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Graphical approach provides a more intuitive and simple way to construct error correc-

tion codes. How to obtain generator matrix is the key problem of constructing graphical
quantum codes. In this paper, we further generalize the graphical quantum code con-
struction method by entangling its disconnected subgraphs, so that the corresponding
generator matrix of quantum nondegenerate codes can be easily obtained. By making
use of the method of subgraphs entangling, we also point out its application in adjacency
matrix constructions of larger colorable graph and graphical quantum nested codes.
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1. Introduction

Quantum error-correcting codes (QECCs) are highly entangled states which are

used to prevent damaging effects of decoherence. Since the first quantum code was

introduced by Shor in 1995,1 it was shown that the QECC can be constructed

based on classical block codes. This led to an important class of QECC known

as Calderbank–Shor–Steane (CSS) codes.2,3 Afterwards, a more general quantum

code, i.e., quantum stabilizer code (QSC), has been investigated.4 Currently, almost

all QECCs are constructed with stabilizer whose code space is specified by a tensor-

products Abelian group of Pauli operators.

It is well known that stabilizer state is a multi-qubit pure state, which corre-

sponds to an element in an unique set of eigenvectors with unit eigenvalue of the

stabilizer. In coding theory, graph not only is related intimately to the construction

of classical error-correcting codes, but also has important applications in QECCs.

In Ref. 8, a new and simpler way for constructing QSC called graphical quantum

error correction codes (G-QECC) on which more direct intuitions was proposed.
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Generally, a quantum state of a coupled quantum systems may be represented by

a graph, where its vertices correspond to physical sub-systems and the edges rep-

resent interactions among them. According to the definition, graph state is a set

of commuting Pauli operators which can be constructed with corresponding sub-

systems in a general mathematical graph.5–13 Therefore, arbitrary graph does not

always correspond to a stabilizer state, and a graph state is the special case of

stabilizer state. Since the basic theory on G-QECC was proposed, some researchers

have devoted to this topic.9–13 For examples, Nest proved that each stabilizer state

equates to a graph state under local Clifford operations,12 and Hu and his coop-

erators investigated the construction of both additive and nonadditive graphical

nonbinary quantum codes, and proposed some graph codes.13

Generally, to construct graphical quantum code, a finite abelian group as sta-

bilizer, whose order is the dimension of the Hilbert space, is used to describe a

quantum system. Therefore, how to easily obtain the generators of the stabilizer

corresponding to one graph state, is the key problem of constructing for graphical

quantum codes. This motivates us to seek the more general construction method of

graphical quantum codes. In this paper, we present a new construction method of

graphical quantum code by entangling its several disconnected subgraphs, so that

the obtained higher-dimension graphical quantum code corresponds to a graph

state. Furthermore, Graph states associated with colorable graph, have some useful

properties.8,13–18 By making use of the present method, we shall also consider its

application in the adjacent matrix construction of large colorable graph. Further-

more, how to gain the adjacency matrix of graphical quantum nested codes is a

difficult problem. With the one-to-one entanglement method, the constructed col-

orable nested graph via its subgraphs can possess of optimal coloring according to

the graph coloring problem.

The paper is structured as follows. In Sec. 2, we introduce some preliminaries

which are necessary for G-QECC. In Sec. 3, we investigate the construction ap-

proach with its disconnected subgraphs to obtain graphical quantum codes, and its

application into the adjacency matrix constructions for larger colorable graph and

nested graph. Furthermore, we also investigate the bounds that good G-QECCs

should satisfy in Sec. 4. Finally, conclusions are drawn in Sec. 5.

2. Preliminaries for Graphical Quantum Codes Construction

A graph is a collection of vertices which are connected by edges. Formally, an

undirected and finite graph is a pair

G = (V,E) , (1)

where the elements of V are called vertices, and the elements of E edges. Denote

N = |V | the vertex number of graph G. In an N -qubit quantum network graph, a

Pauli group with tensor products may be generated

PV = {iλ(τ1 ⊗ · · · ⊗ τN )|0 ≤ λ ≤ 3, τj ∈ P , 1 ≤ j ≤ N} , (2)

1250024-2



January 20, 2012 15:10 WSPC/Guidelines-IJMPB S0217979212500245

Graphical Quantum Error-Correcting Codes Based on Entanglement of Subgraphs

where i =
√
−1 and P = {σ0, σx, σz, σy} is a set composed of four basic Pauli

matrices. Any pair of elements in PV either commutes or anti-commutes, and graph

G corresponds to a N -qubit graph system in space PV . Stabilizer code is known as

a class of quantum code which is given by the most widely-used structure. Let S

be an abelian subgroup of PN , namely, any two vectors in S commute. Acting each

element in S onto joint eigenspace associated to state in quantum codes space, if

the eigenvalue is 1, S is called the stabilizer of the quantum code and its element

is called generator.

The adjacency matrix Γ of a simple graph, is to describe the connection relation

between all vertices. It is an N×N symmetric matrix for the system corresponding

to a nondegenerate code and consisting of N qubits with elements

Γab =

{

1 if (a, b) ∈ E

0 otherwise.
(3)

Because of the entanglement between N vertices, each vertex a in graph G corre-

sponds uniquely to an N -qubit vector. At each qubit in a vertex vector, we use the

following encoding of the Pauli matrices in P as pairs of bits with two types (i.e.,

X-type and Z-type)

σ0 → (0|0) , σx → (1|0) , σy → (1|1) , σz → (0|1) . (4)

Namely, any one N -fold vertex vector Ma ∈ PV , a ∈ V , corresponds to an

2N -dimensional binary vector

a = (ax1a
x
2 · · ·axN |az1az2 · · ·azN ) ∈ Z2N

2 , (5)

where axi , a
z
i ∈ {0, 1} for i = 1, . . . , N .

An arbitrary mathematical graph does not always corresponds to a stabilizer

state, unless its vertex vectors satisfy the commutating condition. Therefore, graph

states are special cases of stabilizer states, which are certain pure multi-particle

entangled states associated with graphs.12 If any vertex in graph G corresponds to

a generator Ma of stabilizer S, then graph state |G〉 equates to S. Therefore, the

vertex vector Ma in space PV may be expressed in graph language as

Ma = Xa
⊗

b∈N(a)

Zb (6)

which is associated with its adjacent vertices, where Na := {b ∈ V |a, b ∈ E} is

the adjacent vertex collection for a given vertex a ∈ V in graph G = (V,E). By

applying on vertex a in G respectively, Xa, Y a, Za denote Pauli matrices σx, σy ,

σz in (4), where

Xa =
∑

y∈Z
N

2

|y + a〉〈y| , Za =
∑

y∈Z
N

2

ωay|y〉〈y| , ω = eiπ (7)

and Y a = iXaZa over ZN
2 . Therefore, the generator matrix of a graph state can be

expressed as binary standard form

G = (X |Z) = (I|Γ) , (8)
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where Γ is the adjacency matrix of the graph G. For simplicity, it also can be

directly described over GF (4) = {0, 1, ω, ω2} as

C = ωI + Γ (9)

for mapping: ω → σx. Let Ma and Mb be two commuting vertex vectors in S cor-

responding to binary vectors a in (5) and b = (bx1b
x
2 · · · bxN |bz1bz2 · · · azN) respectively.

According to the definition of stabilizer, their symplectic product equates zero, i.e.,

a · b =

N
∑

i=1

(axi · bzi + azi · bxi ) = 0 . (10)

Graphical quantum codes C[[|V |, k, d]] encodes vectors from 2k-dimensional com-

plex vector space to 2|V |-dimensional Hilbert space H|V | = (C2)⊗|V |, where C2 be

an 2-dimension complex vector space. A coding clique C(K, d) of a given graph

G = (V,E) encodes |V | − k vertices for |K| = k into |V |-qubit graph G, where

K is a collection of k different vertex vectors in the graph. Obviously, it is that

0 ∈ C(K, d) and each vector s ∈ S is orthogonal to any vectors c ∈ C(K, d). Fur-

thermore, the coding clique C(K, d) is close and linear. The parameters of G-QECC

should also satisfy some quantum bound, such as Singleton bound19

|V | − |K| ≥ d− 1 . (11)

So, one obtains a graph clique code C(K, d) by selecting N − k vertex vectors from

the generators of graph state |G〉 with bound.

3. Graphical Quantum Codes Construction by Entangling

Subgraphs

Clearly, one may see that the key problem of constructing G-QECC is how to obtain

its generator matrix. As the following, we will present a method of obtaining a new

graph by entangling several disconnected subgraphs.

3.1. Multi-vertex quantum graph code construction method via

entanglement

A graph G0 = (V0, E0) is called a subgraph of G = (V,E), if V0 ⊂ V and E0 ⊂ E.

There is no any {a, b}-path to connect two subgraphs G1 = (V1, E1) and G2(V2, E2)

of graph G for a ∈ V1, b ∈ V2, then the two subgraphs are called disconnected. As

the following, we shall introduce an approach of obtaining a graph by entangling

its several disconnected subgraphs.

Without loss of generality, we consider how to entangle two disconnected sub-

graphs G1 = (V1, E1) and G2 = (V2, E2), so that a new graph G = (V,E) can be

gained, where G1 and G2 correspond to coding cliques CG1(K1, d1) ∩ CG2(K2, d2),

respectively. Define an auxiliary graph

G′ = G1 ⊕G2 (12)
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as a graph formed by the two disconnected subgraphs which share no edge. As-

sume Γi are the adjacent matrices of graph Gi for i = 1, 2 respectively, the binary

standard form of generator matrix of graph G′ is

G′ = (I|Γ) =
(

I1 0 Γ1 0

0 I2 0 Γ2

)

, (13)

where Ii is an Ni × Ni unitary matrix for Ni = |Vi|. Extend the matrix (13) to

more general form

G = (I|Γ) =
(

I1 0 Γ1 Γ12

0 I2 ΓT
12 Γ2

)

, (14)

where Γ12 is called N1 × N2 entanglement relation matrix and ΓT
12 is its reverse

matrix. Corresponding to form (14), there must be a graph G = (V,E) with V =

V1 ∪ V2 may be obtained.

Because an arbitrary graph does not correspond to a graph state, another prob-

lem which must be considered is that the obtained graph G whether can be used

to construct quantum codes. Namely, any two vertex vectors in the obtained graph

should commute so that the symplectic condition (10) is satisfied.

Theorem 1. Assume a graph G = (V,E) with the standard form in Eq. (14)

is entangled by two disconnected subgraphs G1 = (V1, E1) and G2 = (V2, E2) with

respect to entanglement relation matrix Γ12. If the subgraphs correspond to two graph

states, then the entangled graph also corresponds to a graph state. Furthermore, the

distance is no less than each distance of the subgraph codes when connection matrix

Γ12 is a full-rank matrix.

Proof. To illuminate the obtained graph G corresponds to a stabilizer state, we

only prove its any two vertex vectors in generator matrix C commute. Assume

vector αs = (axs1, . . . , a
x
sN |azs1, . . . , azsN ), 1 ≤ s ≤ N = |V |, is an any vector in the

obtained graph G, and N1 = |V1|, N2 = |V2|. Two cases on a pair of vectors should

be considered as following.

Case 1. Consider two vectors αi and αj , for 1 ≤ i, j ≤ N1 or N1 + 1 ≤ i, j ≤
N1 +N2. Without loss of generality, let the two vectors be among first N1 rows of

generator matrix C. Then, their symplectic product should be

αi ·αj =

N1+N2
∑

h=1

axiha
z
jh +

N1+N2
∑

h=1

aziha
x
jh . (15)

Note that G1 corresponds to a graph state, i.e., axil = axjl = 0 for N1 + 1 ≤ l ≤
N1 +N2. One may hence get

αi ·αj =

N1
∑

h=1

axiha
z
jh +

N1
∑

h=1

aziha
x
jh = 0 . (16)
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Similarly, when N1 + 1 ≤ i, j ≤ N1 +N2, because G2 also corresponds to a graph

state, it can be induced that their symplectic product equates zero.

Case 2. Assume two vectors αi and αj belong respectively to the first N1 vectors

and later N2 vectors in the generator matrix C, i.e., 1 ≤ i ≤ N1 and N1 + 1 ≤ j ≤
N1 +N2. Then, their symplectic product should be

αi ·αj =

N1+N2
∑

h1=1

axih1
azjh1

+

N1+N2
∑

h2=1

axjh2
azih2

=

N1
∑

h1=1

axih1
azjh1

+

N1+N2
∑

h2=N1+1

axjh2
azih2

= axiia
z
ji + axjja

z
ij

= azji + azij . (17)

Because azij and azji belong to entanglement relation matrices Γ12 and ΓT
12 respec-

tively, one may get azji = azij . This implies that their symplectic product equates

zero with module 2, namely, two vectors commute.

In summary, any two vectors in the obtained graph always commute, so each

one corresponds to a generator of graph state. Furthermore, one may easily get

that the distance of formed new graphical quantum code is no less than any one

of the distance of subgraphs. Specially, it is larger than single distance when the

entanglement relation matrix is square and full-rank.

From the description we may see that, a new graphical quantum code by en-

tangling its subgraphs hence can be obtained, by making rows collection of the

corresponding generator matrix as the generators set {Mai
, 1 ≤ i ≤ |V |, ai ∈ V }.

Generally, in two cases on entanglement relation matrix Γ12, the generator matrix

C in (9) of graph G can be gained by entangling its two subgraphs.

Case 1. If N1 = N2, we take an N/2 by N/2 full-rank square matrix Γ12 to generate

the new graph.

Case 2. If N1 6= N2 such that mN1 < N2 < (m+1)N1 for some integer m, we take

the N1 by N2 entanglement relation matrix Γ12 as

Γ12 = (Γ
A

(1)
12
, . . . ,Γ

A
(m)
12

,ΓB12) , (18)

where at least one of Γ
A

(i)
12
, 1 ≤ i ≤ m, is an N1 by N1 full-rank square matrix, and

ΓB12 is an N1 by N2 −mN1 matrix with rank r = {minN1, N2 −mN1}.

The other one left problem is how to design the entanglement relation matrix Γ12

to entangle its subgraphs, so that the obtained graph G corresponds to a quantum

graphical code with parameters [[N = N1 + N2, k, d ≥ min{d1, d2}]]. Considering
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the Theorem and boundary conditions, the entanglement relation matrix Γ12 should

be constructed with following principles.

(1) To get a more steadier state and increase the correction capability, matrix

Γ12 should be full rank so that the maximal clique of entangled graph may

be obtained. Namely, a maximally entangled pair of two-spin system can be

obtained when the minimal kernel dimension of entanglement relation matrix

Γ12 may be rank r = min{N1, N2}.
(2) For simple encoding, the entanglement relation matrix Γ12 should be a low-

density matrix, i.e., it can be divided into several block matrices, and one

sub-matrix may be transferred to lower triangular matrix.

Define a cycle (or circuit) of graph, which is a path that starts and ends at

the same vertex.

(3) Generally, a long cycle should be arranged in such construction, that no smaller

cycles are contained in subgraphs, including the matrix G12 in entanglement

relation graph. This induces the increasing capability of obtained graphical

quantum codes.

(4) Denote w the weight of vector in matrix Γ12. Then, w will be no more than

w0 = min{k1, k2} − 1.

Furthermore, a graph G12 = (V12, E12) generated from N × N = (N1 +N2) ×
(N1 +N2) adjacency matrix

ΓG12 =

(

0 Γ12

ΓT
12 0

)

, (19)

clearly, is also a subgraph of G, and it has following edges relation

E = E1 ∪ E2 ∪E12 . (20)

Therefore, assume graphs G′ with (13) and G12 with (19) generate two coding

cliques CG′(K ′, d′) and CG12(K12, d12). Then, coding clique CG(K, d) generated from

the graph G may be expressed as

CG(K, d) = CG′(K1, d1) ∩ CG12(K12, d12) . (21)

More general, it easily can be generalized for entangling several subgraphs to

obtain a new network graph. Note that the Schmidt rank of a graph state is closely

related to error correction capability of a corresponding graph code. According to

Ref. 8, to encode k-dimension subset K ⊂ V as an input on vertices, we take

corresponding output on vertices M = V −K in G to detect the error configuration

E. Therefore, any vertex number |E| − 1 of errors can be detected and one half of

which be corrected. Physically, by applying controlled-phase gate on the initialized

graph state in terms of adjacency matrix Γ in (14), the preparation of the graph

state correspond to quantum code CG(K, d) can be accomplished.
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Coloring is an assignment of colors to the vertices of a graph, such that no

two adjacent vertices have the same color. A graph G = (V,E) is generally called

k-colorable if one can divide the vertices into k groups

V1, V2, . . . , Vk ⊂ V , (22)

and assign to the vertices of each group a color, such that neighboring vertices

have different colors.18 Specially, two-colorable graph (also called bipartite graph)

is an instance with k = 2, of which the vertices set is partitioned into two dis-

joint sets, and no two vertices within the same set are adjacent. Graph states

associated with colorable graph, have some useful properties, such as, the form

and color of the vertices can indicate the different measurement directions or

the respective vertex can correspond to an input and output qubit. For exam-

ple, two-colorable graph states are equivalent to CSS states.14 The smallest integer

k such that G has an k-coloring is called the chromatic number of G and is de-

noted by X (G). Graph coloring problem is to find the fewest possible colors in

graph.

To obtain a more multi-vertex colorable graph and containing colors as few as

possible, based on the present entanglement method, the relation between the colors

of entangled graph G and its two subgraphs should be considered. It requests that

each vertex in subgraph of less colors should entangle a vertex in every divided

subsets except for its same-color subset.

Proposition 1. Assume G1 and G2 are two disconnected graphs of k1 and k2
colors, respectively, and correspond to two graph states.

Then, the colors of graph G by entangling its subgraphs G1 and G2 will be no more

than k1+k2. Specially, when matrix Γ12 describes the one-to-one mapping between

different colorable vertices in respective subgraphs, the coloring number of graph

G should be k = max{k1, k2}.
Therefore, by combining several colorable subgraphical quantum states, a larger

colorable graph state can be obtained.

Example 1. Consider an example for case of N1 = N2. Let

C′
6 = Γ′

6 + ωI =























0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0























(23)
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and

C′′
6 = Γ′′

6 + ωI =





















0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0





















(24)

be two generator matrices of two-colorable subgraphs G′ and G′′, which based on

adjacent matrices Γ′
6 and Γ′′

6 corresponding to two graph states, respectively. Take

a simple one-to-one entanglement relation matrix as

Γ12 =





















0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0





















. (25)

Then, based on two colorable subgraphs, the obtained graph corresponding to code

[[12, 0, 4]] can be seen Fig. 1.

Example 2. Consider case of N1 6= N2. Assume G1 and G2 correspond to two

three-colorable graph states, and their generator matrices are

C1 = Γ1 + ωI =







ω 1 1

1 ω 1

1 1 ω






, (26)

'G ''G

G

1

1

2

2 3

3

45

6

6

4

5

Fig. 1. Two-colorable graph quantum nested code [[12, 0, 4]] based on colorable subgraphs.
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and

C2 = Γ2 + ωI =



























ω 1 0 1 1 0 1

1 ω 1 0 1 1 0

0 1 ω 1 0 1 1

1 0 1 ω 1 0 1

1 1 0 1 ω 1 0

0 1 1 0 1 ω 1

1 0 1 1 0 1 ω



























. (27)

Based on the two matrices, G′ in (12) can be easily obtained. Next, we take the

entanglement relation matrix as

ΓT
B12

=







0 1 0 1 1 0 1

0 0 1 0 0 1 0

1 0 0 0 0 0 1






. (28)

So, we can obtain the generator matrix of multi-vertex quantum code [[12, 0, 4]]

corresponding to three-colorable graph G in Fig. 2.

Lemma 1. Generally, define direct sum of N full-rank matrices as

A = A1 ⊕A2 ⊕ · · · ⊕AN =













A1 0 · · · 0

0 A1 · · · 0

...
...

. . .
...

0 0 · · · AN













. (29)

Then, it has some properties as following:

(i) rank(A) =
∑N

i=1 rank(Ai);

(ii) If A1, . . . , AN are all orthogonal matrices, their direct sum A is also orthogonal.

1
G

2
G

G

1

2

3

1

2

4

5

6

7

3

Fig. 2. Three-colorable graph G with length 12, correcting one error.
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Take (N − 1)N/2 full-rank entanglement relation matrices to replace the zero

matrices in (29), if Ai, 1 ≤ i ≤ N , all correspond to graph states, then matrix A

may be a generator matrix of graphical quantum code of larger distance.

3.2. The application of present construction method to graphical

quantum nested code

In practice, the proposed approach in previous section provides a more general way

to obtain graphical quantum codes. It has some valuable applications quantum

codes construction theory, such as the construction of quantum nested graph codes.

As the following, we apply the construction technique based on entanglement to

obtain the adjacency matrix of nested colorable-graph quantum codes.

A nested graph G = (V,E), can be described as an “nl-vertices of . . . graph of

n2-vertices graph of n1-vertices graph”, denoted by

Gnl
[· · · [Gn2 [Gn1 ]] · · ·] . (30)

According to the definition, one may see that the number of vertices in the graph

(30) is N = n1n2 · · ·nl, and the vertices of obtained graph G is formed by N/n1

disjoint colorable vertex subsets V1, V2, . . . , VN/n1
with same size n1, where Vi for

1 ≤ i ≤ l is the vertex set of graph Gn1 . So, it results in

V = V1 ∪ V2 ∪ · · · ∪ VN/n1
, (31)

and its every subgraph is same to graphGn1 . Let Eij be the set of edges {u, v} where
u and v respectively belong to two sets Vi and Vj . One may get the number |Eij | is
n1, namely, every vertex in Vi connects to one vertex in Vj and vice versa. Therefore,

the obtained entangling graph state has at most VN/n1
colorable subgraphs. Graph

coloring problem is to find a coloring with as few colors as possible. Therefore, one

should take a simple connection relation to entangle the subgraphs, so that the

obtained entangled graph has fewer colors.

According to its characters, a nested graph actually is formed by connecting

N/n1 subgraphs which are complete same to Gn1 . Therefore, for generating the

adjacency matrix Γ of graph G, the key problem is how to connect the subgraphs

with given adjacency matrix Γ1 of Gn1 . As the following, we introduce a family of

entanglement relation matrices. Let a finite group

TL = {P 0
L = I, PL, . . . , P

L−1
L } , (32)

where PL = (pij) is a circulant permutation matrix defined as

pij =

{

1 if i = (j + 1)modL

0 otherwise .
(33)

If Gn1 is a colorable subgraph, to optimize coloring we take Γ12 ∈ Tn1 as the one-to-

one entanglement relation matrix, so that subgraphGn2 [Gn1 ] can be obtained. More
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general, if Γni−1 is the adjacency matrix of nested subgraph Gni−1 [· · · [Gn2 [Gn1 ]] · · ·]
for 1 < i ≤ l, then the adjacency matrix of graph Gni

[· · · [Gn2 [Gn1 ]] · · ·] is

Γni
=























Γni−1 Γi12 · · · Γi1(ni−1)

ΓT
i12 Γni−1 · · · Γi2(ni−1)

...
...

...
...

ΓT
i1(ni−2)

ΓT
i2(ni−2)

· · · Γi(ni−1)(ni−1)

ΓT
i1(ni−1)

ΓT
i2(ni−1)

· · · Γni−1























, (34)

where Γist = Pmst ∈ Tni−1 for 1 ≤ s, t ≤ ni − 1, 0 ≤ mst ≤ ni−1 are entanglement

relation matrices. If there is no intercross between any pair of colorable notes in

different subgraphs, then the exponent mst should satisfy

ni−1
∑

s,t=1

mst mod ni = 0, ni > 2 , (35)

and Pm
st is any element in Tni−1 when ni = 2.

Furthermore, consider the error correction capability of the generated quan-

tum code. According to the described results, if graph Gn1 corresponds to a graph

state, then the obtained nested graph G still do in terms of the theorem. So, one

can construct a graphical quantum code with parameters [[|V |, k, d]]. Note that the
entanglement relation matrices generated from set of circulant permutation matri-

ces in (33), i.e., they are all full-rank. Note that every sub-block matrices is square.

Therefore, it is obviously that the distance of obtained graphical quantum nested

code [[|V |, k, d]] is larger than that of its any single subgraphs Gns
[· · · [Gn1 ] · · ·] for

1 ≤ s ≤ l − 1.

Example 3. Consider the construction for nested colorable graph G3[G4], where

the generator matrices of two-colorable subgraph G4 and graph G3 over GF(4) are

C4 = Γ4 + ωI4 =











ω 1 0 1

1 ω 1 0

0 1 ω 1

1 0 1 ω











, (36)

and

C3 = Γ3 + ωI3 =







ω 1 1

1 ω 1

1 1 ω






. (37)

Furthermore, the relation matrices are the elements of T4. So, one may get that the

1250024-12
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adjacency matrix Γ12 of nested graph G3[G4] is

Γ =









Γ4 P4 P 2
4

(P4)
T Γ4 P4

(P 2
4 )

T (P4)
T Γ4









. (38)

Matrix Γ of graph G with no intercross between any pair of subgraphs may also be

taken as








Γ4 P4 P4

(P4)
T Γ4 P 2

4

(P 2
4 )

T (P 2
4 )

T Γ4









,









Γ4 I P 3
4

I Γ4 P4

(P 3
4 )

T (P4)
T Γ4









(39)

and so on. Finally, one may obtain the generator matrix C = Γ+ωI12. Correspond-

ingly, one may gain a quantum nested graph code [[12, 0, 6]] using to graph G3[G4]

based on the entanglement relation matrix (38), which may be seen Fig. 3.

In terms of relevant adjacent matrices, based on their colorable subgraphs, some

other general nested graph states with higher level may be obtained, such as col-

orable graph in Fig. 4.

Fig. 3. Two-colorable nested graph G3[G4] of quantum code [[12, 0, 6]] based on its colorable
subgraphs.

Fig. 4. Three-colorable nested graph G7[G3] of quantum code [[21, 0, 9]].
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4. Bounds of Good Graphical Quantum Codes

Now, we consider the bound of good G-QECCs. According to our present approach,

one may get that the parameters δ = d/N and R = k/N can be adjusted by

choose proper connection matrices and subgraphs. As the following, we consider

the parameters should satisfy the bounds to make the obtained graphs correspond

to the good G-QECCs.

A probabilistic graph is a graph equipped with a probability distribution on

its vertices.20 Let (G, p) be a probabilistic graph, and X be any random variable

over the vertex set V (G) of G with distribution p. Graph entropy H(G, p) is an

information theoretic functional of a graph G with a probability distribution p on

its vertex set. Let F and G be two graphs on the same vertex set V with possibly

intersecting edge sets. We recall that the mutual information I(X∧Y ) of the random

variables X and Y equals H(X)+H(Y )−H(X,Y ), where H(X,Y ) is the entropy

of the random variable (X,Y ). Then, the graph entropy is formally defined as

H(G, p) = min
X∈Y ∈S(G),PX=p

I(X ∧ Y ) , (40)

where S(G) denotes the family of the stable sets of vertices in G.

Graph entropy H(G; p) is an information theoretic functional of a graph G with

a probability distribution p on its vertex set. For an arbitrary integer m, we can

select the perimeter k such that.

We now analyze the asymptotic good behaviors of the present G-QECCs with

the perimeters [[N = |V |, k, d]]. For an arbitrary integerm, we can select the perime-

ter k such that

η|V | − 1 ≤ |V | − k ≤ η|V | , (41)

where 0 < η < 1. Therefore, it is easy to prove that

lim
m,|V |→∞

ηN = ∞ ; lim
m,|V |→∞

inf δ = η > 0 ; lim
m,|V |→∞

inf R = 1− η > 0 , (42)

which implies that the present graphical codes are asymptotically good by adjusted

their parameters.21,22

According to the properties of the entropy, there is an real number p = η0(1/2 <

η0 < 1) such that η0 = H(G, η0). Therefore, for any η0(1/2 < η0 < 1) we can always

get

1−H(G, η) ≤ 1− η , (43)

from which we gain

lim
m,|V |→∞

inf R = 1− η ≥ 1−H(G, η) . (44)

Associated with Eqs. (42) and (44), good graphical quantum codes should meet the

asymptotic Gilbert–Varshamov bound. In addition, for any η ∈ (1/2, 1) we obtain

1− η ≤ 1−H(G, η/2) , (45)
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which implies,

lim
m,|V |→∞

inf R = 1− η ≤ 1−H(G, δ/2) . (46)

In this case, good graphical quantum codes by properly selecting the entanglement

relation matrices can meet asymptotic Hamming bound.

Furthermore, to obtain for meeting the bounds, another factor is the choice of

subgraphs. Graph coloring problem is to find a coloring method with as few colors

as possible. The minimum number of colors in a coloring of G is the chromatic

number X (G) of G. The chromatic entropy HX (G, p) of the probabilistic graph

(G, p) is the minimum entropy of any of its colorings, which directly induces good

graphical quantum codes.

5. Conclusion

Applying graphical approach provides a direct way to construct error correction

codes. Because arbitrary graph does not always correspond to a graph state, in

this paper, we generalize the method of constructing graphical quantum codes by

entangling its subgraphs. Correspondingly, by applying the construction approach,

the adjacent matrices of large graphical quantum nondegenerate codes, such as

multi-vertex colorable graph and nested graph, can be easily obtained. Further-

more, because of its flexibility, the parameters can be adjusted according to the

constrains of good graphical quantum codes. In summary, this approach presents a

more general construction method for graphical quantum code.
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