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Abstract 

 
A large number of GPS trajectories, which include 

users' spatial and temporal information, are collected 
by geo-positioning mobile phones in recent years. The 
massive volumes of trajectory data bring about heavy 
burdens for both network transmission and data 
storage. To overcome these difficulties, GPS trajectory 
compression algorithm (GTC) was proposed recently 
that optimizes both the data reduction by trajectory 
simplification and the coding procedure using the 
quantized data. In this paper, instead of using greedy 
solution in GTC algorithm, the approximation process 
is optimized jointly with the encoding step via dynamic 
programming. In addition, Bayes' theorem is applied 
to improve the robustness of probability estimation for 
encoded values. The proposed solution has the same 
time complexity with GTC algorithm in the decoding 
procedure and experimental results show that its bit-
rate is around 80% comparing with GTC algorithm.  

1. Introduction 

Location-acquisition technologies, such as geo-
positioning mobile devices, enable users to obtain 
their locations and record travel experiences by a 
number of time-stamped trajectories. In the location-
based web services, users can record, then upload, 
visualize and share those trajectories [1]. 

However, these trajectories often incur a large 
amount of redundant storage to the end-users as well 
as the mobile service providers. For example, if data is 
collected at 10 second intervals, a calculation in [2] 
shows that without any compression, 100 Mb of 
storage capacity is required to store the GPS 
trajectories of 400 users for a single day in server side. 
To overcome these difficulties, a number of 
compression algorithms have been presented not only 
considering the data reduction for visualization 

purpose but also investigating the encoding process 
for the storage use.  

Due to the inherent characteristics in GPS 
trajectories, conventional error measure, e.g. the 
perpendicular Euclidean distance is not suitable for 
GPS trajectories as both spatial and temporal 
information should be considered. Therefore, the so-
called top-down time-ratio (TD-TR) algorithm [3] was 
developed, where synchronous Euclidean distance was 
used instead of the perpendicular distance in the 
Douglas-Peucker algorithm [2]. Threshold-guided 
algorithm was also proposed via estimating the safe 
area of the next point using the position, speed and 
orientation information [4]. In [5], a multi-resolution 
simplification algorithm has also been designed with 
linear time complexity. Two error measures, called 
local integral square synchronous Euclidean distance 
(LSSD) and integral square synchronous Euclidean 
distance (ISSD) are used jointly, which can be 
calculated in O(1) time.  Semantic meanings of the 
GPS trajectories are also considered during the 
compression process in urban area in [6] whereas 
trajectory compression algorithm with network 
constraint has been developed in [7]. Performance 
evaluations are also made for several traditional 
trajectory simplification algorithms [8]. It should be 
mentioned that there is not one algorithm that always 
outperforms other compression approaches in all 
situations. However, these methods lack a rigorous 
analytical approach on the encoding procedures of the 
reduced trajectories. Namely, fixed bits are allocated 
after data reduction to store latitude, longitude and 
timestamp information.  

On the other hand, when encoding techniques are 
used, a better compression ratio is achieved for the 
spatial trajectory data, which is appropriate for data 
storage. For example, quantization-based approach has 
been analytically investigated in the so-called vector 
map compression problem [9, 10]. In these algorithms, 
differential coordinates of adjacent data points are 
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used as the prediction errors. These residual vectors 
are then quantized and encoded using a variety of 
quantization strategies. For GPS trajectories, in [11], 
speed information is used in arithmetic coding using a 
fixed prediction model in 2-D space. In [12], data 
reduction and the quantized speed and direction 
changes are combined to seek an encoded trajectory 
using greedy approximation process, which achieves a 
state-of-the-art compression result.  

In this paper, the optimized GPS trajectory 
compression algorithm (OGTC) is proposed. 
Approximation result with the minimum coding cost is 
selected for encoding using an optimization process 
via dynamic programming. In addition, Bayes' 
theorem is applied in order to improve the robustness 
of the probability estimation for the encoded variants.  

2. Lossy compression of GPS Trajectory  

2.1 Quantization process 

In this paper, maximum synchronous Euclidean 
distance (max SED) [3] is used as the error measure to 
evaluate the distortion between the original and 
compressed GPS trajectories. The error is measured by 
the maximum synchronous distance between original 
positions and its synchronized approximated positions.  

In vector map compression, differential coordinates 
are used directly in the encoding process. However, in 
GPS trajectories, these differential coordinates will be 
inconsistent after the data reduction (approximation) 
process. Meanwhile, speed and direction changes are 
more robust variants even if an approximation is made 
with different reduction rate in different segments. 

Fig.1 is an example of the proposed quantization 
process. Suppose pi' and pj' are the quantized position 
for point pi and pj, the sub-segment j

iP  can be 
approximated by line segment ' 'i jp p when the 
approximation error ( , )' ' j

jE i iS D p pP is less than the 
given error tolerance ε. Here, we set the quantization 
error for point pi and pj as γε at maximum, where γ = 
0.5 is a parameter.  

After the differential coordinates are quantized in 
polar space, given time interval tj - ti, the quantized 
level of speed from pi' to pj can be calculated as: 

( , ) 2 / ( )    v j il i j t t  (1) 

Therefore, given d(pi', pj), which is the distance 
between pi' and pj, the quantized speed is calculated as: 

* ( , ) [ ( ', ) / ( , )] ( , ) i j v vv i j d p p l i j l i j
 

(2) 

Meanwhile, the direction change Δθ(i, j) has a 
value between –π and π. Given the quantized speed 
v*(i, j), the quantization level for the direction change 
can be  
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Fig. 1. Example of the approximation process, where 

polyline j
iP  is approximated by line segment  ' 'i jp p .  
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Thus, the quantized direction change is: 
* ( , ) [ ( , ) / ( , )] ( , )       i j i j l i j l i j  (4) 

2.2 Probability estimation  

In the encoding process, we need to encode the 
quantized value of speed, direction change, while 
lossless compression is used for time difference. 

Adaptive arithmetic coding is applied for encoding 
the time difference. As the reduction rate may vary in 
different segments because of the multi-model of the 
GPS trajectory, a forgetting factor is also used to give 
a higher weight for recent encoded values. For speed 
value, its mean and variance are predicted by the 
previous encoded value in a given time duration, see 
[12] for more details. 

Adaptive arithmetic coding is also used directly for 
direction change in [12]. However, GPS signals are 
not always accurate and a quantization step will also 
cause errors. Therefore, the encoded and true 
distributions of the direction change are not same. In 
this paper, Bayes' theorem is applied to improve its 
probability estimation. Suppose P(Δθ0) is the 
distribution of direction change of the clean signal, 
P(Δθk) is the predicted distribution segment k, we have: 
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here σGPS = 5 and ρ = 1.2 are parameters. vk and Δtk are 
the speed and time duration for segment k. 

After pk is encoded, posterior probability P(Δθ0|Δθk) 
is estimated by: 
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(6) 

And true distribution P(Δθ0) is then updated: 

0 0 0( ) ( ) ( | )kP P P          
 

(7) 

From our experiment, we set 180 levels between –π 
and π for P(Δθ0), μΔθ = 0.995 is the forgetting factor. 

2.3 Joint optimization process 

In [12], the approximation and encoding process 
are separated, and a greedy solution is used to get the 
approximation result first.  In this paper, we improve 
this solution by a joint optimization process. 

Suppose Ct(i, j), Cv(i, j) and CΔθ(i, j) are the coding 
cost for the quantized point pj' when the previous point 
is pi', dynamic programming can be applied by 
optimizing the following formula recursively: 

{1 1}
min ( ( , ) ( , ) ( , ))

                   ( , )   . . ' '

j i t v
i j

j
i iSED j

J J C i j C i j C i j

s t p pP



 

  
   

  
(8) 

As j – i calculations are needed for evaluating the 
max SED between pi and pj, the total time complexity 
of this optimization process will be O(N3), which is 
too high for real application. Therefore, a stopping 
criterion is added to terminate the search when the 
approximation error is higher than two times of the 
given tolerance. 

 Finally, the optimized approximated result with the 
minimized coding cost can be found by a backtracking 
process. The pseudo-code can be seen in Algorithm I. 
Note that the proposed solution can also be used for 
online purpose directly. 

2.4 Time Complexity 

In the encoding process, the expected time 
complexity of the proposed algorithm is O(τN3/M2), 
where N and M are the number of input and 
approximated GPS trajectory and τ is a constant, 
which is related to the levels in probability estimation. 
Although the time complexity is slightly higher than 
GTC algorithm of O(N2/M),  no optimization process 
is needed in the decoding process and therefore, the 
same decoding procedure can be applied in O(τM) 
time. Note that the time complexity can be reduced if a 
hierarchy compression stage is applied with M ~ N/c 
in each scale, where is c is a constant. 

3. Experiment and Discussion 

In order to evaluate the performance of the 
proposed Optimized GPS trajectory compression 
algorithm (OGTC), we use two dataset, Microsoft 
Geolife dataset with 640 trajectories, 4,526,030 points 
[13] and MOPSI dataset 1  with 344 trajectories, 
744,610 points for testing purpose. These trajectories 
have a sampling rate between 1s to 5s with different 
transportation mode such as walking, bus, car, 
airplane or a multimodal.  

The compression performances (KB/hour) are 
evaluated for different error tolerances: 3m, 10m 
maximum synchronous Euclidean distance (max SED). 
The proposed Optimized GPS trajectory compression 
algorithm (OGTC) is compared with TD-TR + LZMA 
[3] and GTC [12] algorithm2. We can observe in Table 
1 that the bit-rate of the proposed algorithm is around 
80% compared with GTC algorithm, and it is 
consistent on both 3m and 10m max SED. Meanwhile, 
if the original input file is in GPX format, we have a 
compression ratio around 500:1 on the testing dataset, 
see Table 2.  An example of the proposed compression 
algorithm can also be seen in Fig. 2.  

Note that if a filtering algorithm is performed 
beforehand, the bit-rate can be reduced around 20% 
and 15% for 3m, 10m max SED correspondingly. 
Further information such as proof of the time 
complexity, details of the experiment result and the 
matlab code can be seen on http://cs.joensuu.fi/ 
~mchen/GPSTrajComp.htm. 
Algorithm I, Approximation and encoding process  
INPUT   
P = {p1, p2 ,…, pn}: original trajectory 
ε: SED error tolerance  
OUTPUT 
Encoding file 
 
FOR j = 2 TO  n  
    FOR i =  j – 1 TO i = 1  

C(i, j)  Ct(i, j) + Cv(i, j) + CΔθ(i, j) 
IF Jj < Ji + C(i, j) 
    Jj Ji + C(i, j) 
    Aj i // for backtracking 
    Update P(Δt) and P(Δθ0) by (7) 
ELSEIF ( , ' )' 2 j

SED i i jp pP  
     BREAK 
END 

    END 
END 
Backtracking and encoding

                                                           
1 http://cs.joensuu.fi/mopsi/ 
2  A similar evaluation method is used with commercial 
software: http://www.droyd.org/gps-trajectory-compression. 
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Original, 2441 points 
193KB for GPX file 

3m max SED, 250 points 
456 bytes, 0.30 KB/h

10m max SED, 101 points 
210 bytes, 0.14KB/h 

30m max SED, 46 points 
116 bytes, 0.08KB/h 

 
Fig. 2. Compression examples 

Table 1. Bit-rate of the proposed algorithm (KB/h) 
  Geolife 

Dataset 
MOPSI 
Dataset 

3m 
max SED 

TD-TR[3] 0.95 1.94 
GTC [12] 0.39 0.75 
Proposed 0.31 0.54 

10m 
max SED 

TD-TR  0.53 1.06 
GTC 0.19 0.35 

Proposed 0.14 0.22 

 
Table 2. Data Size after Compression (KB) 

 Geolife Dataset MOPSI Dataset 
GPX file  436,326 77,386 

 3m max SED 1,034 155 
10m max SED 498 63 

4. Conclusion 

We exploit the problem of lossy compression for 
GPS trajectories with latitude, longitude and 
timestamp information, under maximum synchronous 
Euclidean distance (max SED). Dynamic 
programming is used to seek an optimized 
approximation result with the minimized coding cost. 
The prediction and estimation of direction change is 
also improved by Bayes' theorem.  

Experimental results show that the proposed 
method achieves 0.31 and 0.54 KB/h in Microsoft 
Geolife dataset and MOPSI dataset for 3m SED, 
around 80% bit-rate comparing with the previous GTC 
algorithm, while the decoding time will not increase. 
For GPX file, the proposed algorithm achieves around 
500:1 compression ratio with 3 meters accuracy.  
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