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ABSTRACT 

 
Vector map compression can be solved by incorporating 
both data reduction (polygonal approximation) and 
quantization of the prediction errors, which is the so-called 
dynamic quantization. This straightforward solution is to 
calculate all the rate-distortion curves with respect to each 
of the quantization levels such that the best quantizer is the 
lower envelope of the set of curves. But computing an entire 
set of rate-distortion curves is computationally expensive.  
To solve this problem, we propose a fast algorithm first 
estimates an optimal Lagrangian parameter  for each given 
quantization level l and thus only one rate-distortion curve 
is achievable for constructing the optimal quantizer of 
prediction errors. An experimental result demonstrates that 
proposed algorithm reduces the computational complexity 
significantly without compromising its rate-distortion 
performance. 
 

Index Terms— Data compression, Computational 
geometry 
 

1. I TRODUCTIO  
 
Vector maps embrace a number of geographic information 
or objects such as waypoints, routes and areas. Those 
geographic objects can be represented with a sequence of 
points in a given coordinate system. However, encoding and 
achieving the geographic objects in a map image may 
require expensive data storage and processing time.  In 
order to reduce this computational cost, a variety of 
algorithms has been studied and developed [1-8]. Existing 
algorithms have been explored via two classes of strategies: 
polygonal approximation and quantization.  

The main advantage of polygonal approximations is the 
high compression rates, which can be achievable either by 
the fast heuristic methods in [9, 10] or by the graph-based 
methods in [11, 12]. The number of points in the vector map 
is reduced by polygonal approximations such that the 
polygonal curve can be represented in a coarser resolution.  
But they quite often incur a high image distortion. On the 
other hand, the quantization-based approaches calculate the 
differential coordinates of adjacent data points as the 
prediction error and then the residual vectors are quantized 
using different quantization strategies including product 

uniform quantization [2], product scalar quantization [3], 
and vector quantization with fixed-size codebook [4]. 
However, they often lead to less distortion error with the 
limited compression gains. A pioneer solution is to combine 
both the advantage of polygonal approximations and 
prediction error quantization to achieve the best rate-
distortion performance. For instance, the previous reference 
line method [5] first identified a series of references lines by 
using polygonal approximation, prediction errors are then 
estimated for the remaining points according to their nearest 
reference lines followed by product scalar quantization in a 
similar manner to [3]. Likewise in [8], a number of data 
points were first reduced by Visvalingam-Whyatt algorithm, 
to preserve a consistent topology, and then were quantized 
and encoded by a clustering-based method.  

Motivated by the previous progress made by polygonal 
approximation and polygonal quantization, a so-called 
dynamic quantization (DQ) in [6] was sincerely investigated. 
The dynamic quantization algorithm performs a joint 
optimization using both polygonal approximation and 
vector quantization via dynamic programming. For a given 
quantization level l, a naive product uniform quantization is 
employed in the joint optimization using a Lagrangian 
parameter . Traversing different Lagrangian parameter  
will construct a rate-distortion curve that depends on the 
quantization level l. The optimal solution is selected 
according to the lower envelope of these curves. However, a 
main challenge for the joint optimization is its expensive 
computational cost. To overcome this difficulty, the error 
balance principle was proposed in [7] based on a strict 
assumption that the total quantization error equals to the 
error for polygonal approximation without quantization. For 
a given quantization level l, an optimal number of points M 
can be identified in the min-  polygonal approximation 
problem by using binary search. However, in practice, the 
time complexity for min-  polygonal approximations equals 
to O( 2) [12] as well, which is still intractable for real-time 
application.  

In this work, we have proposed a fast algorithm for 
vector map compression. For a given quantization level l, an 
optimal Lagrangian parameter  was first estimated and the 
vector map is compressed by solving a shortest path 
problem in a directed acyclic graph with cost function J = E 
+ R, where E is the distortion for the approximation curve  
and R is the coding cost. Moreover, the algorithm is further 
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Fig. 1, Test map Britain with 10,910 points (left), and 
corresponding prediction residuals (right).  
 
improved by using a specific search criterion. The structure 
of this presentation is organized as follows: section 2 
describes the improved dynamic quantization algorithm; the 
experimental results are reported in section 3 and finally a 
conclusion is drawn in section 4. 
 

2.  PROPOSED METHOD 
2.1 Prediction and encoding 
 
Vector map compression can be formulated as a data 
compression problem for a 2-dimensional vector sequence P 
= (p1, p2,…, pn). A common practice for data compression 
encompasses the three essential procedures: prediction, 
quantization of the residual vectors and entropy coding. The 
prediction procedure calculates the differential coordinates 
of adjacent points as a prediction error instead of using the 
absolute coordinates for data quantization. It can be 
assumed that the prediction errors obey a distribution of 
random variable empirically, e.g., uniform distribution or 
geometric distribution. An example of polygonal curve can 
be observed in fig. 1, where the resulting differential 
coordinates obeys a geometric distribution. 

To avoid quantization error propagations, the prediction 
must be done in a way of closed-loop prediction: 

-1( )r r
i ip Q pv i  (1) 

where Q is a two-dimensional product uniform quantizer vi 
is the residual vector and -1

r
ip is the estimation of the 

previous point. For a given quantization level l, the product 
uniform quantizer is formulated as: 

( ) [ / ] ([ / ] ,[ / ] )i iQ l l x l l y l lv vi i  (2) 
Obviously, coding Q (vi) is equivalent to coding an integer 
vector q = ([ xi/l], yi/l]), which can be encoded by 
probability distributions of qx and qy. 

2 2( ) log ( log (xi yir f q f qv i  (3) 
where the codebook itself must be also encoded and 
transmitted to the decoder. But a large-sized codebook is 
intractable in order to achieve a desirable coding efficiency. 
An intuitive solution is to adopt a single-parameter 
geometric distribution to model |qx| and |qy|: 

| |(| |) (1 ) xq
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Fig. 2, Poly-line {pi,…, pj} (solid line) is approximated by{ , }r r

i jp p  
(dot line )with approximating error 2 2 2 2
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where px can be approximated by using maximum likelihood 
estimation. Thus, the code length led by an arithmetic 
coding according to the geometric distribution is written as 
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where no codebook is needed.  
We should mention when the data has different property, 

uniform distribution, negative binomial distribution or 
Poisson distribution can also be considered instead of 
geometric distribution. 
 
2.2 Dynamic quantization 
 
In dynamic quantization, polygonal approximation is 
embedded into the closed-loop framework by using 
dynamic programming. Suppose that a poly-line {pi,…,pj} 
is approximated by line segment { , }r r

i jp p , the approximation 
error can be defined as the sum of square distances from 
vertices pk (i k j) to { , }r r

i jp p in fig. 2: 

2
2 ( , ) ( ,{ , })

j
r r r r
i j k i j

k i

e p p d p p p  (6) 

This approximation error in (6) can be calculated in a 
constant time [11] by pre-computing the accumulated sum 
for curve coordinates x2, x, xy, y2 and y. The dynamic 
quantization becomes a joint optimization of polygonal 
approximation and prediction error quantization, which 
minimizes the cost function: 
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1
( ( , ) ( , ))
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M
r r r r
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m

J E R e p p r p p  (7)

where M is the number of points output by polygonal 
approximation. The minimization problem can be solved by 
the shortest path search on a weighted directed acyclic 
graph (DAG) or dynamic programming. Suppose Ji is the 
minimum weighting sum from p1 to pi on G, A is an array 
used for backtracking operation, the recursive equation can 
be defined by: 
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Fig. 3, Rate-distortion curve for quantization step qk=0.01/2k, 
where k=0, 1/2,1,…, 5 (from left to right), black ‘+’ is the position 
when error balance principle is applied, red ‘o’ is the proposed(  
is selected by (10)).The red line is the rate-distortion curve when 
optimal  is selected with qk=0.01/2k, where k=0, 1/5, 2/5,…, 5. 
 

Existing approach intuitively calculates all the rate-
distortion curves with respect to each of the quantization 
levels such that the best quantizer is the lower envelope of 
the set of curves. This method computes an entire set of 
rate-distortion curves which is hugely time-expensive.   

To resolve this operational problem, a fast dynamic 
quantization (FDQ) algorithm is proposed. We have proved, 
for each quantization level l, one optimal Lagrangian 
parameter  can be estimated as (see appendix): 

21 ln 2
6

l  (10)

Eventually, only one dynamic quantization needs to be 
conducted for a given quantization level l. However, by 
traversing different quantization level l, a unique rate-
distortion curve can be constructed. An example can be 
found in Fig. 3. In the figure, it was also illustrated that the 
pervious methods have investigated different quantization 
levels by considering 30-40 number of s for each l, which 
leads to 300 iterations of minimization of (7).  
 
2.3 Search criterion  

 
The shortest path algorithm on a weighted DAG takes O( 2) 
time. This can further be improved by incorporating a 
specific search criterion: 

22
( , )( , )

( ) ( )
i

r rr r
A ik i
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e p pe p p
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 (11)

where {
i

r
Ap , r

ip } has a shortest path so far and r
kp  is the 

current testing point. Namely, for a target point r
ip , the 

shorted path search will terminate weight calculation before 
point pk once if equation (11) is satisfied. The experimental 
testing in this presentation has revealed that the processing 

time can be reduced by more than 95% with  =40. Pseudo 
code of proposed algorithm is shown in Fig. 4. 

The proposed method can also be applied for entropy- 
constrained problem, in which we compress the vector map 
data under a certain bit-rate. The result can then be obtained 
by several iterations of the algorithm using bisection search 
on the quantization level l. 

=
=

1           
A

k i k

, ) , )k k k

  

i   

Fig. 4 Pseudo code of fast dynamic quantization method
 

3. EXPERIME TS 
 
The proposed fast dynamic quantization algorithm (FDQ) is 
evaluated on a 10,910-point vector map representing the 
contour of Britain (Fig. 1). We compare the performance 
with the previous dynamic quantization (DQ) algorithm [7], 
and with several other approaches as well: clustering-based 
method (CBC) [4], and reference line method (RL) [5]. The 
distortion is measured here by mean squared error (MSE). 
The corresponding rate-distortion curves are plotted in 
Fig. 5. It can be observed that the proposed algorithm 
achieves significantly better rate-distortion result than the 
other approaches in this work considered and can be also 
comparable with the DQ algorithm. The computational cost 
for solving the entropy-constrained problem can be reduced 
within 1 second by using the proposed dynamic 
quantization. In the experiments, the proposed algorithm 
only takes 5% of the time as the previous approaches do. 
The proposed algorithm is also applicable to variable-
resolution compression problem for a real-time application. 
The visualization performance in the decoder for different 
compression bit-rate can be found in fig. 6.  
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Fig. 5, Performance comparison 

 

0.55 0.6 0.65 0.7 0.75

51.4

51.45

51.5

51.55

 0.55 0.6 0.65 0.7 0.75

51.4

51.45

51.5

51.55

0.55 0.6 0.65 0.7 0.75

51.4

51.45

51.5

51.55

 0.55 0.6 0.65 0.7 0.75

51.4

51.45

51.5

51.55

Fig. 6, Performance under different bit-rate on a fragment of the 
test curve. Original 128 bits/point (top-left), 2 bits/point (top-
right),5 bits/point (bottom-left),10 bits/point(bottom-right) 

 
4. CO CLUSIO  

 
We have proposed a fast dynamic quantization algorithm 
for lossy compression of vector map. The underlying 
algorithm first identified an optimal Lagrangian multiplier  
value for each quantization step l and then constructed only 
one rate-distortion curve for design of predicted-error 
quantizer. In addition, a powerful searching criterion was 
exploited for the sake of speeding up the dynamic 
quantization. 

Experimental results have shown that the proposed 
method is twenty times faster than the previous dynamic 
quantization algorithm but achieves a similar or better 
compression performance. Future work can be considered in 
the following perspectives:  
1.  The dynamic quantization can be improved by combining 

vector quantization and uniform product quantization. 
2. Lattice VQ can be used instead of uniform quantization. 
3. Linear prediction can be considered to improve the 

prediction of the residual vectors. 
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APPE DIX: PROOF OF (10) 
The cost function is defined as: J= E + R. In uniform product quantization, 
for a given quantization step l, mean square error E can be calculated by: 

/2 2 2

0 /2

1 1 1( )
2

l l

l
x dx l x E

l l
 

where E=l2/6. For residual vector vi, after uniform product quantization, if it 
is estimated by geometric distribution,           
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The coding length can be approximated as: 
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The maximum likelihood estimation of geometric distribution is: 
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