter has abrupt discontinuities in its 
endpoints, which is undesirable for the frequency analysis 
[2]. 

Speech production modelling 

Speech production can be well modeled by the 
source-filter model introduced by Fant [4]. According to 
the model, speech waveform is a result of two 
independent components: the source signal produced by 
vocal folds and the vocal tract filter which emphasizes 
certain frequencies of the source signal according to how 
it is configured. To be more precise, let us denote 
excitation source sequence by and vocal tract filter 

signal as . The resulting speech waveform is simply 

a convolution 
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In frequency domain this becomes to  
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The cepstrum 

Fundamental idea of the cepstrum computation in 
speaker recognition is to discard the source characteristics 
because they contain much less information about the 
speaker identity than the vocal tract characteristics. In 
practice, the exact extraction of these two nonlinearly 
mixed signals e(n) and v(n) is impossible, but the 
cepstrum gives a good approximation for the ”slow” 
spectral variations, i.e. the envelope structure of the 
signal, which characterizes the behavior of the vocal tract. 
Basically cepstrum computation is a deconvolution 
operator, which decomposes the signal into its source and 
filter characteristics. For the details about the way the 
cepstrum is computed, see e.g. [2]. 

The result of the deconvolution is a sequence of 
cepstral coefficients , where M is the 

desired number of coefficients. Coefficient  

corresponds to the total energy of the frame and thus 
contains no speaker information. Usually  is discarded 

or used for normalization. In the cepstral domain, we use 
term liftering to point out that we want to ”lifter” out 
those coefficients that describe fast spectral variations, i.e. 
the harmonic structure. In cepstral vector, lower 
coefficients describe the envelope structure and higher 
coefficients the harmonic structure [2]. 
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3 VECTOR QUANTIZATION OF THE 
FEATURE VECTORS 

There are two important design questions in vector 
quantization: the method for generating the codebook, 
and the size of the codebook. Next, we study known 
clustering algorithms for codebook generation. The 
question about the codebook size is issued in Section 4. 

The clustering problem is defined as follows. Given a 

set of feature vectors X = { | i = 1,...,L} , partition the 

data set into K << L clusters such that similar vectors are 
grouped together and vectors with different features 
belong to different groups. The codebook 

ix

},..., Kc{ 1C c can then be constructed from the cluster 

representatives, which are the vector averages of each 
cluster. 
 
We consider the following clustering algorithms: 

 Random: Random codebook, 
 GLA: Generalized Lloyd algorithm [11], 
 SOM: Self-organizing maps [12],  



 PNN: Pairwise nearest neighbor [3], 
 Split: Iterative splitting technique [5], 
 RLS: Randomized local search [7] 

Random: A random codebook can be generated by 
selecting K  random feature vectors. It serves as a point of 
comparison. 

GLA: Generalized Lloyd algorithm (also known as 
LBG) starts with an initial codebook, which is iteratively 
improved until a local minimum is reached. In the first 
step, each feature vector is mapped to the nearest code 
vector in the current codebook. In the second step, the 
code vectors are recalculated as the centroids of the new 
partitions. The algorithm is iterated as long as 
improvement is achieved. 

SOM: Self-organizing maps is a neural network 
approach to the clustering. The neurons in the network are 
connected with a 1-D or 2-D structure, and they 
correspond to the codevectors. The feature vectors are 
feed to the network by finding the nearest codevector for 
each input vector. The best matched codevector and its 
neighboring vectors (according to the network structure) 
are updated by moving it towards the input vector. After 
processing the training set by a predefined number of 
times, the neighborhood size is shrunk and the entire 
process is repeated until the neighborhood shrinks to zero. 

PNN: Pairwise nearest neighbor generates the 
codebook hierarchically. It starts by initializing each 
training vector as a separate code vector. Two code 
vectors are merged at each step of the algorithm and the 
process is repeated until the desired size of the codebook 
is obtained. The code vectors to be merged are always the 
ones whose merge increase the distortion least. We use 
the fast exact PNN method introduced in [6]. 

Split: An opposite, top-down approach starts with a 
single cluster including all the feature vectors. New 
clusters are then created one at a time by dividing existing 
clusters. The splitting process is repeated until the desired 
number of clusters is reached. The divisive approach 
usually requires much less computation than the PNN. 
The best known approach for the splitting is to use 
principal component analysis (PCA). This method gives 
comparable results to that of the PNN with much faster 
algorithm. 

RLS: Randomized local search algorithm starts with a 
random codebook, which is then improved by a 
predefined number of iterations. At each step, a new 
candidate solution is generated using the following 
operations. The clustering structure of the current solution 
is first modified using so-called random swap technique, 
in which a randomly chosen code vector is replaced by 
another randomly chosen input vector. The partition of 
the new solution is then adjusted in respect to the 
modified codebook. Two iterations of the GLA are then 
applied to fine-tune the trial solution. The candidate is 
evaluated and accepted if it improves the previous 

solution. The algorithm is iterated for a fixed number of 
iterations. 

4 EXPERIMENTAL RESULTS 

We collected a speaker database of 25 speakers (14 males 
+ 11 females). Speech was recorded in a laboratory 
environment with a PC computer. For each speaker we 
recorded two utterances of Finnish speech: one for 
training and the other for recognition. Every speaker read 
the same sentences. Summary of the speech database is 
given in Table 1. 
 
Table 1: Summary of the speaker database. 

# Speakers 25 (14 M + 11 F) 
Avg. duration of training utterance 66.5 s 
Avg. duration of recognition utterance 17.7 s 
Sampling & quantization 11.025 kHz, 16 bits. 
 
 

Before analysis, the speech files were anti-alias 
filtered and downsampled to 8.0 kHz. After that, silent 
parts were removed using short-term energy calculations. 
The feature extraction itself was performed as follows: 
remove DC offset, high-emphasis filtering with 

, and, finally, perform short-term mel-

cepstrum analysis with a 30 ms Hamming-window, with 
10 ms shift. The number of mel-cepstral coefficients 
(dimension of feature vectors) were selected as 12. As 
usually, coefficient  was discarded. 
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We evaluated the performance of the five different 
clustering algorithms of Section 3. As the measure of 
quality for a given VQ codebook, we use the mean 
squared error between the training set and the resulting 
codebook . The resulting MSE-values are shown in 

Fig. 2 and 3 with two different sizes of codebook (K=64 
and K=256).  

iC

The results show that there are only a small difference 
between the best clustering algorithms. Even the standard 
GLA method gave MSE-values close to that of the best 
method, RLS. The corresponding identification rates are 
shown in Fig. 4 and 5. The choice of the clustering 
method have only a marginal effect on the identification 
rate. 

The effect of the codebook size is illustrated in Fig. 6 
and 7 for the best method (RLS) and for the random 
codebook. The identification rates clearly increases with 
respect to the codebook size. If it is set to 128 or higher, 
even with the random codebook the method is capable of 
identifying 96% of the speakers, which corresponds to 
a single miss-classification. With the best clustering 
methods (RLS, SPLIT), the identification rate does not 
improve anymore for codebooks of sizes > 64. 



Finally, the running times for generating the 
codebooks are shown in Fig. 8. If the database can be 
constructed off-line, the running times are hardly 
significant. The RLS method takes slightly longer time 
than the rest of the methods because it was tuned for 
quality and not for speed. If the running time was critical, 
then the SPLIT method would be a good choice. 
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Fig. 2: Quality of the codebook (scaled MSE-values) 

using different clustering algorithms. K=128. 
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Fig. 3: Quality of the codebook (scaled MSE-values) 

using different clustering algorithms. K=256. 
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Fig. 4: Identification accuracy of the algorithms. K=64. 
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Fig. 5: Identification accuracy of the algorithms. K=256. 

5 CONCLUSIONS 
 

We evaluated the performance of five different 
clustering algorithms for VQ-based speaker identification. 
We noticed that the MSE-values of the codebooks 
produced by the algorithms were only marginally 
different, and the corresponding recognition rates were 
rather similar. 

The easiest way for improving the identification 
accuracy was to increase the codebook size high enough. 
No side-effect was observed due to the increase, except 
the increase in the running. However, codebooks of size 
greater than 64 did not have any further impact as the 
identification rate already reached 100%. 

We conclude that the fastest algorithm (SPLIT) should 
be used if the speaker database is very large and running 
time important. Otherwise, we recommend to use the best 
algorithm (RLS) because it is simpler to implement and, 
after all, it gave the best codebooks even though the 
difference was only marginal for our database.  

It is noted that the speaker database was relatively 
small, the speech samples were quite long, and they were 
generated in laboratory conditions. Future experiments 
must therefore be made in more demanding environments 
in order to obtain more conclusive results. 
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Fig. 6: Quality of the codebook as a function of the 
codebook size. 
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