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Abstract 

 
Quantization plays an important part in lossy 

vector map compression, for which the existing 
solutions are based on either a fixed size open-loop 
codebook, or a simple uniform quantization. In this 
paper, we proposed an entropy-constrained vector 
quantization to optimize both the structure and size of 
the codebook at the same time using a closed-loop 
approach. In order to lower the distortion to a 
desirable level, we exploit two-level design strategy, 
where the vector quantization codebook is designed 
only for most common vectors and the remaining 
(outlier) vectors are coded by uniform quantization.  
 
1. Introduction 
 

Vector maps consist of geographic information 
such as waypoints, routes and areas, which can be 
represented as a sequence of points in a given 
coordinate system. To reduce the archive space and 
transmission time, a variety of compression algorithms 
have been investigated and developed for compressing 
vector maps [2-6]. Existing lossy compression 
algorithms use two different strategies: polygonal 
approximation and quantization-based method.  

In polygonal approximation, the number of points 
is reduced and the curve represented by a coarser 
approximation [1]. In quantization-based method, 
differential coordinates of subsequent sampling points 
are considered as the prediction error and these 
residual vectors are quantized using various methods, 
such as uniform quantization [2], product scalar 
quantization [3] and vector quantization with fixed 
size codebook [4]. In [5], reference line method first 
identified a series of references lines by polygonal 
approximation and then estimated prediction errors for 
the remaining points according to their nearest 

reference lines followed by product scalar 
quantization in a similar manner to [3]. In [6], 
dynamic quantization was studied where the curve 
approximation was performed by taking into 
consideration vector quantization of the approximation 
line segments. 

In this paper, we propose three concrete 
improvements for the quantization-based method. 
Firstly, all the previous methods use a fixed size 
codebook, whereas entropy-constrained pair-wise 
nearest neighbor for vector quantization (ECPNN-VQ) 
is used that optimizes the size of the codebook as well. 
As a merge-based clustering method, ECPNN-VQ will 
stop reducing the size of the codebook when a given 
bit-rate constraint is met. 

Secondly, the codebook is further optimized where 
the codebook of vector quantization is only applied for 
most common vectors and the rest (outliers) are 
processed by uniform quantization. In contrary to 
typical image compression, vector data has a wide 
dynamic range that can vary significantly from a 
dataset to another. In conventional approaches, a 
large-size codebook has therefore been required in 
order to achieve lower distortion. In practice, however, 
the code length and cost of the codebook itself must 
also be taken into account, which is ignored in the 
existing vector quantization methods. In specific, 
large-size codebooks are required when high bit rate is 
desired, and it is difficult to achieve a desirable 
compression performance due to the additional code 
length of the codebook. To attack this problem, an 
additional “outliers” cluster is designed for vectors 
that differ too much from the majority of the vectors. 
Those vectors with significantly high cost in the rate-
distortion sense are selected as “outliers” and coded 
by a separate escape codeword. The underlying 
quantization method leads to a robust compression 
performance both for high and low bit-rates. 
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Fig. 1, Test map Britain with 10,910 points (left), and the 
prediction residuals with MSE =1.8·10

-4
.  

Finally, the close-loop structure in the encoding 
step was improved by dynamic programming 
algorithm. The remainder of the paper is organized as 
follows. The proposed method is introduced in section 
2; Section 3 reports the corresponding experimental 
results; and conclusions are drawn in section 4. 
 
2. Proposed Method 
 

In vector map compression, we want to compress a 
given 2-D vector sequence: P= (p1, p2,…, pn), under 
given bit-rate constraint c. General compression 
procedure contains three steps: prediction, 
quantization of the residual vectors and entropy 
coding. Differential coordinates of subsequent 
sampling points are used as the prediction error in 
prediction step. A sample test curve and the 
distribution of the corresponding differential 
coordinates for which the quantization codebook is 
designed, are shown in Fig. 1. 
 
2.1 Initial the codebook in vector quantization 
 

In vector quantization, we want to quantize the 
residual vectors by minimizing mean square error 
under a constraint that the average bit-rate does not 
exceed c: 

2

1
min , . . ,  (|| ( ) || )

N

i
D s t R c where D Qi iv v  (1) 

vi is the residual vector and Q(vi) is its quantized form. 
In entropy-constrained vector quantization (ECVQ), 

the problem can be solved by a Lagrangian 
minimization procedure by converting it as an 
unconstrained optimization problem [7], formulated as 
J = D + R. For each Lagrangian parameter , it has a 
corresponding point on the rate-distortion curve. 
However, unlike image coding, prediction error for 
vector data varies for different case, and thus, using a 
fixed size (k) in codebook design does not solve the 
problem efficiently. In order to find a better 
combination of  and k, ECVQ can be applied but at 
the cost of higher time complexity, which makes it 
suitable only off-line.  

Entropy-constrained pair-wise nearest neighbor for 
vector quantization (ECPNN-VQ) has been proposed 
in [8]. It merges the pair of cluster that results in the 
smallest increase in distortion and largest decrease in 
rate. The increased distortion after merging two 
clusters i and j can be calculated by: 

2
2|| ||i j

i j

n n
D

n n i jc c  (2) 

ni and nj are the number of vectors in cluster i and j, 
respectively, and ci and cj are their centroid vectors.   
The change in bit-rate can be calculated as: 

log( / ) log( / )

( ( )log(( ) / ) )
i i j j

i j i j q

R n n n n n n
n n n n n r

 (3) 

rq is the code length of one quantized vector in 
codebook, n is the number of residual vector. 

In every merge step, the pair of clusters with 
minimum - D/ R is merged. This can also be 
considered as searching the minimum slope in the 
rate-distortion curve, and thus, it guarantees the 
optimality of each merge step. Since in classic ECVQ 
framework,  is interpreted as the slope of the line 
supporting the operational rate-distortion curve, and 
therefore, in ECPNN-VQ, it is approximated by:  

 -(Dn+1-Dn)/(Rn+1-Rn). (4) 

The time complexity of ECPNN-VQ is O( N2), the 
same as that of the traditional PNN algorithm [9]. 
 
2.2 Optimize quantization by outlier cluster 

 
After ECPNN-VQ, the cost of each residual vector i 

in cluster j can be formulated as: 
2
2 2|| || ( log ( / ) / )ij j q jJ n n r ni jv c  (5) 

If a very high accuracy is needed, a large-sized 
codebook is intractable in achieving a desirable coding 
efficiency. Better compression performance can be 
achieved by uniform quantization because no 
overhead is needed for storing the codebook. 
Therefore, we apply two-level codebook so that the 
most common vectors are coded by vector 
quantization using the optimized codebook, while the 
outlier vectors are coded by uniform quantization. In 
uniform quantization, given quantization level l, 
residual vector vi is quantized as Q(vi) = ([ xi/l]·l, 
[ yi/l]·l), where qxi =[ xi/l], qyi =[ yi/l] are integer 
value be coded.  

The mean square error D0 can be calculated by: 
/2 2 2

00 /2

1 1 1( )
2

l l

l
x dx l x D

l l
 (6) 

We have D0 =l2/6. 
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Fig.2, Comparison of the vector 
quantization of the residual vectors 

Fig. 3, Demonstration of the outlier selection (5 bits/point constraint). ECPNN with 
MSE= 8.7·10

-6
 and codebook size 78(left). The proposed two-level codebook with 

MSE= 6.9·10
-6

 and size 30 (right). Outliers are marked as ‘o’. Grid size for uniform 
quantization is also labeled.

 
We observe that the |qx| and |qy| can be described by 
geometric distribution: 

| |(| |) (1 ) xq
x x xf q p p  (7) 

where px is the parameter, which is approximated by: 

1

11 / ( | | 1)
n

x xi
i

p q
n

 (8) 

The coding length for uniform quantization is: 

0 2 2 2 0

2 2

(| | log (1 ) log ( )) log ( / ) 2
(| | log (1 ) log ( ))

i xi x x

yi y y

r q p p n n
q p p

 (9)

where n0 is the number of vectors used for uniform 
quantization. The cost of uniform quantization is 
calculated by: J0 = i(D0+ ri0). By setting 0 / 0J l , 
we got the optimal quantization level: 

6 / ln 2l  (10)

In our method, ECPNN is used to initialize the 
codebook. For a given bit constraint c,  is first 
approximately on the rate distortion curve by (4). 
“Outlier cluster” is then created with quantization 
level l by (10). Residual vectors are repartitioned to 
the clusters with minimum cost J by: 

( ) , arg min ( ), 0,1..,j ijQ j J j ki jv c  (11)

A centroid step is followed in order to update the 
codebook. Parameters px and py for the geometric 
distribution are also updated. Fig.3 shows an example 
of the codebook design. We can observe that several 
vectors and some clusters have completely been 
moved to the “outlier cluster”, and the size of the 
main codebook is reduced from 78 to 30. 

The corresponding rate-distortion curve of the two-
layer quantization step in Fig.2 shows better rate-
distortion performance than the corresponding one-
level ECPNN, or the uniform quantization under 
different bit-rate conditions. We should mention when 
the data has different property, uniform distribution, 
negative binomial distribution or Poisson distribution  

 
can also be considered instead of geometric 
distribution. 

 
2.3. Encoding by closed-loop with dynamic 

programming 
 
After prediction and quantization of the residual 

vectors, we compress the vector data by entropy 
encoding. In order to avoid error propagation, the 
prediction must take into account the quantization 
effect of the previous point by using closed-loop 
prediction: 

-1
r

i ip piv  (12)

-1( )r r
i ip Q piv  (13)

here r
ip  is the approximated point after entropy 

coding. The total cost can be calculated by: 
2
2

1
,  || ||

n
r

n i i i i i
i

L J where J p p r  (14)

where ri is the coding length for pi. 
Selecting the quantized vector according to (13) 

cannot guarantee optimality during minimizing the 
cost function in this encoding procedure. In our 
method, we keep more possible candidates (t=8 in our 
implementation) in each step and the optimal solution 
is found by a dynamic programming process in the 
state space of size n·t. Suppose that t is the best 
solution recorded for encoding from p1 to pi, with the 
corresponding costs Li,1,Li,2,…Li,t, ,1 ,2 ,, ,...,r r r

i i i tp p p is the 
approximating points for pi. Based on a combination 
of k quantized vector and t best solutions for pi, k·t 
solutions are tested for approximating pi+1 and t best 
solutions 1,1 1,2 1,, ,...,r r r

i i i tp p p is saved with minimum 
costs Li+1,1, Li+1,2,…Li+1,t. In the end, backtracking is 
done to find the quantized vectors from ,1

r
np with 

minimum cost Ln,1. The time complexity of proposed 
approach is O(ktn·log kt). 
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Fig. 4 Workflow of the proposed method 

 
The residual vectors can be updated by (12) after the 

approximated curve has been constructed. Given bit-
rate constraint c,  is updated by a binary search in the 
next iteration.  
 
3. Experiments 

 
We evaluated the proposed algorithm with optimal 

codebook design (OCVQ) on a 10,911-point vector 
map representing the contour of Britain (Fig. 1). For 
comparison, two alternative methods are investigated 
in the experimental tests: Clustering-based method 
(CBC) [4] and the reference line method (RL) [5]. The 
distortion is measured by mean squared error (MSE). 
We further integrate our method into Dynamic 
quantization (DQ) [6], where integral square error 
(ISE) is used as the error measure. The corresponding 
rate-distortion curves are plotted in Fig. 5. The 
proposed algorithm compares favorable with the 
existing approach. 
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Fig. 5, Performance comparison 

 

4. Conclusion 
 
We propose a lossy compression algorithm for 

vector map data under a certain bit-rate constraint. In a  

 
comparison to the previous clustering-based method, a 
two-level strategy has been exploited and employed to 
optimize the codebook design. Vector quantization 
codebook is designed only for most common vectors, 
and the remaining vectors (outliers) are coded by 
additional bits using uniform quantization. 
Additionally, a dynamic programming method is 
utilized to improve the quantized vector selection in 
closed-loop framework, instead of using a 
conventionally greedy approach.  
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