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ABSTRACT

In this paper, we propose a noise reduced tone mapping
method based on information content weights, where the
perceptually unimportant pixels are smoothed during the de-
composition in two steps. First, a saliency-based information
content weight is introduced to give high fidelity to the data
term based on the ratio of the local pixel power and the
overall noise power in the base layer decomposition. Then,
the detail layer is subtracted using the mutual information-
based information content weight from the original image
luminance and the clean base layer. Experiments show the
effectiveness of the proposed method in the improvements of
both signal-to-noise ratio and visual quality.

Index Terms— high dynamic range, tone mapping, edge-
preserving decomposition, de-noising, information content

1. INTRODUCTION

Dynamic range of a real world scene is defined as the ratio
between the largest and the smallest light intensities in the
scene. Due to hardware limitation, an image captured using
conventional camera is not enough to keep the full dynamic
range. Therefore, a high dynamic range (HDR) image is usu-
ally reconstructed using either newly designed sensors [1] or
synthesized using multiple differently exposed images [2].
Unfortunately, an HDR image cannot be displayed directly
on a conventional display device due to hardware limitations.
Although HDR-solution-based monitor [3] and projector [4]
have been proposed, they are not widely used due to quality
and cost issues. Thus, compression from an HDR image into
a display-able image is studied as HDR tone mapping, and
global operators [5, 6] and local operators [7–9] have been
proposed.

Most of these algorithms only focused on how to keep
fine details, but did not consider noise. The noise in an HDR
image, especially for a low lighting HDR scene, is inherited
from the capturing device. A large ISO setting is usually used
at low lighting conditions which results in a noisy HDR im-
age. Unfortunately, it can be easily treated as the fine detail
and retained in the final image. In particular, the low fre-
quency coarse-grain noise is always mixed with small details,

which, in some tone mapping operators, is even enhanced in
the final output.

The gradient-decomposition-based method [10] magni-
fies the small magnitude to review the fine details. Noise,
if not carefully treated, can be magnified and become more
obvious in the tone mapping result. In the edge-preserving-
based method [7, 9], both fine details and coarse-grain noise
are retained in the detail layer. In the scale-decomposition-
based method [11], high frequency band which contains large
edges and high frequency noise are compressed and reduced.
However, the low-frequency bands with coarse-grain noise
are retained.

In order to reduce noise, Lee et al. proposed a scale-
decomposition-based method [12]. It used a discrete Haar
wavelet transform to decompose an HDR image into four sub-
bands. A noise reduction step was introduced by filtering
the subband with the lowest frequency using bilateral filter,
and smoothing the rest subbands using soft-thresholding. The
problem of using multiscale techniques is that the original sig-
nal may be distorted at the composition stage which generates
the halo artifacts [11], if the parameters are not carefully se-
lected.

In this paper, a noise reduced tone mapping algorithm is
proposed by using two information content weights (ICW).
These ICWs are incorporated in an edge-preserving tone map-
ping method for fast and effective processing. The first ICW
is a saliency map that represents the importance of the re-
ceived information by treating the original HDR image as a
clean image passes through a noisy channel. It is used to gen-
erate a clean base layer by controlling the fidelity between the
base layer and the original HDR image. The second ICW is
defined as mutual information between a noise image and a
clean reference image using a simplified information fidelity
criterion [13]. It is used in the detail layer substraction by re-
garding the base layer as a clean reference. Experiments show
that the proposed method can reduce the noise effectively.

The rest of the paper is organized as follows. Section II
describes the proposed ICWs and the noise reduced tone map-
ping process. Experimental results, comparison and discus-
sion are provided in Section III. And the paper is concluded
in Section IV.
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2. NOISE REDUCED TONE MAPPING

In the Retinex theory [14], an image (I) is regarded as a prod-
uct of two components: an illuminance component which
contains large luminance variance, and a reflectance compo-
nent which contains intrinsic information. Base on this, an
HDR image is decomposed into a base layer (B) with large
luminance variance and a detail layer (D) with fine details.
Here, B, D and I are all defined in log luminance domain,
and therefore, the original product is rewrite as I = B + D.
The proposed ICWs work on the base layer and the detail
layer respectively.

2.1. Saliency-based Decomposition

A noise image can be regarded as a clean image that passes
through a noisy visual channel. Thus, the local information
content of this noise image is quantified as the number of bits
that can be received from the noisy visual channel [15]. In-
spired by information theory on how information is received
through a noisy channel, a saliency-based ICW is defined as

S(p) =
1

2
log2

(
1 +

σ2(p)

σ2
c

)
, (1)

where σ2(p) denotes the local variance at each pixel p with
a small window, and σ2

c is a constant represents the channel
noise power.

The base layer is derived using the saliency-based ICW
for better data fidelity at more important regions, and smooth
the less important regions in the regularization term by seek-
ing the minimum of∫∫ (

S(p) · (B(p)− I(p))
2

+ λΦ(B(p), I(p))
)
dxdy, (2)

where λ is a smoothing coefficient and Φ represents a regu-
larization term. The principle is that a higher weight is given
to pixels that are perceptually more sensitive in assessing the
image quality, and therefore, the base layer will be more close
to the original image. On the contrary, when processing pixels
that are less sensitive in the human perceptual, commonly low
frequency components, the decomposition is bias towards the
regularization term for smoothing.

In this paper, we use the regularization term from the
weight-least-square (WLS) method [7]. The full objective
function (2) can then be rewritten using matrix notation as

(b− i)T s(b− i) + λ
(
bTDT

xAxDxb+ bTDT
y AyDyb

)
, (3)

where b, i and s are the vector representation of B, I and S,
Ax and Ay are diagonal matrices containing the smoothness
weights, and Dx and Dy denote discrete differentiation oper-
ators. A linear system is derived by minimizing the objective
function as

(Im + λs−1Ψ)b = i, (4)

Fig. 1. The behavior of different noise power coefficient (c)
on a clean image (left column) and a noise image (right col-
umn). The noise image is generated by adding a zero mean
Gaussian noise with variance of 0.01. A balanced noise power
coefficient can reduce the noise effectively without degrading
the clean image.

where Ψ = DT
xAxDx +DT

y AyDy , and Im denotes the iden-
tity matrix. The solution of this linear system is the same
as the WLS-based decomposition, and therefore, it shares the
similar frequency response [7]. As a result, we keep the same
smoothing coefficient in our implementation.

The channel noise power (σ2
c ) is a constant that controls

the strength of noise reduction. It is selected from the vector ~Γ
of all local variances ({Γ(p) = σ2(p), p ∈ P}) in ascending
order. We name c the noise power coefficient. And it indicates
which value is selected from the vector. For example, c =
0.5 indicates the median value of ~Γ. In Equation (1), a small
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noise power coefficient indicates a small channel noise, and
results a high fidelity between the base layer and the original
image, as shown in Fig. 1 (c). If the noise power coefficient
is too big, the base layer can be over smoothed, as shown in
Fig. 1 (e), where the cloud is completely removed when there
is no noise. A balanced noise power coefficient (c = 0.3 is
chosen in our implementation) ensures a good noise reduction
result without over smoothing the clean image.

Fig. 2. Detail layer retrieved using (left) WLS-based decom-
position, and (right) ICW-based decomposition. The input
image is the same noise image presented in Fig. 1.

2.2. Mutual Information-based Detail Substraction

The detail layer is a reflectance component derived from the
base layer and the original image luminance. Here, the noise-
reduced base layer is regarded as a clean reference. The in-
formation content is weighted as the amount of the mutual in-
formation between the clean reference and the original noise
image as

M(p) =
1

α
log2

(
1 + β ·

(
σB·I(p)

σ2
B(p)

)γ)
, (5)

where σ2
B(p) denotes the local variance of the base layer in

a small window centred at p, σB·I(p) denotes the covariance
between the base layer and the original luminance, β and γ
are two constants control the effectiveness of the weighting
function, and α is a normalization factor which fulfills the
constraints of M ∈ [0, 1].

The mutual information ICW is a simplified information
fidelity criteria [13], where σB·I/σ

2
B represents the signal at-

tenuation caused by noise. As shown in Fig. 2, when gener-
ating detail layer, high weights are given to the pixels with
more mutual information to the clean reference as

D(p) = M(p) · (I(p)−B(p)). (6)

3. EXPERIMENTAL RESULTS

We first compare the proposed ICW-based tone mapping with
the WLS-based tone mappingg [7] using the same param-
eters proposed in Farbman et al.’s original implementation.

Gaussian noise (SNR=15dB) was added in the clean HDR
images, as shown in Fig. 3, where the reference image is gen-
erated from the clean HDR image using original WLS-based
method. The proposed method improves the peak signal-to-
noise ratio (PSNR) by 3dB on the average, and improves the
structure similarity index (SSIM) by 10-30%, as shown in
Table 1. More tests have been conducted at different noise
levels, and the proposed ICWs improve the WLS-based tone
mapping method by 1-4dB.

Table 1. Comparison of ICW to WLS [7].

Image Quality metrics WLS ICW

(a) Lamp
PSNR (dB) 30.08 33.26

SSIM 0.6392 0.9113

(b) Memorial
PSNR (dB) 24.62 27.92

SSIM 0.5601 0.7649

(c) Leaves
PSNR (dB) 26.43 28.10

SSIM 0.7120 0.8186

(d) Desk
PSNR (dB) 30.49 34.74

SSIM 0.6884 0.9398

Visual comparisons are made on camera captured noise
HDR images, as shown in Fig. 4, where the noise is signif-
icantly reduced. In our implementation, the R, G, B color
channels are processed separately. This is due to lack of HDR
color model, and may cause color shift in some pixels. The
process can be improved when a more accurate HDR color
model is found.

Five most representative tone mapping algorithms are
chosen to compare with the proposed method: a global tone
mapping operator [16], a subbands-based scale decompo-
sition [11], a bilateral-filtering-based decomposition [8], a
direct luminance compression [6], and the edge-preserving
WLS [7]. Except the global tone mapping operator, which
is implemented in an open source project Luminance HDR,
the implementation of the other methods are provided by
their authors. As shown in Fig. 5, different tone mapping
algorithms give different visual experiences, which is very
subjective. However, it is very obvious that the proposed
method generates a cleaner displayable image.

4. CONCLUSION

In this paper, we presented a noise reduced tone mapping
method based on information content weights working on
base layer and detail layer, respectively. The experiments
show that the proposed method effectively reduces the noise
compared to the state-of-the-art tone mapping algorithms.
The proposed method is suitable to be used for noise reduc-
tion on conventional image too, by replacing the input image
from an HDR image to a conventional image.
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Fig. 3. Visual comparison of the luminance component generated using WLS (mid row) and ICW (bottom row). The clean
image is specified in the top row.

Fig. 4. Visual comparison of the color HDR image generated using WLS (top row) and ICW (bottom row).

Fig. 5. Visual comparison of different tone mapping algorithms: (a) global tone curve [16]; (b) scale decomposition [11]; (c)
bilateral filtering decomposition [8]; (d) direct luminance compression [6]; (e) WLS [7]; and (f) the proposed ICW.
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