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Abstract

Any biometric recognizer is vulnerable to direct spoofing at-
tacks and automatic speaker verification (ASV) is no exception;
replay, synthesis and conversion attacks all provoke false ac-
ceptances unless countermeasures are used. We focus on voice
conversion (VC) attacks. Most existing countermeasures use
full knowledge of a particular VC system to detect spoofing.
We study a potentially more universal approach involving gen-
erative modeling perspective. Specifically, we adopt standard i-
vector representation and probabilistic linear discriminant anal-
ysis (PLDA) back-end for joint operation of spoofing attack
detector and ASV system. As a proof of concept, we study
a vocoder-mismatched ASV and VC attack detection approach
on the NIST 2006 speaker recognition evaluation corpus. We
report stand-alone accuracy of both the ASV and countermea-
sure systems as well as their combination using score fusion and
joint approach. The method holds promise.

Index Terms: speaker recognition, spoofing, voice conversion
attack, i-vector, joint verification and anti-spoofing

1. Introduction
Biometric person authentication [1] plays an increasingly im-
portant role in border control, crime prevention and personal
data security. While the main biometric techniques (e.g. face,
voice, fingerprints) can already handle noisy and mismatched
sample comparisons robustly, recognizer vulnerability under
malicious attacks remains a serious concern. Indeed, any bio-
metric system has several weak links [2], the most accessi-
ble ones being sensor- and transmission-level attacks. We fo-
cus on automatic speaker verification that can be spoofed by
replay, impersonation, speech synthesis and voice conversion
techniques (refer to [3] for an overview). Due to its flexibility
in direct transformation of speaker characteristics, we focus on
voice conversion (VC) [4] attacks.

Several independent studies confirm that VC attacks pose a
serious threat to any speaker verification system. Early studies
[5, 6, 7, 8] showed this to be the case regarding traditional Gaus-
sian mixture model (GMM) recognizers. Recent studies involv-
ing both text-independent [9, 10] and text-dependent [11] rec-
ognizers highlight that the problem persists even with modern
recognizers, including i-vectors [12]. Interestingly, the quality
of the converted voice does not have to be particularly high;
even artificial signal attacks [13, 14] involving unintelligible
speech can spoof a recognizer. Even if the modern recogniz-
ers might provide increased protection [9, 14], their false ac-
ceptance typically increases by considerable amount. This is
easy to understand, remembering that speaker verification and
VC methods use matched front- and back-end models, namely,
Mel-frequency cepstral features and GMMs.

While the above studies confirm the destructive nature of
VC spoofing, much less work exists in designing countermea-
sures to safeguard recognizers from attacks. We identify two
subproblems in designing such countermeasures. Firstly, spoof-
ing attacks should be detected; while a speaker verification sys-
tem produces a speaker similarity score, a VC attack detector
should assess whether the test utterance involves an intentional
speaker identity transformation or not. Secondly, we must inte-
grate the speaker verification and countermeasure opinions co-
herently — which is usually done by a simple cascade or score
fusion. Regarding attack detection, most of the current solu-
tions utilize prior knowledge about the VC technique or the type
of artefact traces it leaves to converted speech. To exemplify,
[10, 15, 16] uses phase information known to be absent in the
used voice coder technique while [17, 18] uses knowledge that
dynamic variation in synthetic speech is smaller compared to
natural speech. Such countermeasures are necessarily designed
to detect a particular attack which, however, can never be ex-
actly known in advance. Generalized countermeasures, a recent
direction in biometric anti-spoofing research, aim at detecting
various types of attacks (e.g. synthesis, replay or VC attacks),
for instance by modeling only in-class data or using enhanced
features such cepstrogram texture [19].

We study generalized countermeasures, too, but approach
the problem from a generative probabilistic modeling perspec-
tive. More specifically, for the first time, this work proposes the
use of standard i-vector utterance representation [12] and prob-
abilistic linear discriminant analysis (PLDA) back-end [20] for
spoofing detection. Given the excellent performance of i-vector
approach across various speech problems, it is natural to study
its usefulness for spoofing attack detection. The main benefit of
doing so is that we can treat speaker verification and spoofing
detection problems similarly, leading to simple joint modeling
approach (Fig. 1(a)), rather than subsystem fusion (Fig. 1(b))
lacking correlation modeling across the main biometric modal-
ity and a spoofing detector.
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Figure 1: Traditional way to protect automatic speaker verification
(ASV) from spoofing attacks is to independently develop ASV and
countermeasure (CM) subsystems that are post-combined with score-
level fusion (b). Our core contribution is a joint approach that uses
same i-vectors for both speaker verification and voice conversion attack
detection. sx means a score produced by system x.
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Table 1: Statistics of the spoofing dataset used in this work. MCEP
and LPC refer to Mel cepstral based VC and linear predictive coding
based VC, respectively.

Male Female Total

Target speakers 241 342 583
Genuine trials 1,614 2,332 3,946
Impostor trials 1,132 1,615 2,747
MCEP impostor trials 1,132 1,615 2,747
LPC impostor trials 1,132 1,615 2,747

2. Database and Protocols
Dataset. In this work, we employ the spoofing attack dataset
designed in [9, 10]. It is based on the NIST SRE06 corpus,
which is a widely used standard benchmark database for
text-independent speaker verification. There are 9,440 gender-
matched trials for evaluation, consisting of 3,946 genuine trials,
2,747 impostor trials, and 2,747 impostor trials after VC. The
voice conversion is implemented by the popular joint-density
Gaussian mixture model (JD-GMM) based method [21].
More details of the dataset designing process can be found
in [9, 10]. However, unlike previous work where experiments
were carried out on only one Mel-cepstral features for VC
(MCEP), our study additionally investigates linear predic-
tive coding based features for VC (LPC). The repartition of
trials between female and male speakers are reported in Table 1.

Conditions. To study the generalization ability of a coun-
termeasure we define “matched” and “mismatched” conditions:

- Matched spoof condition: This is the most studied case in
the literature. It assumes that the user has prior knowledge
about the vocoding technique of the VC attacks. For exam-
ple, if the test set contains trials with MCEP-coded VC, the
user may use MCEP-coded synthetic speech while designing
his countermeasure. We name this sub-condition “MCEP-
MCEP”. Similarly, “LPC-LPC” sub-condition is defined.

- Mismatched spoof condition: This was usually neglected in
previous work. It assumes that the system designer is pre-
pared to a specific type of spoofing, but the attacks are from
a different type. In this work, the two related sub-conditions
are named “MCEP-LPC” and “LPC-MCEP”. For example,
MCEP-LPC means that the system is trained to face VC at-
tacks of MCEP, but in fact, the attacks are LPC-coded VC.

In practice, we use the SPTK toolkit1 to perform MCEP
and LPC analysis and synthesis. Similar to [15, 18], a
copy-synthesis approach is employed to generate the MCEP-
and LPC-coded speech for training the spoofing detector
without undergoing any specific VC technique. That is, we
first decompose a speech signal into its Mel-cepstral (or LPC)
and fundamental frequency (F0) parameters and re-synthesize
an approximated signal directly from these parameters. The
reconstructed replica, in general, will be close to the original
signal but not exactly the same due to the lossy analysis-
synthesis model; perceptually, a buzzy or muffled voice quality
can be observed. Such copy-synthesis is a straightforward way
to generate training samples for spoofing detection without,
however, involving the computationally demanding stochastic
VC part, which requires selection of source-target speaker pairs
and parallel training set. The copy-synthesis speech of SRE04,
SRE05 and SRE06 is generated for both MCEP and LPC.

1http://sp-tk.sourceforge.net/

Evaluation Criteria. The evaluation of the ASV system is done
in terms of both LICIT and SPOOF protocols [22]. The LICIT
protocol, involving zero-effort impostors, is the typical evalua-
tion protocol used in verification scenarios, whereas the SPOOF
protocol is used to evaluate system performance when spoofing
attacks are present. The metrics used for the LICIT protocol
are equal error rate (EER) and minimum decision cost function
(mDCF) [23]. The metric used for SPOOF protocol is spoof-
ing false acceptance rate SFAR [22] that corresponds to the
threshold fixed by the EER on the LICIT protocol. We also plot
the detection error trade-off (DET) curves for both protocols.
To independently evaluate the countermeasure performance we
use accuracy, Acc = (TP+TN)/(P+N), where TP is the
number of samples correctly classified as positive (i.e. natu-
ral speech), TN the number of samples correctly classified as
negative (i.e. spoofing attacks), P the total number of positive
samples and N the total number of negative samples.

3. I-Vector Extraction
This section briefly describes the complete i-vector [12] extrac-
tion and preprocessing chain used in our work. First, a sim-
ple energy-based voice activity detection (VAD) is performed to
discard the non-speech parts. Second, 19 MFCC and log energy
features together with their first- and second-order derivatives
are computed over 20 ms Hamming windowed frames every 10
ms. Finally, cepstral mean and variance normalization (CMVN)
is applied on the resulting 60-dimensional feature vectors.

The total variability paradigm is built upon Gaussian Mix-
ture Model (GMM) framework [24] and its aim is to extract a
low-dimensional vectors, so-called i-vectors, that are a compact
version of GMM supervectors. Section 5 details the specific
parameter values used.

To achieve a higher recognition accuracy we map i-vectors
into a more adequate space with the following preprocessing
algorithms: (1) radial gaussianization [25], which consists of
whitening and length-normalization, to reduce non-Gaussian ef-
fects as well as mismatch between training and testing subsets,
(2) linear discriminant analysis (LDA) to learn a linear projec-
tion that maximizes between-class variations while minimising
within-class variations, (3) within-class covariance normaliza-
tion (WCCN) [12] that normalizes the within-class covariance
matrix of training i-vectors.

4. Anti-spoofing and Speaker Verification
4.1. Back-end Speaker Verification

For back-end modeling and scoring we use probabilistic linear
discriminant analysis (PLDA) [20, 26]. PLDA is a probabilistic
framework that incorporates both between- and within-speaker
variability, which allows to perform session compensation and
to generate log-likelihood ratio (LLR) scores. It assumes that
the j-th i-vector φi,j of a client i is generated as follows:

φi,j = Vyi +Uxi,j + εi,j , (1)

where V and U are the subspaces describing the between-class
and within-class variations respectively. Here yi and xi,j are
the associated latent variables, which have a standard normal
distribution, εi,j represents the residual noise and follow a nor-
mal distribution N (0,Σ) with a diagonal covariance matrix.
To learn the parameters θ = {V,U,Σ} of this model we use a
scalable EM-algorithm [26] over a training set of i-vectors.

Once the model has been trained, we are able to perform a
speaker verification task: for the pair of two i-vectors (φt,φi),
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where φt is a test i-vector, and φi is an enrolment i-vector of
the i-th client, we compute the following LLR score:

ssv(φt,φi) = log
p(φt,φi|θ)

p(φt|θ)p(φi|θ) . (2)

Here, p(φt,φi|θ) is the probability that the i-vectors φt and
φi share the same latent identity variable yi and, hence, are
coming from the same client, whereas p(φt|θ)p(φi|θ) is the
probability that the i-vectors φt and φi have different latent
identity variables yt and yi and, therefore, are from different
clients. The higher the LLR score the more likely that both i-
vectors belong to the same speaker.

4.2. Back-end Spoofing Detection

Spoofing detection is a binary classification task that aims to
isolate prepared attacks from natural zero-effort (both genuine
and impostor) trials. When dealing with VC attacks, one may
look at the problem from a low-level signal processing point of
view and solve it by using prior knowledge about the VC tech-
nique (e.g. absence of the phase modeling). This was addressed
in existing work such as [15, 17].

In this study we present a first attempt to perform the VC
detection task applied directly to the i-vectors. We evaluate
three different classification methods: fast cosine scoring [12]
on average i-vectors, PLDA scoring [20, 26] and support vector
machines (SVM) [27] with linear kernel.

4.3. Joint Anti-spoofing and Speaker Verification

Score fusion combines scores from multiple systems. We ap-
ply it to ASV and Anti-spoofing systems. One of the most
powerful score fusion techniques is logistic regression, which
has been successfully employed for combining heterogeneous
speaker classifiers [28, 29].

Let a test i-vector φt be processed by both ASV and coun-
termeasure systems. Each system produces an output score,
sasv(φt,φi) and scm(φt) for speaker verification and anti-
spoofing (countermeasure) respectively. The final fused score
is expressed by the logistic function:

sf (φt,φi|β) = g (β0 + β1sasv(φt,φi) + β2scm(φt)), (3)

where g(x) = 1/(1 + exp(−x)) is a logistic sigmoid function
and β = [β0, β1, β2] are the regression coefficients, that are
computed by estimating the maximum likelihood of the logistic
regression model on the scores of the LICIT set. The optimiza-
tion is done using the conjugate-gradient algorithm [30].

Integrated PLDA system has the same structure as the
baseline PLDA speaker verification system, but uses an
extended training set. We assume the following hypothesis:
under spoofing conditions, a PLDA model can better shape the
intra-speaker and between-speakers variability if it is trained to
discriminate, not only between multiple speakers like a baseline
PLDA system does, but also between those speakers and all
possible simulated versions of them. In this paper we study two
types of voice coded speech: MCEP and LPC. We always use
one type for the training and keep the other for testing to see
how well the system is able to generalize. We apply the same
approach to train a countermeasure (CM) system.

5. Experimental Results
Experimental Setup. The full i-vector extraction is done using
Spear [31], an open-source speaker recognition toolbox based

on Bob [32]. The UBM model is composed of 512 Gaussian
components and is trained on NIST SRE04, SRE05, SRE06,
Fisher and Switchboard datasets. For i-vectors, the rank of the
total variability matrix is set to 400. For LDA, the projection
matrix A is limited to 200 dimensions. For PLDA, the ranks of
the subspaces V and U are set to 100 and 200, respectively. To
train T, A, V, U and W (for WCCN) of the baseline system
we use the data from SRE04, SRE05 and SRE06 (from which
the test data used in our experiments were excluded).

For the matched and mismatched spoof conditions, the
additional i-vectors are extracted from the synthetic MCEP or
LPC coded versions of the training utterances using the same T
matrix estimated for the baseline. Those i-vectors are then used
to train the new whitening, LDA, WCCN and PLDA subspaces.

Results. On the LICIT protocol, the baseline PLDA sys-
tem achieves an EER of 1.75% and a mDCF of 0.133 on
pooled female and male trials, better than the baseline system
presented in [10] (EER=2.99%, mDCF=0.154). On the
SPOOF protocol, our baseline system obtains SFAR of 6.04%
on the MCEP-coded speech trials (female + male), whereas an
SFAR of 19.29% on the same trials is reported in [10]. The
difference in performance between the two systems is possibly
due to the additional use of LDA and WCCN, and also to a
different implementation of acoustic feature extraction, voice
activity detection, i-vector extraction and PLDA.

Table 3 reports the results on male trials of the cosine,
PLDA and SVM scoring techniques on the anti-spoofing task,
and for both matched (MCEP-MCEP, LPC-LPC) and mis-
matched (MCEP-LPC, LPC-MCEP) conditions. These results
show no significant difference between the three methods. In
the remainder of the experiments, we use the SVM classifier.

Fig. 2 reports the results on male and female trials of the
SVM anti-spoofing classifier, and for both matched and mis-
matched conditions. It clearly shows that mismatch between
training and testing conditions can lead to poor performance
with accuracies bit higher than the chance level for LPC-MCEP
condition (53.6% for male and 53.1% for female).

Table 2 reports the full results of the PLDA baseline, and
both joint anti-spoofing and verification systems: score fusion,
and integrated PLDA system. For the joint systems, the re-
sults when training with either MCEP and LPC coded speech
are shown. To make the task realistic and more challenging,
none of the spoofing trials was used to train score fusion. On
the one hand, results indicate that score fusion can lead in some
cases to good performance such as the training with LPC-coded
speech (Row r3 in the table). However, this method does not
generalize well: all the underlined SFAR values correspond to
errors higher than the ones of the baseline. On the other hand,
the integrated system is able to generalize fairly good. In all
cases (Rows r4-r5 in the table), its SFARs are lower than the
SFARs of the baseline. These results are confirmed in Fig. 3.
This figure depicts the DET curves of female trials of both base-
line and integrated system for which additional MCEP-coded
speech are used during the training set. Further, both Table 2
and Fig. 3 show that error rates (EER and mDCF) of the in-
tegrated system are comparable and sometimes better than the
baseline on LICIT protocol. This is not often the case in ex-
isting anti-spoofing approaches where the typical behavior is a
trade-off between EER (on LICIT protocol) and SFAR [22].

Fig. 4 shows the score distribution of both baseline and in-
tegrated system on male trials. It indicates that the scores of the
spoofing attacks are generally shifted to the left with the inte-
grated system, leading to increased separation between genuine
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Table 2: Performance summary on SRE06 speech conversion database. This table reports the EER (%) and minDCF on LICIT protocol, the SFAR (%)
on MCEP voice converted trials, the SFAR (%) on LPC voice converted trials and the SFAR (%) of pooled MCEP and LPC voice converted trials.

Female Male

System Additional
training set

LICIT
protocol

SPOOF protocol LICIT
protocol

SPOOF protocol
MCEP
SFAR

LPC
SFAR

pooled
SFAR

MCEP
SFAR

LPC
SFAR

pooled
SFAREER mDCF EER mDCF

PLDA Baseline - 1.76 0.133 6.13 10.84 8.48 1.60 0.166 9.19 15.28 12.24 r1

Score
Fusion

MCEP 1.62 0.136 7.12 13.13 10.12 1.68 0.167 11.40 20.05 15.72 r2

LPC 1.73 0.132 4.89 9.35 7.12 1.49 0.163 2.83 7.60 5.21 r3

Integrated MCEP 1.24 0.112 3.90 5.82 4.86 1.78 0.144 4.42 6.01 5.21 r4

PLDA system LPC 1.42 0.120 5.94 2.97 4.46 1.65 0.177 8.57 2.03 5.30 r5

and impostors trials.

Table 3: Comparison of anti-spoofing classification methods. This
table shows the detection accuracy (%) on male trials for cosine, PLDA,
and SVM methods.

Cosine PLDA SVM

MCEP-MCEP 92.2 91.8 91.7
LPC-LPC 99.3 99.4 99.4

MCEP-LPC 98.3 98.7 98.3
LPC-MCEP 53.0 53.1 53.6
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Figure 2: Spoofing detection accuracy on matched and mismatched
conditions. This plot shows the accuracies (%) on spoofing trials for
female and male speakers.

6. Conclusions
In this paper we introduce the i-vector paradigm to the task of
spoofing detection. Further we present an integrated PLDA sys-
tem for a joint operation of anti-spoofing and speaker verifica-
tion. This system was found to generalize across two types of
voice conversion attacks. Our experimental results suggest that
the integrated system outperforms not only the baseline system,
but also the score-fusion based approach, especially on the mis-
matched conditions between training and test.

Even if we addressed antispoofing in the face of mis-
matched vocoding techniques, namely MCEP and LPC, these
are similar techniques originating from the same software pack-
age, SPTK. Thus, further experiments involving more severely
mismatched spoofing techniques is required to claim truly gen-
eralized countermeasures. Nevertheless, we believe that our
promising pilot experiments here are a possible candidate as a
meaningful baseline system for voice anti-spoofing.
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Figure 3: DET curves for female Trials. Results are for both Baseline
system and Integrated system trained by MCEP-coded speech, and on
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Figure 4: Score distribution for male trials. This figure shows the
score distribution for both baseline and Integrated system trained on
LPC-coded speech.
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