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Abstract-Bit-plane coding has been widely used in loss less 
compression of gray-scale images or color palette images. In the 
context-based encoding procedure, the values of previous 
significant planes are also considered, which is simplified as 

surrounding pixel's expectation values. In this paper, we 
further improved the encoding scheme by context-tree modeling, 
in which both the order and depth of the context template is 
optimized. In probability estimation scheme, a forgetting factor 
and context weighting are utilized. According to our 
experiments, the proposed method compete with the existing 
algorithms in lossless compression of gray-scale images, and 
outperforms all competitive methods in compression or color 
palette images. 

I. INTRODUCTION 

The motivation of image compression is to represent an 
input image in smaller space for saving storage capacity. 
Lossless compression aims at doing this without any loss of 
information so that the original image can be restored 
identically without any loss after the decompression. Most 
image compression algorithms are based on predictive 
modeling, such as JPEG-LS [1] and CALIC [2]. The current 
encoding pixel is predicted by a function of already encoded 
neighborhood pixels and subsequently the difference between 
the actual and predicted value, which is called prediction error, 
is encoded. Despite of its apparent simplicity, predictive 
coding is quite effective and widely practiced in the state of 
the art compression algorithms. 

A prevailing practice is to decompose or represent the 
image of interest using a set of palette images, which are used 
for representing computer generated imagery in web and other 
multimedia platforms. Instead of using smoothly continuous 
tone of colors, these images are interpreted by using only the 
pixel level detailed structures. They cannot be compressed by 
predictive methods (CALIC and JPEG-LS) because they are 
designed for continuous-tone images. A more intuitive 
realization is to use bit-plane coding: divide the image into 
binary layers according to the colors or bit values, and then 
compress the bit-planes separately by a highly optimized 
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binary image compression method. This approach is general 
since any bit-plane compressor can be used after the bit-plane 
separation without any modification needed to adapt to the 
image type. 

In bi-Ievel compression, most conventional algorithms 
encode the image pixel by pixel in raster scan order using 
context-based probability and arithmetic coding. The 
probability of local context is estimated according to different 
strategies. For example, in JBIG [5], a to-pixel fixed template 
is used. Context tree modeling has been extensively studied [6, 
7] for the sake of attacking the context dilution problem. State­
of-the-art context weighting approach [8] is considered that 
adaptively weights multiple fixed context models based on 
their relative accuracy. In [8, 9], a forgetting factor is 
incorporated so that a recent pixels have greater influence on 
the probability estimation of the current pixel than the earlier 
pixels. Compared with traditional methods that estimate the 
conditional probability globally, this algorithm is efficient 
especially when different patterns exist in the same image. It 
has been reported that the compression ratio increases about 
5%-10% to that of JBIG for CCITT dataset [8, 9]. 

Another challenge in the bit-plane separation is that the 
semantic image structures are quite often broken especially at 
the lower bit planes. It is therefore difficult to capture the 
spatial dependencies efficiently even if a very large larger 
context template is used. One idea is to use multi-layer context 
template, following with a greedy context reordering and tree 
pruning process [3]. Expectation-based bit-plane coding has 
been proposed [4] by using prediction technique based on 
expectation value for representing the context values. Since 
context bits are computed by its expectation values, it is 
realistic to include future pixels in the context template during 
encoding the less significant bit-planes (LSB). In this paper, 
we combine the approach in [4] with a highly efficient context 
tree model to the best of the compression performance. The 
context ordering and tree pruning are executed in order to 
minimize the sum of adaptive code lengths for the encoding 
image. 



Figure I. Examples of palette images. 

II. PROPOSED METHOD 

A. Bit-plane Coding 
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Bit-plane coding can be used for compression gray-scale 
images. Commonly, it consists of two independent stages, 
decomposition and lossless compression. An example of bit­
plane coding can be seen in Fig.2. 

In the first stage, the gray-scale image is decomposed into 
a set of binary images (layers). Different decomposition 
methods are proposed such as simple bit-plane separation 
(BPS), gray code separation (GCS), prediction error 
separation (PCS) and gray code prediction error separation 
(GCPES). A reasonable summary can be found in [3]. 

In the second stage, a lossless compression algorithm is 
then applied for the values on the bit-planes. An intuitive idea 
is to use some bi-level image compression standard such as 
JBIG for coding the bit-planes. However, this approach is only 
efficient for the most significant bit-planes (MSB). In practice, 
there is low correlation of the pixels on the less significant bit­
planes (LSB) and the bit-rate is close to Ibitlpixel. In [3, 11], 
multi-layer context tree modeling (MCT) has been proposed, 
in which the context pixel is selected not only from the same 
bit-plane, but also from previously coded bit-planes, see fig.3. 
Pre-calculation if every gray-level is appeared in the 
processing image can also be considered. When gray-levels of 
the image are less than 256, in some LSBs, the coding cost for 
some pixels can be saved. For example, for a 8-bit image, if 
there are only one gray-level appeared on the image between 0 
and 2k -1, encoding process can be skipped for these pixels on 
bit-plane O, I, . . .  k-l. 

For color-indexed images, they are typically compressed 
by GIF and PNG, but much better results have been obtained 
by specialized methods such as PWC [13], MCT [3] or GCT 
[12]. Bit-plane separation can also be made in progressive 
manner using color clustering [14, 15]. The method in [14] 
provided two improvements over the first approach in [15]: 
better clustering method using merge-based algorithm rather 
than the splitting technique, and better compression method by 
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Figure 2. Idea of the bit-plane coding 

Figure 3. Example of context template. MCT(left) and expectation-based 
bit-plane coding(right) 

context tree model rather than fixed-side template. They are 
useful when color progression is needed, but otherwise best 
non-progressive methods are superior in general. The basic 
idea, however, is applicable in the bit-plane separation step 
and therefore relevant here. 

The method in [16] uses variable context size by 
decreasing the number of template pixels towards the LSB 
bit-planes. This is reasonable heuristic approach since the 
pixels in the higher-level bit planes are more correlated and 
wider exploitation via larger context template can be used. 

A position paper can be found in [10] that includes partial 
accessibility and other factors relevant to practical 
implementations. This shows the usability of a modular 
approach where the problem is simplified into smaller sub­
problems by dividing the image into binary layers by color 
decomposition, and smaller sub-blocks for random access to 
partial images. 
B. Expectation-based bit-plane coding 

Expectation-based bit-plane coding (EBC) was recently 
proposed in [4]. For each encoding pixels and its 
neighborhood in the context, expectation values are calculated 
based on the values of higher bit-planes which is already 
encoded. Suppose x =(X7,x6,x5,x4,x3,x2,xI,xo), Xi is the value for 
pixel x at bit-plane i. When the nth bit-plane is being encoded, 
if pixel x is already encoded at bit-plane i, its expectation 
value is formulated as: 

7 
E(x) = � )i + (2n-1 -1) (1) 

I=n 
If x has not been encoded at current bit-plane, expectation 

value is defined as: 

7 
E(x) = L 2i +(2n -1) (2) 

i=n+l 

During encoding process, the context is determined by 
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Figure 4. Example of the context value calculation during encoding bit­
plane 4, where "?" is the current pixel. Original image (top-left), binary 
image of the current bit-plane (top-middle), expectation value (top-right). 
The context selection and the sample frequencies for the current pixel are 
shown using the bit-plane (middle), and using the expectation value 
(bottom). 
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Figure 5. Coding cost of different bit-plane coding algorithm for image 
"airplane". 

these expectation values. If the expected value of the context 
pixel is lower than the expected value of the current pixel, 
then 0 is used, otherwise 1 is used. A 9-pixel fixed template 
was used (see Fig.3) and the number of template pixels is 
decreased gradually to 8, 7, 6, and 5 for encoding the four 
LSBs, respectively. 

The reasoning behind this idea is that the bit-value in the 
current bit-plane itself is meaningful only if it is the first I-bit 
in the bit-plane. Otherwise, it is merely a refining bit that fine­
tunes the value of that particular pixel further and its exact 
value is meaningless unless the exact magnitUde is known. 
Moreover, future pixels can also be selected in the context 
template and it is especially efficient for LSBs. In [4], for the 
future context pixels, when the expected value of a context 
equals to that of the current pixel, context value is set to 1. 
Instead, we calculate two statistical distributions by setting the 
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value to 0 and 1 correspondingly, and apply context weighting 
process [8], which will be demonstrated in Section 2.2. An 
example of the context selection in the expectation-based bit­
plane coding is shown in FigA. 

In Fig.5, a comparison of different bit-plane coding 
approaches is demonstrated using simple bit-plane separation 
(BPS), gray code separation (GCS), expectation-based bit­
plane coding (EBC) and the improved (weighted) variant of 
the expectation-based bit-plane coding (WEBC). The last one 
is selected as the recommended bit-plane coding method in the 
rest of the paper due to its good performance in comparison to 
the BPS and GCS variants. 

C. Probability estimation 
In adaptive coding framework, probability estimation is 

needed for encoding the current pixel. A general formulation 
of this is done by Krichevski-Trofimov (K-T) estimator, which 
collects global statistics for different context c during 
encoding procedure. In BACIC algorithm [9], a forgetting 
factor !l is incorporated which gives higher influence for 
recently encoded pixels. The probability of the current pixel is 
estimated as: 

(3) 

where � is a bias factor (� = 0.006), after the current pixel has 
been encoded, rc and Sc are updated as: 

rc(n) = xn + Wc(n-I) 

sc(n) = 1+ Jlsc(n-I) 

with rc(O) = 1 and sc(0)=2. 

(4) 

(5) 

In fact, global statistics can also be considered as a special 
case when !l=1. Arithmetic coding is performed based on this 
probability estimation. The total coding cost by arithmetic 
coding can be calculated as: 

n 
l(x; I c) = -Z )Og2 p"(x; I c) (6) 

1=1 

The reason for using the forgetting factor is that there may 
exists different patterns in the same image. Fig, 6 shows an 
example where global statistics are not a suitable solution. For 
the given context, at left side of the image, white color is 
dominant whereas black color is the dominant color at the 
right side. If Krichevski-Trofimov (K-T) estimator is used, the 
probability estimation of a given context will converge to a 
constant value at the end. In this case, BACIC can achieve 
better compression ratio. An example is shown in Fig.7. We 
should mention that for the bit-plane coding, in order to 
prevent possible over-estimation in the probability estimation, 
smaller !l can be selected for MSBs, and larger !l for LSBs. 

Context weighting can also be considered to improve the 
probability estimation [8]. Suppose Cl and C2 are the two 
context models, in which the value of those contexts with 
equal expected value are set as 0 and 1 correspondingly. The 
weighted probability can be estimated by: 
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Figure 6. An example of image with multiple pattems(left), context 
example(right) which has a dominated probability as white color at left side 
of the image but with dominated black color at right side. 
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Figure 7. Example of probability estimation and bit-rate for the 
compression of the image in Fig. 6 under the given context using global 
statistic and BACIC. 

P:(Xn =llcw(n)) = p;(Xn =llc\(n))an_\ 

+P;(Xn =llc2(n)),Bn_l 
(7) 

Where a and � are the weight of two context model, which is 
updated by: 
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,B, = 
P;(Xn I C2(n)),B:�\ 

n 
P; (Xn I C1 (n))a/;.l + P; (Xn I C2 (n)),B/;.1 

J.l2 is the forgetting factor set to J.l2=O.975. 

D. Context Tree Modeling 

(8) 

(9) 

Compared with static context template, the use of context 
tree model as in MCT is more general than this ad hoc 
heuristic. Context tree modeling [3, 6, 11, 12] provides a 
more flexible approach for modeling the contexts so that a 
larger number of neighbor pixels can be taken into account 
without the context dilution problem. 

Classical context tree modeling technique has been widely 
used by data compression community with time complexity 
O(N), where N is the length of a data sequence. A context tree 
is built by estimating the count statistics via a sequential 
traversal of the image pixel-by-pixel. Each node of the 
context tree represents a single context by storing the count 
statistics of black and white color for the current pixel 
relative to the node of context. The tree can be constructed 
beforehand (static approach) or optimized directly to the 
image to be compressed (semi-adaptive approach). In context 
tree modeling, both the order of the context template and the 
depth of the tree can be optimized in order to minimize the 
coding cost. It is implemented by a two-step process as 
follows. 

Firstly, a greedy context reordering process is done [6, 7]. 
Given a predefined search area (see Fig. 8), at every step, we 
recursively search the context minimizing the sum of 
adaptive code lengths of (6) after splitting on the context tree. 
Suppose a predefined search area with N pixels {Yo, ... J'N-d, 
the sequence of ordered context with depth d( d<N) is Vo, ... h­
J}.h is determined by: 

jd = arg min l(x I Uo ,jp .. ·,jd_J}ujd) 
jd E{O,I, ... ,N -J}I{jo,j, , .. ·,jd-d 

�24 
6 I 3 

5 

�1 
3 4 2 

(10) 

Figure 8. predefined search area (top-left), and optimized context order on 
bit-planes 7, 3, 0 respectively. 



This recursive search stops when the node splitting does 
not give any further improvement for reducing the adaptive 
code length. In this way, optimal context size can be obtained. 
For example, for MSBs with higher correlations, a larger 
context template is used, while a smaller context template is 
used for LSBs. Meanwhile, the context reordering process 
makes context near the root node disperse the statistics most 
and simultaneously context in deeper tree levels with less 
importance. In this way, the subsequent pruning process can 
operate more efficiently. An example of the ordered context 
templates are shown in Fig.9. 

After context reordering process, the context tree is 
constructed. The tree pruning process starts from the leaves of 
the full grown and reordered tree, which was obtained as a 
result of the first stage. Each nodes of that tree is visited using 
a bottom-up strategy by evaluating a recursively defined cost 
value J, which is the sum of the average adaptive code length 
and the model description cost. For example, for the d-depth 
context tree modeling, the given node S at depth do has two 
child node SchO and Schl. If the sum of the coding costs of the 
SchO and Schl is greater than or equal to the coding costs at node 
s, pruning is done for the branches below the parent node s. 
Otherwise, the sum of the coding cost for the nodes SchO and 
Schl plus a model cost term me is assigned to the parent node s: { lex; I s)+me(do)' 

J(s) = if lex; Is) s lex; I schO) +l(x; I schl) 

lex; I scho)+l(x; I schl)+me(do),otherwise 

where me(do) = log2(d - do+ 1). 

III. EXPERIMENTS 

(11) 

In our experiments, two test image sets are evaluated. The 
first set consists of five classical 8 bits per pixel test images of 
size 512 x 512: airplane, bridge, couple, crowd and lena. This 
test set represents a class of natural images with smooth color 
gradation. The second test set represents a class of palette 
images (see Fig. 2) consisting of eight images. Such images 
can be web graphics, schemes, maps, slides, and engineering 
drawings, for example. The performance is compared with 
lossless compression algorithm, such as JBIG, JPEG-LS and 
MCT, which is listed in table I and II. From experiments, we 
found that the proposed bit-plane coding algorithm is efficient 
for both datasets. For image "bridge", as it only has 64 gray­
levels, less bit-rate is needed by the proposed bit-plane coding 
algorithm. 

We also evaluate the significance of every component in 
our algorithm. The difference of compression performance is 
evaluated when forgetting factor, context weighting and 
context tree modeling are applied on the expectation-based 
bit-plane coding algorithm, which is visualized on Fig 9. 

IV. CONCLUSION 

We have proposed an efficient bit-plane coding algorithm 
for loss less compression of gray-scale image or color palette 
images. In the proposed algorithm, the context value is 
determined by the expectation values of the surrounding 
pixels implemented by context-tree structure, in which both 
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the order and depth of the context template is optimized in 
each bit-plane. A forgetting factor and context weighting are 
incorporated to achieve a higher influence of the recent pixels. 

According to our experiments, bit-plane coding algorithm 
is compete with the existing algorithms in lossless 
compression of gray-scale images, and outperforms all 
competitive methods in compression or color palette images. 
This algorithm can also be used for progressive transmission 
of the images. 

TABLE I. BIT RATES FOR LOSSLESS COMPRESSION OF NATURAL 
IMAGES (BITS PER PIXEL) 

Image JBIG JPEG-LS MCT Proposed 

airplane 4.24 3.81 4.12 3.80 

bridge 5.04 5.50 4.93 3.51 

couple 5.07 4.26 4.64 4.37 

crowd 4.45 3.91 4.17 3.95 

lena 4.91 4.23 4.49 4.27 

TABLE II. BIT RATES FOR LOSSLESS COMPRESSION OF PALETTE IMAGES 
(BITS PER PIXEL) 

Image JBIG JPEG-LS MCT Proposed 

benjerry 2 06 1.91 0.85 1.05 

books 3.27 5.60 1.12 1.20 

ccitOl 0.21 0.07 0.02 0.02 

cmpndd 1.83 3.04 2.44 1.14 

sea_dusk 0.12 0.21 0.05 0.04 

sunset 2.42 2.18 1.96 1.68 

4.50 
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3.50 
3.00 

o e 2.50 
I 

� 2.00 

I. 50 
1.00 
0.50 
0.00 

Figure 9. Significance of every component in the algorithm. Forgetting 
factor (BACIC), context weighting (CW) and context tree modelling (CT) 
are tested for compression image "airplane" and "sunset". 
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