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Abstract. Map images are composed of semantic layers depicted
in arbitrary color. Color separation is often needed to divide the
image into layers for storage and processing. Separation can result
in severe artifacts because of the overlapping of the layers. In this
work, we introduce a technique to restore the original semantic lay-
ers after the color separation. The proposed restoration technique
improves compression performance of the reconstructed layers in
comparison to the corrupted ones when compressed by lossless
algorithms such as International Communication Unit (ITU) Group 4
(TIFF G4), Portable Network Graphics (PNG), Joint Bi-level Image
experts Group (JBIG), and context tree method. The resulting tech-
nique also provides good visual quality of the reconstructed image
layers, and can therefore be applied for selective layer removal/
extraction in other map processing applications, e.g., area
measurement. © 2006 SPIE and IS&T. �DOI: 10.1117/1.2178188�

1 Introduction
Currently, there exist various services delivering map im-
agery content to the user. For example, real-time map im-
aging applications provide users with a view of a geo-
graphical map for the area surrounding the user’s location.
The location can be obtained using a global positioning
service �GPS�, mobile positioning service �MPS�, or other
analog services. It could also be weather, traffic, pollution,
or any other kind of map. The imagery data are usually
obtained from a digital spatial library,1 and transmitted via
the network to the user’s device such as a pocket computer
�PDA�, mobile phone, or desk-top terminal.

A typical map image consists of a set of semantic layers,
each containing data with distinct semantic content, each
depicted with its own color, e.g., black roads, brown eleva-
tion lines, blue water areas, yellow fields, etc. Regardless of
the semantic nature, typical maps need only a few color
tones to represent the layers, but high spatial resolution for
representing details. Let us call these images multilayer
map images.

We consider topographic images from the National Land
Survey of Finland �NLS� topographic database, in particu-
lar the basic map series 1:20,000.2 The images consist of a
set of semantic layers, each containing data with distinct
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semantic content, such as roads, elevation lines, infrastruc-
tures, state boundaries, and water areas. The layers are
combined and displayed to the user as a generated color
image, in which the data of each type are depicted using
their own color. These images consist of the following se-
mantic layers: basic �roads, contours, labels, and other to-
pographic data�, elevation lines �thin lines representing el-
evations levels�, waters �solid regions and polylines
representing water areas and ways�, and fields �solid po-
lygonal regions� �see Fig. 1�.

The original map data are usually stored in vector format
on a server-side database. Each semantic layer is stored
separately. As the user’s request arrives, the server prepares
part of the data and transmits it to the user in raster format,
since raster images are easier to handle on a client-side
device. Using a vector format requires special software de-
veloped for vector map image processing, then the process-
ing of raster images is a standard feature of almost any
mobile terminal. Raster format is also often used for digital
publishing on the web or CDs.

When producing a raster map image, map layers of dif-
ferent semantic nature are combined together overlapping
each other in a predefined order. This image is well suited
for user observation, but it is less appropriate for further
processing, since the layer structure has been corrupted
when the raster of the map image was produced. For ex-

Fig. 1 Illustration of a multilayer map image from the NLS Topo-

graphic database.

Jan–Mar 2006/Vol. 15(1)1



due t

Podlasov, Ageenko, and Fränti: Morphological reconstruction of semantic layers¼
ample, when one needs to calculate the area of the fields, or
the length of coastline, the layer must be extracted from the
color raster image through color separation. During this
process, the map image is divided into binary layers, each
representing one color in the original image. The main
problem of this approach is that the separation introduces
severe artifacts in places where the information of different
layers overlap each other �see Fig. 2�. The holes on the
fields caused by overlapping letters are a typical example of
these artifacts. The presence of the artifacts can make the
color separated layer useless for many map processing
tasks.

Moreover, the problem also affects the compressibility
of the images. Though the raster image could be com-
pressed with any existing lossless compression algorithm, it
has been shown that the best compression results can be
achieved if the image is decomposed into binary semantic
layers, which are consequently compressed by algorithms
designed to handle binary data �e.g., JBIG�.3 The artifacts
of the color separation, however, affect the statistical prop-
erties and consistency of the layers, and result in degraded
compression performance in comparison to the original
ones. This is apparent especially in applications requiring
the use of mobile hardware such as mobile phones or
pocket computers. For example, a single map sheet of 10
�10 km2 is represented by a single map image of 5000
�5000 pixels. Larger image size also takes a longer time
to transmit. For example, 10-sec transmission via a GPRS
channel with bandwidth 45 kb/sec results in at most 54 kB
of image data. This corresponds to only about 500
�500 pixels for a four-layer map image.

The problems mentioned led us to develop an algorithm
for the reconstruction of the corrupted layers of map im-
ages. The proposed algorithm approximates the original
layer structure existing before the color combination by re-
pairing the corrupted layers as close to the original ones as
possible. A natural restriction for the reconstruction tech-
nique is that the color combination of the reconstructed
layers should be equal to the originally received raster map
image.

The goal of image restoration is to reconstruct the origi-
nal image before degradation.4 The reconstruction involves
a criterion for measuring the quality of the desired result.
For our problem, we consider two criteria: image quality

Fig. 2 Corrupted layers
and image compressibility. The first criterion measures how
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close the reconstructed layer is to the original semantic
layer. This is important for applications where visual qual-
ity is essential, or the reconstructed layer is used for pro-
cessing, e.g., measuring the area of the fields. The second
criterion aims to modify the corrupted layer so that its com-
pressibility will be improved as much as possible without
causing any changes to the corresponding output color im-
age.

The artifacts appearing on the layers could be treated as
noise. If we guarantee that the color map remains un-
touched, noise removal could be considered as a tool for
improving image quality for achieving better compressibil-
ity. There are many image enhancement methods in the
literature,4–7 and various reconstruction techniques have
been considered.8–11 Statistical modeling,12 and specific
data modeling and representation techniques13–16 have also
been considered. However, noise filtering and typical image
enhancement algorithms are not suitable for solving our

o the color separation.
Fig. 3 Outline of the reconstruction algorithm.
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problem, because, due to their local nature, they are not
able to recognize larger structures and dependencies be-
tween layers.

Therefore, we introduce a new morphological filter for
layer reconstruction. We chose mathematical morphology
to be the tool, mostly due to the simplicity of implementa-
tion. Morphological operators do not require sufficient
computational and memory resources to be applied, which
is apparent for use on mobile terminals. The benefits of the
proposed filter are its capability to reconstruct semantic in-
formation in a multilayer map image, and that the original
color image can always be reconstructed exactly without
any loss in the quality. The effect of the filter is therefore
limited only to the binary layers. The method is applicable
for extraction or removal of individual layers, and for loss-
less compression of the map images. The method is fast
and simple to implement.

The rest of the work is organized as follows. Mathemati-
cal morphology is briefly introduced in Sec. 2. In Sec. 3,
we introduce two variants of the new filtering method for
layer extraction, and then apply it for layer removal in Sec.
4. Empirical results are reported in Sec. 5, and conclusions
drawn in Sec. 6.

2 Mathematical Morphology
Mathematical morphology refers to a branch of nonlinear
image processing and analysis originally introduced by
Matheron17 and Serra,18 and currently continuing its
development.19 This chapter gives the basic morphological
definitions. In discrete binary morphology, an image space

Fig. 4 Scheme for the mask creation.

Fig. 5 Water and field layers with their masks. Object pixels from
the layer are plotted by black, and the mask pixels by gray to differ-

entiate which pixel belongs to the layer, and which pixel to the mask.
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E is usually defined as E=Z2 �the space of all possible
image pixel locations�, and a binary image X as a set X�E.
For a given set A, the reflection �or the symmetric� of A

with respect to the origin, denoted as Ã or −A, is defined by

Ã= �−a �a�A�. The power set of E, or in other words, the
set of all subsets of E, is denoted as P�E�. One of the main
fundamentals of mathematical morphology is to analyze the
geometrical and topological structure of an image X by
“probing” the image with another small set A�E called a
structuring element. The choice of the appropriate structur-
ing element depends on the particular application.

2.1 Fundamental Morphological Operators

The dilation of X by A, denoted as �A�X�, is defined as the
operator on P�E� given by:

�A�x� = �
a�A

Xa = �h � E�Ah
˜� X � � � .

The erosion of X by A, denoted by �A�X�, is

�A�X� = �
a�A

X−a = �h � E�Ah � X� .

The cardinality of set A, or the number of elements in A, is
denoted by card�A�. Let us also define the translation in-
variant operator �A,n, called a rank operator, as follows:

�A,n�X� = �h � E�card�X � Ah� � n� .

The operator �A,n�X� sets current pixels to be the fore-
ground if the amount of foreground pixels in a neighbor-
hood defined by the structuring element is greater than n.
Otherwise, the pixel is defined as a background pixel. Since
the rank operator performs similar to erosion or dilation
depending on the value of the rank parameter, it is possible
to treat the rank as a soft counterpart of classical erosion

Fig. 6 The block diagram of CC algorithm.
and dilation operators. In particular:

Jan–Mar 2006/Vol. 15(1)3
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�Ã�X� = �A,1�X� and �A�X� = �Acard�A��X� .

The operator �A�X�=�A��A�X�� is called the �structural�
opening by A. Dually, the operator �A�X�=�A��A�X��, is
called the �structural� closing by A.

2.2 Conditional Operators
If an image is, say, dilated by a structuring element con-
taining the origin, it is expanded, and the manner of the
expansion depends only on the shape of the structuring el-
ement. If the dilation is successively repeated, the original

Fig. 7 Sample images for the water and field la
algorithms as well as mismatching of reconstruc
image grows without bounds. Sometimes it is important to
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restrict the growth. This can be accomplished by using con-
ditional operators. A common form of conditioning restricts
the translations to a superset of the input image: if image A
is a subset of image T, then for any operator ��A�, the
operator ��A �T� is called ��A� conditioned relative to T
and is defined as:

��A�T� = ��A� � T .

original and reconstructed with CC and CDME
yer and the original.
yers:
The image T is usually referred to as a mask image.

Jan–Mar 2006/Vol. 15(1)4
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3 Layer Reconstruction Technique
We consider two approaches. The first approach aims at
maximal compression improvement for the reconstructed
layers, and the second at more accurate restoration of the
original semantic layers.20 In the first approach, we simply
try to minimize the storage size of the layers, which is
essential for map storage systems. In the second approach,
we try to produce layers that are as close to the original
semantic layers as possible. The resulting layers can then
be used for additional map processing and analysis. Fol-
lowing the underlying principles behind the previous two
approaches, we have designed two reconstruction algo-
rithms referred to further as conditional closing �CC� and
conditional dilation with mask erosion �CDME�.

Both algorithms have the same structure, consisting of
three main steps as outlined in Fig. 3. At the first step, the
color map �scanned or obtained from the third party source�
is decomposed into a set of binary layers by a color sepa-
ration process. This is done so that each layer represents
one color in the original image.3 Then, according to the
predefined layer order, a conditioning mask is created for
every layer for restricting the reconstruction of the layers to
be equal to the original color image. Finally, the actual
reconstruction is performed for every layer with respect to
its conditioning mask.

3.1 Conditioning Mask
Further, we denote a layer image as L; when we talk about
some particular layer, we denote it as Lk, 1	k	N, where
N is the total number of layers in a map image. The require-
ment that the composition of reconstructed layers should be

Fig. 8 Outline of the CDME algorithm.

Fig. 10 Step-by-step illustration of the dilation
plotted by black, and the mask pixels by gray

which pixel to the mask.
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identical to the initial color map can be met by conditioning
the operator ��Lk� on the mask Mk, which defines the re-
gion where changes of the layer content are allowed. The
requirement of keeping the reconstructed color map identi-
cal to the original one leads to the fact that the restoration
operator must not remove pixels that are already present in
the corrupted layer. It can only add pixels to a layer, so that
the condition

Lk � ��Lk�Mk� ,

is met. The conditioning mask defines the set of pixels that
are allowed to change value in the restoration, so that the
combination of the restored layers would be kept un-
touched. Since we assume that the order of layer overlap-
ping is predefined, the mask for every layer is computed as
the union of all upper-laying layers,

Fig. 9 Block diagram of the CDME algorithm.

ask erosion. Object pixels from the layer are
rentiate which pixel belongs to the layer, and
with m
to diffe
Jan–Mar 2006/Vol. 15(1)5
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Mk ª �
j=1

k

Lk,

�see Figs. 4 and 5�.

3.2 Layer Reconstruction

3.2.1 Conditional closing
Having the compression objective in mind, let us consider
using a simple and effective conditional closing �CC� op-
erator Lª�A�L �M� to perform reconstruction. The algo-
rithm is outlined in Fig. 6. The quality of the reconstruction
in terms of compressibility strongly depends on the applied
structuring element. In our experiments, we have tried out
several alternatives and found that square block provides
the best compression improvement. The size of the block

Fig. 11 Block diagram of the layer removal algorithm. Elevation
lines layer to be removed is outlined with a black frame.
Fig. 12 Example of the
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depends on the size of the artifacts, and, for our test set 7
�7 has been selected. Once applied successfully, the clos-
ing fills artifacts inside the objects, leaving the borders al-
most untouched �see Fig. 7�. The main characteristics of
this approach are its simplicity of implementation, and its
positive effect on compression.

3.2.2 Conditional dilation with mask erosion
Although efficient in terms of compression, the CC algo-
rithm is not as effective in approximating �restoring� the
original layers. The method expands the lower layers too
conservatively, whereas the color layer is typically a re-
duced version of the original semantic layer, due to over-
lapping. Therefore, we propose another algorithm, which
we call conditional dilation with mask erosion �CDME�,
using more aggressive expansion based on dilation, and
thus, aiming at a more accurate approximation of the origi-
nal semantic layers.

The idea in general is to spread objects step by step and
shrink the mask, too. The process is iterative: first, the
spreading is performed by the dilation operator �A�X�, and
then the mask shrinking is performed by the erosion opera-
tor �A�X�. The pseudocode of the algorithm is shown in Fig.
8, and outlined in Fig. 9. The stepwise process of the itera-
tions is illustrated in Fig. 10.

The iterative process is controlled by a stopping crite-
rion. We have investigated two approaches: iterate until sta-
bility and iterate fixed amount of times. The first approach
assumes that the iterative process will continue until the
layer �and mask� converges. The convergence is guaran-
teed, because the erosion sequentially decreases the mask
�see Fig. 10�. We can therefore perform the iterations until
the mask equals the layer itself.

Examination if the mask and layer are equal could be a
time-consuming operation, especially if the image size is
big. To avoid this, we consider the second approach by
assuming that most of the artifacts are of limited size,
which can be determined within the first few iterations. We
therefore restrict the amount of iterations by a fixed num-
ber. For example, if we suppose that the size of an artifact
is four pixels, on average, three dilations with a 3�3 block
are enough for the restoration.

As with the conditional closing, an important question is
the choice of an appropriate structuring element. There are
layer removal.

Jan–Mar 2006/Vol. 15(1)6
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two structuring elements used in the algorithm: in the ob-
ject dilation and in the mask erosion. By varying the first
element, we can control how fast the object expands over
the mask, while varying the second element controls how
fast the mask shrinks. An essential matter is the relation
between the speeds of the dilation and erosion. Let A be the
structuring element of dilation and B be the structuring el-
ement of erosion. We use two structuring elements: square
is the 3�3 block ��−1,0 ,1�� �−1,0 ,1�� and cross ��0,
−1� , �1,0� , �0,0� , �−1,0� , �0,1��. We have tested three
cases: objects dilating faster than mask eroding �A
=square, B=cross�, objects dilating slower than mask erod-
ing: �A=cross, B=square�, and the case of equal speed �A
=square, B=square or A=cross, B=cross�.

The speed of dilation and shrinking could also be con-
trolled if dilation and erosion operators used in a restoration
technique are replaced with a rank operator as their “soft”
counterpart.17 The rank operator is equal to the dilation
operator when the rank parameter n is set to 1, and to the
erosion operator when the rank parameter is equal to the
cardinal number of the structuring element �n=card�A��.
Rank operators with rank parameters lying between these
two values behave approximately like dilation or erosion
operators. In other words, a rank parameter could be used
to regulate the “strength” of erosion or dilation, or how fast
objects shrink or expand. The case when a rank operator
equals card�A� /2 is called a median operator.

The performance of the restoration strongly depends on
the morphological structure of the layer under reconstruc-
tion. To choose the variant of the algorithm for evaluation,
we examined different structuring elements and parameter
values. The modification gaining the best performance is
described and evaluated in Sec. 5.

Table 1 Restora

Compression
algorithm

Semantic
layers

Corrupted
layers

PNG 825 510 808 126

TIFF 460 811 481 338

JBIG 236 210 269 423

AKF2 223 555 261 386

Table 2 Resto

Compression
algorithm

Semantic
layers

Corrupted
layers

PNG 381 608 425 862

TIFF 167 361 357 164

JBIG 81 334 137 258

AKF2 49 230 73 107
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4 Layer Extraction/Removal Technique
The task of layer restoration arises if there is a need for
layer extraction or removal. Layer extraction is needed
when one wishes to perform some specific processing over
the layer, e.g., to calculate the area of the fields. Naturally,
a corrupted layer could not be accepted as accurate input. A
similar task is layer removal when less important layers are
not needed by the map user, e.g., user driving a car does not
need elevation lines, as such layers can limit map readabil-
ity. To remove a layer, the restoration technique of Sec. 3 is
first applied to all layers, and the color image is composed
of the restored layers except for the one to be removed �see
Fig. 11�.

The most important feature here is the quality of the
restoration, i.e., how closely the corrupted layer approxi-
mates the original layer. Moreover, in user interactive ap-
plications, the visual appearance of the reconstructed layer
becomes essential. Figure 12 illustrates the effect of the
removal of the basic and elevation layers.

5 Evaluation
The restoration techniques have been evaluated on a set of
topographic color-palette map images. These images were
decomposed into binary layers with distinctive semantic
meaning identified by the pixel color on the map. The res-
toration algorithms have been applied for reconstruction of
these semantic layers after the map decomposition process.
Both the combined color map images and the binary se-
mantic layers composing these color map images were
originally available for testing. This allowed us to compare
the restored images with their original undistorted counter-
parts.

elevation layer.

CDME CC

ize Imp. Size Imp.

1 958 −0.47% 805 774 4.30%

4 934 3.41% 461 482 0.29%

9 139 3.82% 253 606 6.24%

0 820 4.04% 243 870 6.70%

of water layer.

CDME CC

ize Imp. Size Imp.

766 9.65% 378 484 11.13%

630 52.79% 171 673 51.93%

230 32.08% 95 520 30.41%

370 21.53% 54 695 25.18%
tion of

S

81

46

25

25
ration

S

384

168

93

57
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The performance of the proposed restoration techniques
was evaluated according to two measures: the improvement
of compression performance and the quality of the recon-
struction. The first measure is relevant when dealing with
map image storage, and concerns only the improvement in
compressibility, regardless of how exact the reconstruction
is. The second measure is relevant to applications where the
reconstruction is expected to approximate the original as
close as possible.

The test set consists of five randomly chosen images
from the NLS Basic Map Series 1:2000, corresponding to
the map sheets 431306, 201401, 263112, and 431204. Each
image is of 5000�5000 pixels and consists of four binary
layers. The layer names are the following:

• basic—topographic image, supplemented with com-
munications networks, buildings, protected sites,
benchmarks, and administrative boundaries

• elevation—elevation lines
• water—lakes, rivers, swamps, and water streams
• fields—agricultural areas.

5.1 Compression Performance
The evaluation examines the compression performance of
the map images constructed on reconstructed layers in com-
parison to semantic layers �not affected by the layer sepa-
ration process� and corrupted layers �result of the layer
separation�. The proposed algorithms were evaluated using
four compression techniques: LZ �PNG�, ITU Group 4
�TIFF�, JBIG, and AKF221 �context-based compression
with optimized context size and shape�. For each of these
compression methods, we have measured the compressed

Table 3 Resto

Compression
algorithm

Semantic
layers

Corrupted
layers

PNG 309 712 456 710

TIFF 99 622 196 456

JBIG 49 409 113 977

AKF2 5917.5 16110.5

Table 4 The average compression performance of the topograph
reconstructed color layer separation with CDME and CC restoration

Compresson
algorithm

Semantic layers Corrupted layers

Size bpp Size bpp

PNG 2 085 871 0.66 2 149 490 0.68

TIFF 1 473 824 0.47 1 708 362 0.54

JBIG 684 978 0.21 790 257 0.25

AKF2 624 117 0.19 696 017 0.22
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data size for the original semantic layers, for the corrupted
binary layers after decomposition, and for the reconstructed
layers with the two reconstruction algorithms �CC and
CDME�. The structuring elements in CC are 7�7 blocks;
the CDME uses soft erosion and dilation with rank param-
eters 2 and 8, respectively.

5.1.1 Results for stand-alone layers
Tables 1–3 give the average compressed sizes of the re-
stored elevation lines, water, and field layers, respectively.
The results are the average compressed file size �size� im-
provement in compression ratio �imp� for semantic, cor-
rupted, and reconstructed layers.

Evaluating the performance for the elevation-line layer
we conclude that neither reconstruction technique is effec-
tive in improving the compression performance. The struc-
ture of the layer does not allow for remarkable increase,
and only about 5% improvement was achieved. On the
other hand, significant compression improvement is gained
for water and field layers �20 to 50%, depending on the
compression technique�, since these layers contain a lot of
closed solid regions. The holes left by letters and other
artifacts were successfully filled by both algorithms. The
tradeoff between the algorithms is in the computational
complexity �the CC is simpler� and the quality of the res-
toration �the CDME has significantly better visual appeal,
as shown further�.

5.1.2 Overall results
In a real application, however, one cannot consider com-
pression improvement for independent layers, but we must
evaluate the compression performance altogether for all

of field layer.

CDME CC

ize Imp. Size Imp.

821 29.75% 313 486 31.36%

388 46.36% 119 306 39.27%

936 55.31% 56 950 50.03%

6.25 56.20% 6 212 61.44%

p images based on semantic layers, color layer separation, and
thms.

econstructed with CDME Reconstructed with CC

ze bpp imp. Size bpp imp.

254 0.66 3.31% 2 063 955 0.66 3.98%

657 0.47 13.33% 1 483 727 0.47 13.15%

185 0.23 8.87% 718 446 0.22 9.09%

661 0.21 5.08% 650 191 0.20 6.58%
ration

S

320

105

50

705
ic ma
algori

R

Si

2 078

1 480

720

660
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layers forming a map image. Table 4 illustrates the average
compression performance of the test images based on se-
mantic layers, color layer separation, and reconstructed
color layer separation with CDME and CC restoration al-
gorithms. The results are average compressed file sizes
�size� computed as the sum of all compressed layers, bit
rate �bpp�, and improvement ratio �imp�. We conclude that
the proposed restoration technique achieves almost the
same degree of compression of the map images as if the
original semantic layer decomposition was available. Rela-
tively low compression improvement is caused by the
dominant size of the nonrestorable top-level layer basic, or
the hardly restorable elevation-line layers.

5.2 Restoration Quality
This section evaluates the restoration performance of the
proposed technique. By restoration quality, we mean how
close the original and reconstructed layers are, with respect
to some distance measure. In this work, we use normalized
mean absolute error �NMAE�, i.e., Hamming distance,
which measures the average number of different pixel val-
ues in the original semantic layers, and in the reconstructed
layers.

NMAE�X,Y� =
� j=1

H �i=1

W
�xi,j − yi,j�

H · W
,

where H and W are image dimensions.
The compression evaluation showed that the elevation

layer is hardly restorable. Therefore, we do not consider it
in the quality evaluation. We measured the NMAE differ-
ence between the original layers of water and field, and
their reconstructed counterpart, with both CC and CDME.
The same was done for the corrupted layers with respect to
the original ones. These results show that the reconstructed
layers are closer to the original layers than the corrupted
ones. In Fig. 13, we present the total NMAE differences
within the test set for each layer separately. The CDME
algorithm showed better reconstruction comparing CC both
for water and fields.

We evaluated the performance of the restoration by ap-
plying it to the task of area measurement. We compared the
area measured over the original layer with one measured
over the reconstructed and corrupted layer. The results are
presented for water and field layers separately on average
within the whole test set �see Table 5�. Since CDME ap-
proximates layers better, its area measurements are also
much closer to the original than the CC results. CDME
reconstruction reduces the error of the area measurement
from 15 to 20% to just about 1%.

Table 5 The area �in pixels� measured over th
CDME elevation, water, and field layers.

Compression
algorithm

Semantic layers Corrupted la

Area Area E

Water 10 480 893 8 678 605 1

Field 4 267 983 3 663 960 1
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6 Conclusion
We propose a technique for the restoration of binary seman-
tic layers of map images from the corruption caused by the
decomposition of the image using a color separation pro-
cess. The performance of the proposed method is evaluated
by improvement in compression performance and in quality
of the restoration. It allows us to obtain up to 30 to 50%
compression improvement for stand-alone layers and im-
proves the total compression rate �calculated for the sum of
the layers� up to 5 to 10%, depending on the compression
method. Low total improvement rates are caused by the
presence of non- or hardly restorable layers, such as basics
and elevation.

Quality evaluation shows that restoration efficiently ap-
proximates corrupted layers to the original. The properly
tuned algorithm reduces error in such applications as area
measurement from 15 to 20% to about 1%. The color map

nal, corrupted, and reconstructed with CC and

CDME CC

Area Error, % Area Error, %

10 389 501 0.87% 9 996 454 4.62%

4 262 378 0.13% 4 057 253 4.94%

Fig. 13 The average NMAE difference with the original measured
for reconstruction with CC and CDME field �a� and water �b� layers
compared to corrupted ones.
e origi

yers

rror, %

7.20%

4.15%
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image resulting from the combination of the reconstructed
layers remains identical to the original image, because all
changes to the layer content are performed only within
those areas that will be overlapped during composition. The
method therefore affects only the separated layers, not the
original color image.
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