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Abstract—As a result of globalization, fossil fuels are being
depleted at an alarming rate. Singapore, ranked 9th in the
world as net importer of fuels [1], will have to find a more
efficient way to utilize them. Over the years, Singapore has been
switching its energy dependency on the cheaper natural gas [2].
However, its transportation still depends heavily of petroleum.
One of the options to reduce the dependency is to switch to the
electric vehicles (EV). However, the impacts and implications
of introducing EV into Singapore to its energy distribution
system is highly desired before actual deployment, which is very
challenging primarily due to lacks of high quality data from real-
life scenarios. In this paper, we propose to overcome this issue
by using multi-agent system (MAS) based simulation technology
to quantify the impacts of EV charging to the electricity system
of Singapore.

I. INTRODUCTION

There is great urgency to improve the efficiency of using
this planet’s fossil fuels [3]. Due to growing dependency and
globalization, it is being alarmingly depleted at a rate faster
than imaginable. There has been progress in renewable energy
resources. However, it may not be suitable and dependable to
support this planet’s [4] inhabitants if no effort is made to
change the way it is being used.

In Singapore, prevalence of renewable energy resources
is low. This is due to intermittent agreeable weather condi-
tions that undermine their reliability. Hence, Singapore relies
heavily on fossil fuel imports for its energy needs. In 2011,
Singapore ranked 9th in the world as a net importer of crude
oil [1]. Therefore, it is even more crucial to adopt better
ways to utilize the imports else it will be held ransom by
the exacerbating oil prices one day.

Over the years, Singapore has been switching from
petroleum to cheaper natural gas power generation [2] for
ensuring energy affordability to the masses. However, the one
things that still relies heavily on gasoline in Singapore is its
transportation; internal combustion engine vehicles (ICEV).
Currently in Singapore, there is no cheaper alternative to
power ICEV. A natural next step would certainly be switching
from ICEV to EV in order to fully enjoy the benefits of

using cheaper energy sources including natural gas and other
renewable energies.

To electrify the entire transportation is a tremendous effort.
There have been numerous feasibility studies on the impacts
of EV [5], [6]. Most of such studies used either aggregated
or derivatives data of national surveys; leaving much room
for improvements into the granularity of information obtained.
The rich variations in the data, formerly lost through aggrega-
tion, is available only when more levels of details are present.
And such richness in the data is what makes the modelling
closer to the actual situation. However, it is true that short
of having the actual real-life scenario, such data with a full
spectrum of the details is a near to impossible task.

Recently, there have been renewed interests in using mutli-
agent systems (MAS) to obtain more granular information
pertaining to certain environments [7], [8], [9]. This paper
makes use of MAS to reconstruct the level of details from
those national surveys for a more constructive insight to the
impacts and implications of introducing EV to Singapore.

II. METHODOLOGY

A. Multi-Agent System(MATSim)

In order to understand the traffic plans of Singapore’s
driving population for this study, it is essential to know
the point-to-point locations and the details of the journeys
of all drivers’ daily routines. Traditionally [10], this can be
evaluated using the shortest path algorithm [11] followed by
some additive noise to the travel time. This approach only
produces an average or an aggregated effect. In addition, it
does not fully take into considerations of the traffic congestion,
time utilized and drivers’ decisions due to driver-to-driver
interactions, which are essential to make up the necessary
variations for this study.

Recently, there have been many study on using MAS [8], [9]
for complex system modelling where the resultant behaviour
may be unexpected and hard to foresee. An MAS is essentially
a computerized system where multiple agents, perceiving
their local information and capable of autonomous decisions,



Fig. 1. Transformation of older to newer super high rise public housing to
cater to increasing population

interact with each other in a virtual environment [12]. And
there have been a number of MAS used to study traffic and
its emergent behaviour [13], [14], [15]. In this paper, we use
MATSim [16] to simulate the traffic of Singapore. This is
mainly because MATSim allows the users to work more on
their agents without worrying too much implementation details
such as handling interactions among agents, or road network
creation.

In order for a simulation to be conducted on MATSim, it
requires two inputs:

• Map - the environment
• Plans - the agents’ location-to-location plans

The former is essentially a road network input where the
drivers, agents in this case, are able to locate their whereabouts
and next destinations. The latter refers to the plans of the
drivers; the places they intend to travel to during the course
of the simulation. Noticed that precise planning of the route
to take and when to take it is not required. All of that is left
to MATSim’s decision.

All input into MATSim are in Extensible Markup Language
(XML) format [17]. The map and plans are converted into a
data format suitable for MATSim to read as inputs. MATSim
outputs two separate sets of data after the simulation; one of
which will be used for the energy analysis in this paper.

B. Traffic Plans Based on Singapore’s Population

Singapore, in the 21st century, is a population of 5.4 million
living a small island of 716.1 km2 [18]. Over 80% of its
population live in government subsidized public housing [19].
These are high-rise buildings compromising of residential
units placed laterally, above and below one-another. Typically,
a single block is able to house from 100 to 200 families.
However, given the increase in population in the recent years
together with the ever-present land scarcity constraint [20], the
housing landscape is slowly being replaced by super high rises
capable of housing twice the current amount (Fig. 1).

Singapore is now the third most densely populated country
per square kilometres right after Macau and Monaco [21]. The
land for residential is already pre-allocated and concentrated

into 26 housing estates on the island, Fig. 2. Because of this,
the infrastructure for EV becomes important.

In 2012, the Land Transport Authority of Singapore reported
a total of 969910 vehicles on Singaporean roads; out of which
648221 (Approximately 67%) are cars [22]. ”Going green”
in modern Singapore would including converting a significant
portion of these cars to EV as long as it is economically justifi-
able, and Singapore has the adequate supporting infrastructure
to handle this switching. Resolving these concerns involves
an understanding of vehicular movements around Singapore.
However, to date there is no publicized census data for this.

The distribution of the labour force on the island is given in
Singapore manpower statistics [18]. Therefore, it is possible
to model the movements based on these assumptions:

• Each driver stays in 1 of the 26 designated estates
• Each driver fits into manpower distribution described
• Each driver either works in the Central Business District

(CBD) or elsewhere
The CBD of Singapore is located on the southern part of the
island. If a driver does not work in there, then he is equally
likely to be working any other parts of the island.

To model the movement, we assume that each driver
stays in 1 of the 26 designated estates and has to work,
which may require the driver to travel to multiple loca-
tions. Each driver will return home after work each day.
Hence, each driver is associated with a set of locations
each day {lochome, locwork1

, ..., locworkn
, lochome}. Thus, the

daily driving pattern can be built upon this information. To
provide the notion of time, it can be further assumed that
regular work hours with some flexibility to the clocking-in
and out time are in placed. Work generally starts at 7 AM and
ends any time after 5 PM.

As the population is not spread evenly amongst the estates,
nor are they of equivalent size, the contribution of drivers
from each of it would thus be different. Moreover, majority of
Singaporean drivers age-ranges between 29-50 [18]. Hence,
it can be assumed that the people in that age group is
representative of the drivers’ population for their respective
estates.

Fig. 2. Residential developments in Singapore - Sourced from key statistics
of the HDB Annual Report 2012/2013



Fig. 3. Image extracted from MATSim webpage - level of granularity of events

Putting everything together, the traffic plan for one driver
can be randomized by considering the following:

• Start and end its plan at its home location
• Work either in or out of the CBD area
• May travel to multiple and other locations during work
• The departure time for the next location is successive

The plans building involves various combinations of the above
criteria. And this will be used as a model of the driving
population of Singapore on a working day.

C. Information Extraction

MATSim outputs two set of data after each simulation run.
The first set contains events data while the second contains link
statistics data. The statistics do not serve any purpose for this
research and hence it will not be touch upon any further. The
events data serve as a documenter of all the actions that were
taken by all the agents with high level of details including
each simple and atomic action by each agent (Fig. 3). The
keywords in Fig. 3 are exactly the events documented in this
output. All the events are time-stamped. This facilitates the
calculation of the time-spent on the roads. The event data are
filtered using JAVA SAX parser to extract relevant information
that contains the time used to travel the road segment of each
car agent.

D. Energy Consumption Formulation

There are two components of energy consumption that
are of interest in this study. The first is the kinetic energy
consumption of the EV; energy consumed based solely on
moving from point a to point b. The second is the potential
energy consumption of the EV; all the electrical components
that consume energy while the EV is in used.

Suppose there exists a closed network road system that can
be represented as a graph S = (V,E) where V are its vertices
and E its edges. The total amount of energy consumed, ETotal

by the EV can thought as the total amount of energy required
to travel all the edges, ELinki

between the closest vertex to
the start point and the closest vertex to the end point:

ETotal =

n∑
i=1

ELinki
(1)

where ELinki
is the energy consumed to travel the ith edge in

S. As expressed earlier, ELinki
is made up of two components,

the kinetic, Ek and potential,Ep

ELinki = EKi + EPi (2)

There are several approaches that can be used to calculate
the energy consumed by EV; mostly based on calculating fuel
consumption by internal combustion engine vehicles (ICEV)
[23]. However, since the main topic of interest does not lie in
the physical forces governing the motion of a car, a simpler
yet still accurate approach is used. It is similar to [7] where a
known EV’s mileage parameters is used to estimate the amount
of energy consumed. A more accurate and interesting option
is to calculate in terms of actual fossil fuel consumption as
proposed in [23], which will be reserved for the future works
of this research.

The Nissan Leaf [24] is an EV that is known to have
good energy efficiency. It consumes an amount 34 Megawatt-
hours (MwH) to travel 161 Kilometres (km) or 0.21 Kilowatt-
hours (KwH) per meter. This is the average mileage given the
dynamics between the physics of the Nissan Leaf and various
road conditions. Hence, to calculate the kinetic component:

EKi =
0.21×Di × Ti

3600
(3)

where Di is the distance of Linki, Ti is the time taken to
travel Linki. The unit of EKi is in Kilojoules (KJ).

The air-conditioning (AC) unit is the main contributor of
energy consumption in an EV [25]; contributing towards the
potential component. It contributes toward overall expenditure
with a factor of two and/or above [26]. This energy is used to
offset the differences between the comfortable (internal) and
the ambient (external) temperatures of an EV [27]. This is
done by either heating or cooling the air intake (work Input)
from the outside before being circulated into the internal hub
of the EV (cooling load) as shown in Fig .4. Based on [27],
the potential component can be given as:

EPi
= (cρv|TCi

− TAi
|) · Ti (4)

where c is the specific heat capacity of air, ρ is the density
if air, v is the volume of air intake per second TCi is the
comfortable temperature that the driver maintains in the EV
and TAi

is the ambient temperature at which the EV is
travelling through Linki. Hence, the total consumption can

Fig. 4. Cooling of internal hub of EV against the various heating elements



Fig. 5. Temperature inputs for AC energy consumption calculation

Fig. 6. Visualization of a snapshot of the simulation on MATSim’s proprietary
viewer; green represents the EV movements on Singapore roads

be calculated as:

ETotal =

n∑
i=1

ELinki
(5)

=

n∑
i=1

[EKi
+ EPi

]

=

n∑
i=1

[
0.21×Di × Ti

3600
+ (cρv|TCi

− TAi
|) · Ti]

=

n∑
i=1

Ti · [
0.21×Di

3600
+ (cρv|TCi

− TAi
|)]

The total amount of energy required by all EV would be
the summation of the energy consumed by every single trip in
the simulation.

III. SIMULATION

In the simulation, 20% of the population is assumed to be
working in the CBD. Due to hardware limitation, it is infea-
sible to simulate all the cars in Singapore using our current
hardware systems. Hence, approximately 10% of the total EV
population is simulated on MATSim. However, the calculated
figures from the simulation will be extrapolated linearly in the
final analysis. The total number of agents, representing the EV,
in the simulation is 60496. The temperatures used for the AC
calculation is shown in Fig 5. And the comfortable temperature
of the EV is approximately 23 ◦C. The events data from
MATSim was processed and the relevant information extracted
for the energy consumption computation. All the link events
pertaining to the links used by the agents in the simulation
were extracted for the calculation. A dual core Intel Xeon 2.67

GHz processor with 32 Gigabytes RAM is used to power the
MATSIm simulation. Running time for this simulation took
15 minutes. A snapshot of the visualization of the simulation
outputs is shown in Fig. 6.

A. Energy Consumption

The results were calculated as with the formula described.
The energy consumption from AC is illustrated in Fig. 7,
which is in accordance with the input temperatures shown
in Fig. 5. The steep increase in energy consumption is due
to the majority of the EV commuting to work within a short
time frame. The sudden decrease at 18th period, 9 AM, is
due to many EV stopping at the CBD area for work, which is
consistent with the behaviours of CBD workers.

The energy required for AC peaks at 24th period, 12 PM.
This is expected as the temperature of the day is at its highest
at that time. As shown in Fig. 8, this requirement is decreased
by 8.44 MW if the EV’s mean comfortable temperature is
increased by 3 ◦C, which suggests that the AC unit does have
an significant impact on the total energy consumed by EV.

B. Energy Charging Pattern

In this paper, it is assumed that the EV will be charged using
a level two charging system [28] and that if it is stopped for
more than two hours. [29]. The charging rate is given as per
the Nissan Leaf specifications; 1.2 KW [24]. As illustrated in
Fig. 9, the charging load increases as more EV arrives home
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Fig. 7. Comparison of total energy consumed by EV with and without air-
conditioning on a per half hourly period basis starting from 0000 Hours
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Fig. 9. Comparison of charging forecast at 1.2 KW for EV with and without
air-conditioning on a per half hourly period basis starting from 0000 Hours
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Fig. 10. Comparison of charging forecast at 3 KW for EV with and without
air-conditioning on a per half hourly period basis starting from 0000 Hours

in the evening. This load peaks on 12 midnight at 39.57 MW
or 35.17 MW if the AC load is not considered. However, it is
slow for the batteries to be charged at 1.2 KW. The charging
time for the last EV to be charged fully comes closed to the
end of the second day. Charging at 3 KW will ensure all EV
be fully charged by the 65th period, i.e., by 8.30 AM the
next morning as shown in Fig. 10. This is more reasonable
as the last EV would have been fully charged before it starts
its next day’s travelling routine. However, this increases the
same peak load by an additional 27.96 MW. Likewise, the
load can also be managed at the EV’s end by encouraging the
use of a higher mean comfortable temperature as shown in Fig
11, which suggests an increase of 3 ◦C is able to reduce the
charging time significantly.

C. Impacts to Electricity Distribution System
A snapshot of the half-hourly energy demand of an average

day in Singapore is shown in Fig. 12. By extrapolating the
data in Fig. 10 linearly to 100% of EV, an outlook into the
close to actual EV charging pattern is produced. Adding this
extrapolated data onto daily energy demand, the aggregated
load pattern of daily usage and EV is shown in Fig. 13.
Singapore has an installed generation capacity of 10477.5 MW
[2]. From Fig. 13, it is seen that at all periods it sits well below
10000 Mw. Moreover, even as the charging pattern peaks at
midnight or the 48th period, the total load is below 5000 MW.
Therefore, Singapore is capable of handling the impacts of
the energy load generated by the EV from the generation side
point of view.

IV. CONCLUSION

In this paper, the modelling of the movement of the
Singapore traffic was demonstrated. With MATSim, a MAS
simulating traffic, this movement was further evolved into
the driving patterns. From it, the information with regards to
the time spent travelling on the roads was used to calculate
the total kinetic energy consumed by the EV. Using the time
spent information again but with air-conditioning model, the
total potential energy consumed by the EV while travelling
is calculated. It was also demonstrated by how various load
pattern can be derived by simulation different parameters using
MATSim.

Currently, the system is only able to produce the aggregated
charging load as a whole. However, due to the mobility of EV
the charging load may be aggregated unevenly at different
spatial locations, which may cause problems if it is close or
exceeds the capability of the system. In the future works of
this research, the spatial load generated by the EV according
to districts will be analysed in combination with power flow
analysis to understand the impacts of the EV charging load to
the infrastructure electricity grid.
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