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Abstract
Although temporal information of speech has been shown to
play an important role in perception, most of the voice conver-
sion approaches assume the speech frames are independent of
each other, thereby ignoring the temporal information. In this
study, we improve conventional unit selection approach by us-
ing exemplars which span multiple frames as base units, and
also take temporal information constraint into voice conver-
sion by using overlapping frames to generate speech parame-
ters. This approach thus provides more stable concatenation
cost and avoids discontinuity problem in conventional unit se-
lection approach. The proposed method also keeps away from
the over-smoothing problem in the mainstream joint density
Gaussian mixture model (JD-GMM) based conversion method
by directly using target speaker’s training data for synthesizing
the converted speech. Both objective and subjective evaluations
indicate that our proposed method outperforms JD-GMM and
conventional unit selection methods.

Index Terms: Voice conversion, unit selection, multi-frame ex-
emplar, temporal information

1. Introduction
The task of voice conversion is to modify one speaker’s voice
(source) to sound like another (target). It has many applications
in unit selection based speech synthesis, such as personaliza-
tion of a text-to-speech (TTS) system without the need to re-
train a full TTS system for each target speaker [1]. To be useful
in such applications, natural sounding and high quality speech
generated from the voice conversion system is expected.

A number of methods have been proposed in order to gen-
erate natural sounding converted speech. One of the successful
methods is to estimate a parametric conversion function from a
parallel training corpus, and then to apply this conversion func-
tion to convert the unseen test utterances. For instance, meth-
ods such as joint density Gaussian mixture model (JD-GMM)
[2, 3], partial least squares regression [4], mixture of factor an-
alyzers [5] and local linear transformation [6] have been stud-
ied making use of local linear transformation functions. Non-
linear mapping approaches such as neural network [7, 8], dy-
namic kernel partial least squares regression [9] and conditional
restricted Boltzmann machine [10] have also been proposed,
assuming that the vocal tract shape differences between two
speakers constitute a non-linear relationship. All of the above
methods can generate converted speech with acceptable quality.
However, over-smoothing and over-fitting problems in these sta-

tistical methods have been reported in [11, 9, 6, 5], due to statis-
tical average and large number of parameters, respectively, and
these problems affect the quality of synthesized speech consid-
erably.

Without using transformation functions, it is also possible
to directly utilize the original target speech parameters to gen-
erate converted speech. Unit selection [12], a method of auto-
matically selecting and concatenating target speech segments,
is a representative example of such non-parametric methods. In
[13], unit selection method, which uses source speech as refer-
ence speech for selecting the target units, is proposed for text-
independent voice conversion. In [14], the authors improved the
original unit selection approach [13] by using JD-GMM based
converted speech as reference speech. To avoid discontinu-
ities at the concatenated boundaries, the unit selection methods
[13, 14] consider both the target cost and concatenation cost.
Unfortunately, they only use one frame to calculate the concate-
nation cost, which has not considered a smooth frame-to-frame
transition in the target space. In addition, temporal informa-
tion is also ignored in the generated speech parameter sequence,
which will result in the discontinuity at the concatenation points
and affect the perceptional quality of the synthesized speech.

A major concern in most of the conventional voice conver-
sion methods is that they assume the short-term frames are in-
dependent observations of each other. Inspired by the findings
in exemplar-based speech recognition [15] which considers the
dependency of multiple frames, we propose an exemplar-based
unit selection method to avoid frame-by-frame independence
assumption. We use exemplars which span over a fixed number
of frames as basic units to calculate the concatenation cost and
to generate converted speech parameters to avoid discontinuity
at the concatenation boundaries. Compared with the previous
unit selection approaches [13, 14], our method has three novel
contributions:

a) we use a multi-frame exemplar instead of a single frame
as basic unit;

b) we adopt the exemplars to calculate the concatenation
cost to ensure that the consecutive frames in the target
space have zero concatenation cost;

c) we utilize the temporal information constraint to gener-
ate the converted speech parameters by using a tempo-
ral window to deal with the overlapping frames between
consecutive exemplars.

In contrast to the statistical approaches, our method directly
makes use of the target speaker’s training data to generate the
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converted speech, which will avoid both over-smoothing and
over-fitting problems.

We summarize the process as follows. We first find source-
target exemplar pairs on parallel training data; we then select
several target candidate exemplars for each source exemplar in
a test sentence and calculate the target cost and the concate-
nation cost; after that Viterbi algorithm is adopted to find the
optimal target exemplar sequence which minimizes the overall
target and concatenation costs; finally, the converted speech pa-
rameters are generated from the overlapping exemplars by con-
sidering temporal information constraint.

2. Exemplar-based Unit Selection
An exemplar is a time-frequency speech segment which spans
over multiple consecutive frames. Exemplar-based methods
have been popular in modern speech recognition [15], as they
allow modelling of the temporal information. Different from
the template-based speech recognition [16] and unit selection
for concatenative speech synthesis [12] which employ transcrip-
tion label to obtain the template or unit, we use exemplars with
fixed number of frames similar as [17], because the transcrip-
tion information is not available in this study.

2.1. Source-target exemplars pairing

Given a parallel data, source frame sequence X = [x1,x2, ...,
xnx , ...,xNx ] and target frame sequence Y =
[y1,y2, ...,yny ,
...,yNy ], dynamic time warping (DTW) is performed to obtain
aligned frames. The alignment produces the joint vector
sequence Z = [z1, z2, ..., zN ], where zn = [x�nx

,y�ny
]�,

xnx ∈ RD,yny ∈ RD and zn ∈ R2D . Hence, the exemplar
pair at time n is

X(n) = [xnx−p,xnx−p+1, ...,xnx , ...,xnx+p−1,xnx+p] ∈ Rq×D

for source and

Y(n) = [yny−p,yny−p+1, ...,yny , ...,yny+p−1,yny+p] ∈ Rq×D

for target, where q = 2p+1 is the window size of an exemplar.
We note that two consecutive exemplars X(n) and X(n+1) have
(q − 1) overlapping frames. We note that there are no repeated
frames within an exemplar.

2.2. Pre-selection of candidate exemplars

Note that we obtain exemplar pairs from parallel training
data. At run-time testing, for each source exemplar Xt =
[xt−p,xt−p+1,
...,xt, ...,xt+p−1,xt+p] in the testing sentence, we pre-select
several target exemplars as candidates.

We first find the K nearest neighbors X
′(t)
1 , ...,X

′(t)
K in the

source training data for each X(t). The paired target exemplars

Y
′(t)
1 , ...,Y

′(t)
K corresponding to X

′(t)
1 , ...,X

′(t)
K are then se-

lected based on the source-target exemplars pairing in the pre-
vious step. Thus, the target cost for each candidate is calculated
as follows:

Ctarget(X(t),Y
′(t)
k ) =

q∑
i=1

D∑
d=1

(X(t)(i, d)−Y
′(t)
k (i, d))2,

(1)

where X(t)(i, d) and Y
′(t)
k (i, d) are the d-th dimension ele-

ments of the i-th frame vector of exemplars X(t) and Y
′(t)
k at

time t, respectively.

After the shortlisted candidate exemplars are chosen, we
calculate the target-to-target concatenation cost as follows:

Cconcatenation(Y
′(t)
k ,Y

′(t+1)
j ) =

q−1∑
l=1

D∑
d=1

(Y
′(t)
k (l + 1, d)−Y

′(t+1)
j (l, d))2; j = 1, ..,K (2)

where Y
′(t)
k (l+1, d) is the d-th dimension element of (l+1)-

th frame vector of the k-th candidate at time t. We note that if
two exemplars are exactly the neighbours in the training set, the
concatenation cost will be 0, because the (q − 1) frames used
for calculation are exactly the same.

If the window size is one (q = 1), Y
′(t)
k becomes a D-

dimensional vector. In this special case, the concatenation cost
is:

Cconcatenation(Y
′(t)
k ,Y

′(t+1)
j ) =

D∑
d=1

(Y
′(t)
k (d)−Y

′(t+1)
j (d))2; j = 1, ...,K. (3)

This is the same as the calculation of conventional concatena-
tion cost, which can not guarantee the cost to be 0 when the two
frames are exactly neighbours, as two consecutive frames may
not be exactly the same.

2.3. Searching for the optimal exemplar sequence

Given a source exemplar sequence X(1), ...,X(t), ...,X(T )

from a testing sentences, K target exemplars for each source
exemplar are pre-selected, and the target cost and the concate-
nation cost are all calculated as introduced in the previous step.
Then, the optimal target exemplar sequence can be found by
minimizing the following cost function:

Ỹ(1), ..., Ỹ(T ) = arg min
k=1,...,K

T∑
t=1

{Ctarget(X(t),Y
′(t)
k )

+ Cconcatenation(Y
′(t)
k ,Y

′(t+1)
j )}; j = 1, ...,K.

(4)

In practice, this is achieved by using Viterbi search, as il-
lustrated in Fig. 1.

2.4. Speech parameter generation

Although the exemplar sequence is obtained using Viterbi
search, we can not directly pass the exemplar sequence to the
synthesis filter to reconstruct the speech signal, because there
are overlapping frames between consecutive exemplars. The
overlapping frames contain temporal information that is bene-
ficial for a smooth signal re-construction. To take advantage
of such temporal information, we introduce a weight for each
frame in an exemplar, which forms a temporal window.

a = [p, p− 1, ..., 0, ..., p− 1, p], (5)

w = exp(−λ|a|), (6)

where λ is a scalar value to control the shape of the temporal
window. We normalize the weight vector w to make sure the
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Figure 1: Illustration of searching for the optimal exemplar
sequence. In the figure, dashed line (connecting X(t) and

Y
′(t)
k ) represents target cost and solid line (connecting Y

′(t)
k

and Y
′(t+1)
j ) represents concatenation cost.

elements sum to 1. The converted speech parameters are gener-
ated as follows:

˜y(t) =

q∑
i=1

Ỹ(t−p+i−1)(q − i+ 1)×w(q − i+ 1) (7)

where Ỹ(t−p+i−1)(q−i+1) is the (q−i+1)-th column vector

of Ỹ(t−p+i−1), and w(q− i+1) is the (q− i+1)-th element
of w.
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Figure 2: The temporal window with different λ

Fig. 2 shows the shape of the temporal window for differ-
ent values of λ. As we increase λ, the contribution of the cen-
ter frame to the converted speech parameter increases as well.
While choosing large enough λ is similar as choosing only the
center frame as the converted speech parameter. Conversely, de-
creasing λ means considering more temporal information, and
λ = 0.0 corresponds to merely averaging all the overlapped
frames.

If we set the center element of w to one and the rest ele-
ments to zero, in other words, only the center frame in an exem-
plar is used as the converted speech parameter, this will reduce
the method to a scheme which does not take into consideration
of temporal information constraint in the synthesis and only in
finding the optimal sequence of exemplars.

3. Experiments
The CMU ARCTIC corpus is adopted for the experiments. Two
male (BDL, RMS) and two female (SLT, CLB) speakers are se-
lected. 200 utterances of each speaker are used as training data,
and 20 utterances of each speaker are used as testing data. We
conduct both inter-gender and intra-gender conversions: BDL

to RMS (M2M), BDL to SLT (M2F), SLT to CLB (F2F) and
SLT to RMS (F2M).

The speech signal, sampled at 16 kHz, is analyzed using
STRAIGHT [18] with 5ms shift. 24-order mel-cepstral coef-
ficients (MCC), excluding the 0th energy coefficient, are ex-
tracted. The MCCs are converted by using each of the con-
version method detailed in the following paragraph, while log-
scale F0 is converted by equalizing the means and variances of
the source and the target speakers.

In this work, we compare the following four approaches:

a) Joint density Gaussian mixture model (JD-GMM): This
is the mainstream voice conversion method [2, 3]. We
adopt 64 full covariance Gaussian components to model
the joint distribution of source and target speech. This is
our first baseline method.

b) Unit selection (US) [13, 14]: This is the conventional
unit selection approach, using only one frame to calcu-
late both the target and the concatenation costs. This is
our second baseline method.

c) Partial exemplar-based unit selection (PEUS): The
method follows the steps as described in section 2.1, 2.2
and 2.3. While in the generation step, only the center
frame in an exemplar is chosen to generate the converted
speech parameters. It is an intermediate method towards
our proposed method.

d) Exemplar-based unit selection (EUS): This method is the
proposed method as detailed in previous section.

3.1. Objective evaluation

To evaluate the performance objectively, we adopt mel-cepstral
distortion [2, 3] as an objective evaluation measure:

MCD =
10

ln 10

√
2Σ24

i=0(mcti −mcci )
2, (8)

where mct and mcc are the target and converted MCCs, respec-
tively. The lower of the MCD value, the smaller distortion.

We first study the effects of the window size of an exemplar
(q) and the number of shortlisted candidates (K). Here we only
use the center frame in the exemplar without any overlapping
constraints to generate converted speech.
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Figure 3: Spectral distortion as a function of window size of an
exemplar and number of shortlist candidates in terms of spectral
distortion (dB).

Fig. 3 indicates that window size of q = 9 can give low-
est distortion consistently. Distortion decreases with increased
shortlist size as expected, but comes with an added computa-
tional overhead. Since there is not much change beyond 200
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Figure 4: Distortion as a function of λ.

candidates, we fix K = 200 and q = 9 for the rest of the exper-
iments.

We now turn our attention to the temporal window. As
shown in Eq. (6), we use λ to control the shape of the temporal
window for an exemplar. The distortion with different values of
λ are shown in Fig. 4. When λ ≥ 0.4, the distortion increases.
When λ < 0.2, the distortion also increases. Therefore, we
empirically fix λ = 0.2 for the rest of the experiments.

Table 1: Spectral distortion comparison of the baselines and the
proposed exemplar-based unit selection (EUS) method

M2M M2F F2F F2M Average

JD-GMM 5.28 5.60 4.82 5.34 5.26
US 6.25 6.69 5.62 6.39 6.24

PEUS 5.57 5.90 5.04 5.52 5.51
EUS 5.26 5.57 4.77 5.21 5.20

Comparison of the proposed method with the two baseline
methods and PEUS method is given in Table 1. Comparing with
US and PEUS, PEUS gives lower spectral distortion and we can
see the advantage of using multiple frames exemplar to do pre-
selection and to calculate the target cost and concatenation cost
for searching the optimal frame sequence. The benefit of using a
temporal window to include temporal information constraint in
the converted speech parameter generation can be seen by com-
paring the results of PEUS and EUS. The difference of PEUS
and EUS methods is that EUS employs a temporal window to
deal with overlapping frames between consecutive exemplars
while PEUS does not. JD-GMM method also gives higher spec-
tral distortion than the proposed EUS method for both male and
female source speakers. In general, the proposed method (EUS)
has lower spectral distortion than both JD-GMM and US meth-
ods. We note again that the lower spectral distortion, the better
performance.

3.2. Subjective evaluation

To assess the overall quality of converted speech, we conducted
subjective evaluation using mean opinion score (MOS). We
compare the proposed EUS method with the two baseline meth-
ods: JD-GMM and US. As PEUS is an intermediate method
towards EUS, it is excluded in the subjective evaluation. We
randomly select 5 sentences from JD-GMM conversion, US
conversion and EUS conversion speech of four conversion di-
rections (M2M, M2F, F2F and F2M). As a result, there are 20
sentences for each method and 60 sentences in the whole test.
These speech samples were presented to 9 subjects. The sub-
jects were asked to listen to each speech sample and then rate
the speech quality based on a five point scale: 5 for perfect, 4

0

0.5

1

1.5

2

2.5

3

3.5

M
O

S

EUS
GMM
US

(a) Overall quality results

0

10

20

30

40

50

60

70

P
re

fe
re

nc
e 

sc
or

e 
(%

)

EUS
GMM

(b) Similarity results

Figure 5: Subjective evaluation results with 95% confidence in-
terval

for good, 3 for fair, 2 for poor, and 1 for bad. The MOS is
obtained by average all the scores rated by all the subjects. The
MOS results are presented in Fig. 5(a). We can see that our
proposed method outperforms both JD-GMM and conventional
unit selection method in terms of perceptual quality. The pro-
posed temporal window in EUS method is able to smooth the
converted trajectory, while the US method without such tempo-
ral window can not.

An AB preference test was also conducted to access the
similarity of the converted speech. As the bad quality of US
converted speech affect the similarity test, we only compare the
proposed EUS method with baseline JD-GMM method. 9 sub-
jects were asked to listen to a reference target speech and one
pair converted speech (A and B), and decide to choose which
speech sample, A or B, is more similar to the reference target
speech. The preference results are shown in Fig. 5(b). It clearly
shows that the proposed EUS method can generate speech to
sound more similar to the target speaker than the conventional
JD-GMM method. We note that EUS method directly select tar-
get frames to compose the converted speech. Thus, it is easy
to understand that it generates speech more similar to target
speaker than JD-GMM based conversion does, the latter em-
ploys a transformation function to transform the source speech
to the target space.

4. Conclusions
In this paper, to avoid the frame-by-frame independence as-
sumption in most the voice conversion methods, we proposed
exemplar-based unit selection method to model the temporal
dependency and take into consideration of temporal informa-
tion constraint in both the process of finding the optimal exem-
plar sequence and generation of converted speech parameters.
By using multi-frame exemplars, the proposed method avoids
the discontinuity at the concatenation point in conventional unit
selection approaches. In addition, our method also avoids the
over-smoothing problem in the popular JD-GMM approach be-
cause the target speaker’s training data is directly used to gen-
erate the converted speech. Generally, the proposed method has
lower spectral distortion, and also generates perceptually better
speech than baseline methods.
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