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Abstract - A main challenge for image denoising techniques is the 
damaging of some specific detailed structures or edges that are useful 
for image application. That is why edge-preserving filtering has 
advanced as a prevailing topic in medical image and multimedia 
processing. Conventional edge-preserving filters have exploited a 
number of morphological operators and estimated order statistics in a 
set of variable local windows such that they both enhance the 
significant edge details and smooth additive and multiplicative noises 
meanwhile. However, they fail to take into account the importance of 
weak edges, and therefore treat them as additive or multiplicative 
noises to be reduced. To overcome this difficulty, we present a 
efficient image denoising algorithm by using context quantization 
and local linear regression techniques. The context quantization was 
conducted according to minimization of conditional entropy of the 
GAP prediction residual in quantized cells and the local texture 
features hidden in the contexts. In order to design a robust filter for 
pixels in each quantized context, the local linear regression technique 
has been applied. The experimental results validated that the 
proposed image denoising algorithm outperformed the conventional 
edge-preserving filters reviewed in this work. 

Keywords - edge-preserving filter, image denoising, context 
quantization, regression analysis 

I. INTRODUCTION 

In recent years, edge-preserving filtering has received a 
considerable interest in the context of denoising digital images, 
for example, medical images. Many of medical images are 
presented in high resolution for the sake of reliable clinical 
diagnosis. However, their image qualities are often offset by a 
variety of undesirable noises caused by image acquisition [1]. 
For instance, the use of low-dose radiation in medical 
examination may incur a poor image quality degraded by 
severe multiplicative noises and low image contrast [2]. In 
particular, the presence of speckle noises in medical images 
(e.g., ultrasonic images) is due to an image acquisition process 
via coherent radiation [3]. Of course, the image quality 
degradation poses an interference and distraction to clinical 
diagnosis. Thus, it is a common practice in clinical situations to 
process the image with certain denoising techniques before 
clinical interpretation. In other words, smoothing filters must 
be exploited to noise reduction, which, conventionally, can be 
designed via a fixed-size context or using local windows 
adaptively [4]. However, the edge details or anatomical 
structures of interest may be over-blurred and therefore their 
visual presentations are degraded in contrast when those 
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conventional denoising techniques (e.g., homomorphic filters 
and polynomial filters) are applied. Eventually, such contrast 
distortion may lead to severe false recognitions of anatomical 
structures in clinical practice. 

To address this operational issue, a class of nonlinear filters 
[5-8], edge preserving filters, have been investigated and 
developed to enhance the so-called signal-to-noise ratio (SNR) 
whereas the useful edge information must be preserved 
meanwhile. A number of best practices for edge-preserving 
smoothing of digital images have been conducted by using 
order statistic filters [9], bilateral filtering [10], anisotropic 
diffusion [11] and Bayesian based approach [12-13] and 
morphological analysis [14]. But a challenge for those edge­
preserving filters is, most likely, that they are designed for 
additive white Gaussian noises [15], which is not acceptable 
for the image corrupted by impulse noises. 

Motivated by the high cost of missing the anatomical 
details of importance in noise reduction for medical images, a 
number of edge-preserving filters have been well studied and 
developed [16-21]. Likewise, the edge-preserving filters have 
recently been exploited to benefit of advanced medical imaging 
application, for example, the computer-aided diagnosis system 
[22]. Our primary objective is to design an adaptive image 
filter that preserve weak edges containing the edge details of 
great importance in noise reduction for medical images. 
However, the main challenge of noise reduction for medical 
images is that the model parameters for noises are seldom 
known and difficult to estimate since they do not always obey a 
fixed distribution. This complexity constraint necessitates the 
use of universal context modeling or context quantization 
approach in image compression domain to design an adaptive 
image filter, in which the distribution of input signal does not 
need to be known beforehand. In this contribution, we have 
presented an efficient algorithm to design an edge-preserving 
filter in terms of regression analysis of neighborhood according 
to different quantized contexts and multi-band image 
enhancement techniques. The remainder of this work is 
organized as follows: In section 2, we introduced context 
quantization algorithm for estimating filtering coefficients by 
using regression analysis. The third section deals with the 
multi-band enhancement techniques for noise reduction and 
edge enhancement. In section 4, we evaluate the proposed 
edge-preserving filtering technique over three sets of medical 



images in a comparison to Gaussian filters and anisotropic 
diffusion filters. Finally, a conclusion is drawn in section 5. 

II. A CONTEXT QUANTIZATION ESTIMATOR 

A. Gradient-acijusted predictor 
Gradient-adjusted predictor (GAP), proposed by Wu et al 

[23], is a nonlinear predictor that uses the surrounding pixels to 
predict the pixel value in the kernel center. It was designed to 
be adaptive to the image gradients near the predicted pixel. In 
image coding application, only one side pixels (180°) are used 
in the prediction in [23]. We modify GAP here so that both 
sides (360°) of the neighboring pixels are utilized. 
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Figure 1. 5 x5 kernel used in gradient-adjusted prediction 

We define the following two quantities. 
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(2) 

where dh and dv both consist of six absolute differences and are 
respectively used to estimate the gradients of the intensity 
function near pixel /(i,j) in the horizontal and vertical 
directions. We adopt the gradient-adjusted prediction of an 
image below: 

If dv{i,j)-dh(i,j) > C1 {sharp horizontal edge} 

j(' ') _ l(i,j-I) + l(i,j+I). I,} - 2 
' 

Else if dvCi,j)-dh(i,j) < -C1 {sharp vertical edge} 

j(i,j) = l(i -I,j) ; l(i+ I,j) 

Else 

i(i,j) = 1(i,j -1) + /(i,j + 1): /(i -I,j) + 1(i + I, j) 

+1(i-�j+D-1(i-�j-D+1(i+�j-D-/(i+�j+D 
8 8 

If dv(i,j)-dh(i,j) > C2 {horizontal edge} 

1'(" ) j(i,j) l(i,j-I) + l(i,j+I) I,} = -2-+ 4 
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Else if dvCi,j)-dh(i,j) > C3 {weak horizontal edge} 

1'(" ) 3j(i,j) l(i,j-I) + 1(i,j+I) I,} = -
4
-+ 8 

Else if dvCi,j)-dh(i,j) < -C2 {vertical edge} 

1'(' ') j(i,j) l(i-I,j) + l(i+I,j) I,} = -2-+ 4 

Else if dvCi,j)-dh(i,j) < -C3 {weak vertical edge} 

1'(" ) 3j(i,j) l(i-I,j) + 1(i+I,j) I,} = -
4
-+ 8 

End 
End 

The predictor coefficients and thresholds given above were 

empirically chosen as C1 = 80, C2 = 32 and C3 = 8. Here j 
represents the prediction result. The variance of prediction 

errors e = / - j strongly correlates to the smoothness of the 
image around the predicted pixel. In order to model this 
correlation, an error energy estimator Ll is defmed as follows. 

(3) 

The defmitions of dh and dv are given by equation (1) and (2), 

and 

ei_1,j = l(i -1, j) -j(i -1, j), ei+l,j = l(i + I,j) -j(i + 1, j) 

are respectively the left and right prediction errors. eH,j and 

ei+1,j are only included here in Ll because large errors tend to 

occur consecutively. 

By conditioning the error distribution on Ll, the prediction 
errors can be separated into classes of different variances. We 
quantize Ll to 4 levels and denote the quantizer as 
Q(Ll)e {0,1,2,3}. The quantization criterion is to minimize the 
conditional entropy of the errors. Dynamic programming is 
used to determine qh qz., q2, q3, and q4, such that 0 = ql < q2 < 

q2 < q2 < q4 = 00, partitions Ll into to 4 intervals so that 
following function is minimized. 

3 

-L L p(e lqd � Ll < qd+l ) log p(e lqd � Ll < qd+l ) (4) 
d=O QdS;..6.<Qd+i 

B. Context Selection 
Gradient alone cannot adequately characterize some of the 

more complex relationships between the predicted pixel /(i, j) 

and its neighbors. We use a local neighborhood of pixels to 
form a casual context C of the predicted pixel as follows: 

C = {XO,Xl,X2,X3,X4,XS,X6,X7} = {l(i -I,j -I),l(i -I,j), 
l(i -I,j + I),l(i,j -I),l(i,j + I),l(i + I,j -I),l(i + I,j), (5) 
1(i+I,j+I)} 

Plus, the causal context C can be quantized or modeled by 
using an 8-bit binary value, S = S7S6S5S�3S2S1S0 



{o Xk � i(i,j) 
Sk = , O<;;,k<;;,7 

1 xk </(i,j) 
(6) 

where s captures the texture patterns in the modeling context 
which are indicative of the behavior of e and the number of 
different contexts is 28 = 256. Combining Q(.<1) and S, we 
obtain 4.28 = 1024 different compound contexts in error 
modeling. 

C. Locally Linear Regression Analysis 
Each pixel corresponds to one of the 1024 quantized 

contexts or cells of contexts. This makes it easy to categorize 
each pixel into 1024 groups according to their quantized 
contexts. For each pixel belonging to the same specific group, 
we use all of its neighboring pixel values in a diamond-shape 
window to predict its value, as shown in figure 2. The 
predicted pixel value is the weighted sum of all the neighboring 
pixels values. 

12 
�)kXk+a=y (7) k=1 

where parameter bk and a can be obtained from regression 
analysis. But for achieving robustness of image intensity 
surface smoothing from noise data [27], locally linear 
regression is exploited. It combines the advantage of of 
removing noise in continuity regions and the advantage 
preserving useful weak edges at the same time. More 
importantly, a conventional linear regression will introduce a 
severe estimator bias when smoothing image intensity in a 
local neighborhood or a context from observation data. 

We adopt a training process to estimate the set of locally 
liner regression parameters for each pixel group, where 1024 
sets of parameters can be achievable. Images used in the 
training process consist of two groups: A and B. Images in 

Xl 

X2 X3 X4 

Xs X6 Y X7 
Xs 

X9 XIO Xu 

Xl2 

Figure 2. pixels used in locally linear regression analysis 

group A are original (noise free) images while images in group 
B are the noise corrupted images. The prediction of all the 
pixels in a quantized context can be done using a kernel linear 
combination or filter 

(8) 

where we have 

(9) 

and y(Xo) is an estimator for minimizing 
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and K is a mercer kernel function. Estimating f3 and a needs 

an adequate number of training images since the context based 
filter in (8) will use different parameters f3 and a for each of 

1024 quantized contexts. As desired, these parameters can be 
saved in off-line and used to process similar images used in the 

G"adient Adjusted 

Prediction 

Caculate /). and devide 

the pixels into 4 g"oups 

Calculate su.".'ounding 

context for each pixel 

Image filte"ing using the p.'eviously 

obtained pa.'amete.·s for each specific 

pixel g"oup 

Figure 3. workflow of image pixel predication 

training procedure. Otherwise, one need to optimize the 
parameters for each quantized contexts for the noisy image 
directly but this would lead to a context dilution problem. The 
proposed context quantization-based filtering (CQF) image 
denoising algorithm is illustrated in fig. 3. 

Figure 4. Filtering on Chest X-ray image, from left to right: a) original 
image b) noised image c) CQF d) M-CQF 

III. MULTI-BAND EDGE ENHANCEMENT 

In order to further enhance the edges in the image, we 
design a multi-band edge enhancing process incorporating the 
context quantization based filters and Gaussian filters, which is 
shown in figure 4. CQF and Gaussian filters are both applied to 
images sampled with three different sizes, namely, the original 
size, 114 size and 1116 size. The differences between images 
processed by the two methods are multiplied by a coefficient 
and then added to the Gaussian filtered image to form the 



output image. Empirically, the values of coefficients Kh K2 
and K3 are respectively assigned 1.3, 0.4 and 0.1. The size of 
the two dimensional Gaussian filter is 5 by 5 and the sigma 
value of Gaussian filters is 2.0. 

Figure 5. Diagram of multi band context quantization bsaed filter 

IV. EXPERIMENT RESULTS 

The performance of the proposed Context Quantization 
Based filter (CQF) and Multiband CQF methods with DR chest 
X-ray images and brain T1 MRI images are evaluated in this 
section. Gaussian filter, anisotropic diffusion filters with n 
number of iterations (AD I-ADs where n = 1, ... ,5) [11] and 
mean of least variance filter (ML V) [28] are also studied as 
performance benchmark. Each case of Chest X -ray images and 
MRI images has a noise-free image and several noise corrupted 
images with different noise levels. Both objective and subject 
image quality measurements are used in performance 
evaluations. Peak Signal-to-Noise Ration (PSNR) and 
Structural Similarity index (SSIM) [25] between the noise-free 
images and the processed noised images are the objective 
measurements. The PSNR of image X and Y with size = MN is 
defmed by: 

MAX 2 MAX 
PSNR = 1O loglO( x )=20xloglO« x )) (11) 

MSE(X,y) MSE(X,y) 

in which � is the maximum possible pixel value of image I 
and MSE is defined by 

1 m-J n-J 2 
MSE(X,Y) =-LLIIX(i,})-Y(i,})11 (12) 

mn i=O j=O 

whereas SSIM metric is calculated on various windows of an 
image. The measure between two windows of the size NxN x 
and y is 

(13) 
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where f.1x and f.1y are the average values of image X and Y, 
respectively, 0"1 and 0"; are the variance of the same 

images, and cOVxr is the covariance of image X and Y. And CI = 
(klLi and C2 = (k2Li are two variables used to stabilize the 
division with weak denominator, L is the dynamic of the pixel­
values, kl = 0.01 and k2 = 0.03 by default. 

For subjective indicators, a panel of clinician was invited 
to evaluate image quality for the testing images before and 
after noise-reductions using a subjective rating from 1 to 10 (A 
higher rating indicates the better quality while lower rating 
represents a worse image quality). In order to compare the 
performance of those different filters on fairness, the 
parameters of the filters are adjusted so that they can achieve 
their best visual performance on the images being processed. 

A. Chest X-rlry image 
The original digital Chest X-ray images are carefully 

examined and they are in good image quality. Hence they can 
be viewed as noise free image. We include 10 number of Chest 
X-ray images to form group A and add Gaussian noise to the 
same set of images to construct group B. We conduct our 
experiments on these images generated by a wide range of 
Gaussian noise density levels-O.OOOI � 0" �0.0011 with an 
increment step of 0.0002. The parameters obtained from the 
training process are used to process the noise-corrupted images 
with the same level of Gaussian noise as that of the noised 
images used in training. The mean PSNR and SSIM indexes 
associated with the processed images and the noised images are 
shown in Fig. 6 and Fig. 7. 

It turns out that the PSNRs obtained by the seven noise 
reduction methods are significantly different. Anisotropic 
diffusion filters achieve the best result while ML V filter 
provides the worst performance for the images corrupted by 
0.01-0.07% noises. CQF filter is inferior to the anisotropic 
diffusion filters for the images with lower noises, whereas 
performs better than them with increased noises. The 
performance of CQF seems to be more robust to high noise 
level than anisotropic filters. Similar conclusions can be drawn 
in terms of SSIM measurements. In subjective evaluation, M­
CQF is rated as the highest due to its edge enhancing effect, 
and CQF ranks the second subsequently. T-test on subjective 
ratings has revealed that the M-CQF perform statistically better 
than other filters are reviewed over the Chest X-ray images. 
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Figure 6. PSNR evaluation for Chest X-ray images 



B. Brain MRI images 
The brain MRI images are downloaded from a database 

provided by McGill University of Canada [26]. This database 
provides brain MRI images and noised versions of those 
images of 5 different noise levels, namely, 1%, 3%, 5%, 7% 
and 9%. The noises in the simulated images obey Rayleigh 
distribution in the background and Rician statistics in the signal 
regions respectively. The "percent noise" number represents 
the percent ratio of the standard deviation of the white 
Gaussian noise versus the signal for a reference tissue. Those 
images are handled in the same ways as the Chest X-ray 
images and similar conclusions can be drawn from Fig. 11-12. 

1.0 

0.9 

� 0.8 

� 
>: ;;; 
Vl 0.7 

0.6 

�.booo 0.0002 0.0004 0.0006 0.0008 
Noise Level 

0.0010 

Figure 7. SSIM evaluation for Chest X-ray images 
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Figure 8. Subjective evaluation for Chest X-ray images 

V. CONCLUSION 

In this paper, an efficient edge preserving image filtering 
algorithm is proposed. The pixels in the images are divided 
into 1024 groups according to each pixel's A value and their 
compound contexts. For each group of pixels, we apply locally 
linear regression to estimation of filtering coefficients. The 
effectiveness of this method is evaluated in a performance 
comparison to the other two edge preserving filters and 
Gaussian filters. Subjective and objective experimental 
performance studies have demonstrated that the underlying 
context quantization based image denoising technique is 
superior to the other methods also studied in this work. 
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Figure 9. Filtering on MRI image, from left to right: a) original image b) 
noised image c) CQBF d) MCQBF 
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