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Abstract
The performance of biometric systems based on automatic
speaker recognition technology is severely degraded due to
spoofing attacks with synthetic speech generated using different
voice conversion (VC) and speech synthesis (SS) techniques.
Various countermeasures are proposed to detect this type of at-
tack, and in this context, choosing an appropriate feature extrac-
tion technique for capturing relevant information from speech
is an important issue. This paper presents a concise experi-
mental review of different features for synthetic speech detec-
tion task. A wide variety of features considered in this study
include previously investigated features as well as some other
potentially useful features for characterizing real and synthetic
speech. The experiments are conducted on recently released
ASVspoof 2015 corpus containing speech data from a large
number of VC and SS technique. Comparative results using two
different classifiers indicate that features representing spectral
information in high-frequency region, dynamic information of
speech, and detailed information related to subband characteris-
tics are considerably more useful in detecting synthetic speech.
Index Terms: anti-spoofing, ASVspoof 2015, feature extrac-
tion, countermeasures

1. Introduction
Synthetic speech signal created using different voice conversion
(VC) and speech synthesis (SS) techniques can be used to spoof
biometric systems based on automatic speaker recognition tech-
nology [1, 2, 3, 4]. Over the past few years, considerable re-
search effort has been devoted to protect the speaker recogni-
tion systems by developing various countermeasures [3]. Coun-
termeasures consists of two parts: front-end for parameteriz-
ing the speech signal and back-end to determine whether it
is a natural or synthetic speech. The front-end or feature ex-
traction unit should capture relevant information from speech
signal that reflects artifacts related to conversion or synthesis
process. The other part includes a modeling technique to ef-
fectively represent those speech features. A number of tech-
niques have been proposed for both parts to improve the spoof-
ing detection performance. For example, mel-frequency cep-
stral coefficients (MFCCs), cosine phase, and modified group
delay features were investigated in [5] for VC-based synthetic
speech detection using a Gaussian mixture model (GMM) as
back-end. Phase information obtained from relative phase shift
(RPS) is also used in SS-based synthetic speech detection with
high recognition accuracy as compared to MFCCs [6, 7]. The
authors of [8], in turn, proposed to use one-class approach us-
ing local binary pattern [9] of linear frequency cepstral coef-
ficients (LFCCs) followed by support vector machine (SVM)
for voice conversion, speech synthesis and artificial signal de-
tection [8]. A good overview of various countermeasures tech-
niques is given in [3].

But most of the prior investigations are restricted to a cer-
tain type of spoofing technique, and only a limited number of
countermeasures are studied. It is also not possible to compare
the reported results across different studies since the experi-
ments are conducted on different databases with varying config-
uration of features, classifiers and evaluation metrics. As a re-
sult for an end-user (e.g. administrator of an ASV system), it is
difficult to choose one technique over another for his/her appli-
cations. A systematic benchmarking of the different proposed
techniques in presence of various spoofing attacks is highly de-
manding. Further, it is crucial to know which kind of technique
is more useful for a certain kind of spoofing attack.

In this paper, we experimentally compare 19 speech front-
end features for spoofing attack detection, and compare their
relative performances. We not only evaluate the performance of
previously investigated features for spoofing detection, but in-
clude other features also which are successfully used in speaker
verification task and have a potential for robust detection of
spoofing attacks. The performances are separately evaluated
with Gaussian mixture model (GMM) and support vector ma-
chine (SVM) based classifiers that are successfully employed
in detecting synthetic speech. We report our results on the
ASVspoof 2015 corpus which is provided with First Auto-
matic Speaker Verification Spoofing and Countermeasure Chal-
lenge [10]. As far as we are aware, our study is the most exten-
sive comparative evaluation of features in spoofing detection.

2. Feature Extraction Techniques
Here we describe the compared features briefly. We divide all
the methods into three categories as shown in Table 1: short-
term power spectrum features, short-term phase features, and
feature involving long-term processing steps.

2.1. Short-Term Power Spectrum Features

Log-spectrum: The logarithm of power spectrum contains
useful information related to the speech signal [16]. We have
used raw log-spectrum (Spec) computed directly from speech
frames as features.

Cepstrum: Cepstral coefficients (Cep) are computed from
the power spectrum by applying discrete cosine transform
(DCT) [17]. Usually, only the lower-order coefficients are re-
tained in speech processing front-ends. Here, however, we re-
tain all the coefficients since especially the higher-order coeffi-
cients could be useful for characterizing synthetic speech [18].

Δ-Cepstrum andΔ2-Cepstrum: Traditional dynamic co-
efficients, i.e. deltas and double-deltas [19], are useful for
speech and speaker recognition. Most of the synthetic speech
generation techniques do not fully model temporal characteris-
tics of speech. Therefore, intuitively deltas and double-deltas
could be useful in detecting synthetic speech.

Filter bank based cepstral features: The main issue with
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Table 1: Summary of the evaluated features evaluated in this paper with the values of required control parameters/implementation
details and references related to their earlier studies in spoofing detection.

Type Name (dim.) Configuration Parameter(s)/Implementation Details Used for Spoofing Detection in

Spec/Cep (257) Number of DFT bins = 512 —
Short-term Δ-Spec/Δ-Cep (257) Computed with three frames using differentiation —
power Δ

2-Spec/Δ2-Cep (257) Computed with three frames using differentiation —
spectrum LFCC/MFCC (60) No. of filter=20 [4, 11, 12]
features RFCC/IMFCC (60) No. of filter=20 —

LPCC (60) LP Order=20 [13]
PLPCC (63) No. of filters in Bark scale=21 —
SSFC (60) No. of Subbands=20, rectangular window —

SCFC/SCMC (60) No. of Subbands=20, rectangular window —

MGDF (60) α = 0.4, γ = 1.2, First 20 coefficients are retained after DCT [5]
Short-term APGDF (60) LP Order=20 —
phase features CosPhase (60) First 20 coefficients are retained after DCT [5]

RPS (60) RPS computed with COVAREP tool [14], 20 filters in mel filter bank [6, 7]

Spectral SDC (56) From MFCC withN=7, d=1, P=3,K=7 —
features Mod-Spec (60) From 20 mel filter log-energies using window of 510 ms with shift of 10 ms [15]

with long-term FDLP (60) FDLP package1 —
processing MHEC (60) No. of filters in Gammatone filter bank=20, fc of LPF=30Hz —
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Figure 1: Figure showing filter bank used in the computation of
(a) RFCC, (b) LFCC, (c) MFCC, and (d) IMFCC.

Spec and Cep features is high their dimensionality. This draw-
back is addressed by a filter bank. The power spectrum is first
integrated using overlapping band-pass filters and logarithmic
compression followed by DCT is performed to produce the cep-
stral coefficients. We consider four types of filter bank cepstral
features as illustrated in Fig 1. In rectangular filter cepstral
coefficients (RFCCs), integration is performed using a rectan-
gular window [20] and the filters spaced in linear scale. Lin-
ear frequency cepstral coefficients (LFCCs) are extracted the
same way but the filters are triangular in shape [8]. In MFCC,
the filters are placed in mel scale, having denser spacing in the
low-frequency region [21]. Finally, inverted mel frequency cep-
stral coefficient (IMFCC) uses filters that are linearly spaced on
“inverted-mel” scale, giving higher emphasis to the high fre-
quency region [22].

All-polemodeling based cepstral features: Cepstral coef-
ficients are also derived from all-pole modeling representation
of signal where linear prediction coefficients (LPC) are con-
verted to linear prediction cepstral coefficients (LPCC) [23].
Another all-pole representation of speech called perceptual lin-
ear prediction cepstral coefficients (PLPCC) is also computed
by first performing a series of perceptual processing prior to LP

analysis [24].

Spectral flux based feature: Spectral flux measures the
frame-by-frame change in the power spectrum [25]. It is com-
puted as the Euclidean distance between normalized power
spectrum of consecutive frames. We investigate a new feature
that we term subband spectral flux coefficient (SSFC). First,
we compute the subband spectral flux (SSF) of the i-th sub-
band of the t-th speech frame as, SSFi

t =
∑M/2+1

k=1
‖S̄t(k) −

S̄t−1(k)‖
2wi(k), where S̄t(k) is the magnitude of k-th fre-

quency component of normalized power spectrum of t-th frame,
wi(k) is the spectral window function to obtain the frequency
response of the i-th subband, and M is the number of bins in
discrete Fourier transform (DFT). SSFCs are then obtained by
performing logarithm and DCT on SSFs.

Subband spectral centroid based feature: Spec-
tral subband centroids represent centroid frequencies of
subbands, and they have properties similar to formant
frequencies [26]. In [27], spectral centroid magnitude
(SCM) is investigated along with subband centroid fre-
quency (SCF) for speaker recognition. For the i-th subband
of the t-th speech frame, they are defined as, SCFi

t =
∑M/2+1

k=1
f(k)St(k)wi(k)/

∑M/2+1

k=1
St(k)wi(k) and

SCMi
t =

∑M/2+1

k=1
f(k)St(k)wi(k)/

∑M/2+1

k=1
f(k)wi(k),

where St(k) and f(k) represent the power spectrum magnitude
of t-th frame and normalized frequency (0 ≤ f(k) ≤ 1)
corresponding to k-th frequency component. Both SCF and
SCM contain complementary information related to subbands,
not captured in cepstral features. The finer details of speech
spectrum are not preserved in synthetic speech as VC and
SS techniques mostly focus on producing identical overall
envelope of the speech spectrum. Therefore, speech features
representing SCF and SCM could be useful in detecting syn-
thetic speech. We convert them to feature vectors following the
process described in [27]. SCFs are directly used to create SCF
coefficients (SCFCs) feature while log and DCT operations are
performed on SCM to get SCM coefficients (SCMCs).

1http://www.clsp.jhu.edu/˜sriram/research/
fdlp/feat_extract.tar.gz
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2.2. Short-Term Phase Features

Modified group delay function (MGDF):Modified group
delay function was proposed to represent the phase informa-
tion of a signal [28]. It is defined as, τt(k) = sgn ×∣
∣[XR(k)YR(k) +XI(k)YI(k)]/H(k)2γ

∣
∣α, where sgn is the

sign of XR(k)YR(k) +XI(k)YI(k), XR(k) and XI(k) repre-
sent real and imaginary part of DFT for a speech frame x(n)
of L samples (for n = 0, 1, 2, ..., L − 1), YR(k) and YI(k)
represent the real and the imaginary parts of DFT for nx(n),
H(k) is the speech spectrum after cepstral smoothing, while
α and γ are two control parameters. Cepstral like features are
formulated from MGDF by processing with logarithm followed
by DCT. This feature was used for detecting synthetic speech
in [5].

All-pole group delay function (APGDF): Recently, a
phase-based feature using all-pole modeling is investigated in
speaker recognition [29]. The advantage over MGDF is fewer
parameters: only the all-pole predictor order needs to be opti-
mized.

Cosine-phase function (CosPhase): Phase spectrum ob-
tained during short-term speech analysis is used for synthetic
speech detection [5]. Features are created from unwrapped
phase by cosine normalization followed by DCT.

Relative phase shift (RPS): In the context of harmonic
speech models, RPS describes the “phase shift”” of the
harmonic components with respect to the fundamental fre-
quency [30]. Features are computed from raw RPS by per-
forming phase-unwrapping and differentiation followed by mel-
scale integration and DCT. It was used in [6, 7] for detecting
synthetic speech.

2.3. Spectral Features with Long-term Processing

Modulation spectrum (ModSpec): Modulation spectrum
contains long-term temporal characteristics of speech sig-
nal [31]. It is computed by performing DFT in temporal domain
on each dimension of feature vector. Non-linear processing,
such as logarithmic compression on both the power spectrum,
i.e. short-term and modulation, are often used in computing
modulation spectrum based features [32]. In [15], modulation
spectrum fromMFCCs was used for synthetic speech detection,
where feature vector is obtained by performing principal com-
ponent analysis (PCA) on stacked modulation spectra.

Shifted delta coefficients (SDCs): SDC which also cap-
tures long-term speech information and was originally used for
language recognition [33]. It is computed by augmenting delta
coefficients of near-by frames. SDCs are specified by four pa-
rameters N , d, P , and k, where N is the number of cepstral
coefficients, d is the number of frames for delta computation, P
is the gap between the blocks of delta, and k is the number of
blocks.

Frequency domain linear prediction (FDLP): In FDLP,
LP analysis is performed in different subbands obtained by per-
forming DCT on speech signal. FDLP features were recently
studied in speaker recognition with promising results in both
clean and noisy conditions [34].

Mean Hilbert envelope coefficients (MHECs): In
MHEC, the speech signal is passed through a Gammatone filter
bank. Then Hilbert envelope is computed from each filter out-
put and they are processed using a low-pass filter for smoothing.
Finally, MHEC features are derived by dividing the subband
signals into sub-frames and computing the mean [35].

2http://www.spoofingchallenge.org/

3. Experimental Setup and Results
3.1. Database Description

The accuracy of different features for synthetic speech detection
is evaluated on ASVspoof 2015 corpus distributed with First
Automatic Speaker Verification Spoofing and Countermeasure
Challenge2. A detailed description about the challenge and the
corpus is available in [10]. The database has its own train-
ing segments from natural speech and synthetic speech. The
synthetic speech data contains speech signals from five types
of spoofing attacks (known attacks). The development section
includes trials from natural speech and trials from synthetic
speech of known attacks. On the other hand, the evaluation sec-
tion contains trials from some additional spoofing techniques
(unknown attacks) which are not included in training.

3.2. Classifier Description

In a different study with classifiers, we have shown that GMM-
based technique yields reasonably good accuracy in ASVspoof
2015 corpus [36]. So, we choose this classifier for bench-
marking of various features. We have also evaluated the per-
formance with recently proposed SVM-based approach for de-
tecting synthetic speech.

GMM-ML: Two separate GMMs are trained first us-
ing maximum-likelihood (ML) criteria from natural and syn-
thetic speech-data. Then likelihood of test-segment is com-
puted as, Λ(X) = log p(X|λn) − log p(X|λs), where X =
{x1,x2, ...,xT } represents the feature vectors of the test-
segment containing T frames while λn and λs are the GMMs
for natural and synthetic speech, respectively. We train GMMs
with 512 mixtures and 10 EM iterations.

LBP-SVM: In LBP-SVM, first a textrogram is computed
from feature-matrix using LBP analysis followed by one-
dimensional histogram computation as detailed in [8]. Since
seven out of ten spoofing techniques of ASVspoof 2015 are
based on VC, we consider two-class SVM as back-end which
gives best recognition accuracy for this type of spoofing at-
tack [8]. We use linear kernel SVM from LIBSVM3 package.

3.3. Performance Evaluation

Spoofing detection accuracy is measured by computing equal
error rate (EER) [10]. We use Bosaris4 toolkit to calculate
the EER using receiver operating characteristics convex hull
(ROCCH) method. Here, we report average EER by comput-
ing them separately for each spoofing technique.

3.4. Feature Extraction Parameters

Short-term features are extracted from speech frames with
frame size 20 ms and of overlap 50%. The main control pa-
rameters and other implementation details of feature extraction
techniques are given in Table 1. We have also included the
energy coefficients when applicable. For meaningful compar-
ison of performances, we choose the number of base coeffi-
cients such that the final feature dimensions, after addingΔ and
Δ2, are comparable as shown in the second column of Table 1.
However, for Spec and Cep, the dimensionality is considerably
high (257). Based on observations from preliminary experi-
ments, we have not applied any voice activity detector (VAD)
except for RPS as it requires only voiced frames [6].

3http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
4https://sites.google.com/site/

bosaristoolkit/
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Table 2: Comparative accuracy (Avg. EER in %) using Spec,
Cep, and RFCC features for static and dynamic coefficients on
development set using GMM-ML classifier.

Static Δ Δ
2 Static+ΔΔ

2
ΔΔ

2

Spec 0.24 0.11 0.07 N/A N/A
Cep 0.02 0.13 0.18 N/A N/A
RFCC 2.41 0.34 0.35 0.75 0.21

Table 3: Comparative accuracy (Avg. EER in %) of different
features on the development set for both the classifiers.

GMM-ML LBP-SVM
Feature Static Static+

ΔΔ
2 Static Static+

ΔΔ
2

ΔΔ
2

ΔΔ
2

RFCC 2.41 0.75 0.21 6.25 2.12 3.38
LFCC 2.46 0.66 0.12 5.05 1.56 2.37
MFCC 3.46 1.09 0.64 7.71 4.78 7.99
IMFCC 1.33 0.48 0.20 6.03 1.50 2.10
LPCC 2.44 0.68 0.14 5.44 2.47 3.94
PLPCC 2.95 1.61 1.51 9.09 5.48 8.07
SSFC 0.96 0.60 0.49 4.57 2.80 5.82
SCFC 1.77 0.25 0.05 23.43 1.87 1.91
SCMC 2.76 0.95 0.20 5.62 1.85 2.85

MGDF 4.71 2.24 2.69 7.15 3.81 7.41
APGDF 2.44 0.75 0.19 5.67 2.42 4.20
CosPhase 0.82 1.11 1.89 15.45 10.83 13.30
RPS 0.21 0.37 6.44 2.45 1.80 13.21

FDLP 5.71 2.18 1.99 12.17 6.50 9.44
MHEC 7.69 3.30 2.01 11.88 6.54 8.09
SDC-MFCC 4.37 - - - 7.06 -
ModSpec 4.41 - - - 5.92 -

Table 4: Comparative accuracy (Avg. EER in %) of different
features on the evaluation set for both the classifiers.

GMM-ML LBP-SVM
Known Unknown Known Unknown

MFCC (Static-ΔΔ
2) 0.83 5.17 4.35 17.18

RPS (Static) 0.10 10.51 1.66 20.04
RFCC (ΔΔ

2) 0.12 1.92 3.20 19.96
LFCC (ΔΔ

2) 0.11 1.67 2.13 19.45
MFCC (ΔΔ

2) 0.39 3.84 7.78 19.22
IMFCC (ΔΔ

2) 0.15 1.86 1.96 9.97
LPCC (ΔΔ

2) 0.11 2.31 3.54 13.90
SSFC (ΔΔ

2) 0.30 1.96 5.22 14.91
SCFC (ΔΔ

2) 0.07 8.84 1.81 17.54
SCMC (ΔΔ

2) 0.17 1.71 2.36 19.10
APGDF (ΔΔ

2) 0.16 2.34 3.74 13.10

3.5. Results

We first perform experiments on the development set for com-
paring the performance of the full spectrum (Spec and Cep) and
RFCC feature. From the results in Table 2, we find that Spec
and Cep lead to promising recognition accuracy can be obtained
by compromising computational cost. Importantly, the dynamic
coefficients of Spec and RFCC are more useful than static co-
efficients. This is reasonable since dynamic characteristics of
spectral content are not well-modeled in most VC and SS tech-
niques.

Motivated by this preliminary observations, we perform
further experiments for both back-end, separately for static,
dynamic, and combined coefficients with all the features de-

scribed in Section 2 (except for ModSpec and SDC which al-
ready contain contextual information in their design). The re-
sults are shown in Table 3. For both the short-term power spec-
trum features as well as features involving long-term processing
(i.e. FDLP and MHEC), it is clear that the dynamic coefficients
outperform the static coefficients in almost all cases. Regard-
ing the filter bank features, LFCC which uses triangular filter
for local integration of the power spectrum outperforms RFCC
where rectangular filter is used. Further, IMFCC, a feature set
which emphasizes high-frequency spectral information beats
MFCCs that emphasize the low-frequency region. Filter bank
features and LPCC, giving equal emphasis to all frequencies,
also outperform MFCCs and PLPCCs. Note that in PLPCC,
low-frequency region is given more importance, too. SSFCs
carry information related to spectral flux in different subbands
is also found useful in comparison to other spectral features.
Centroid frequency and magnitude features also perform well.
The overall best recognition accuracy on development set (EER
of 0.05%) is obtained with SCFC features and GMM-ML back-
end.

We also observe high recognition accuracy with short-term
phase based features. However, in contrast to the power spec-
trum features, dynamic coefficients are not always better than
their static counterpart. For instance, for RPS features with
GMM-ML back-end, EERs of static and dynamic coefficients
are 0.21% and 6.44%, respectively. Perhaps the dynamic coef-
ficients of phase are sensitive to small variations in signal. How-
ever, for MGDF and APGDF, Δ and Δ2 are useful, possibly
because of their resemblance with spectral characteristics [29,
Fig.1]. Finally, somewhat different to what the authors initially
assumed, for features with long-term processing, the recogni-
tion accuracy is low. This might be because long-term fea-
tures have been found useful in mismatched conditions. But in
ASVspoof 2015, there is no channel or environment mismatch
and signals are already available with good quality.

The results on evaluation set are shown in Table 4 for top
11 features on the development set. Here, also, we find that dy-
namic coefficients and high-frequency information are useful.
RPS feature performs well for known attacks, but for unknown
attacks its performance is worst among all other features. The
highest recognition accuracy for known attacks (EER of 0.07%)
is obtained with SCFC features and GMM-ML classifier. How-
ever, for the unknown attacks, dynamics of cepstral features are
better, and ΔΔ2 of LFCCs gives the highest recognition accu-
racy (EER of 1.67%).

4. Conclusion
We have performed an extensive study with different feature ex-
traction techniques for synthetic speech detection. Our results
indicate that features conveying information related to high-
frequency region, dynamic characteristic and detailed spectral
information are useful. Those details are not accurately mod-
eled during voice conversion or speech synthesis process.
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