
Pattern Recognition 93 (2019) 95–112

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

How much can k-means be improved by using better initialization

and repeats?

Pasi Fränti, Sami Sieranoja

∗

Machine Learning Group, School of Computing, University of Eastern Finland, P.O. Box 111, FIN-80101 Joensuu, Finland

a r t i c l e i n f o

Article history:

Received 13 August 2018

Revised 11 March 2019

Accepted 13 April 2019

Available online 15 April 2019

Keywords:

Clustering algorithms

K-means

Initialization

Clustering accuracy

Prototype selection

a b s t r a c t

In this paper, we study what are the most important factors that deteriorate the performance of the k-

means algorithm, and how much this deterioration can be overcome either by using a better initialization

technique, or by repeating (restarting) the algorithm. Our main finding is that when the clusters overlap,

k-means can be significantly improved using these two tricks. Simple furthest point heuristic (Maxmin)

reduces the number of erroneous clusters from 15% to 6%, on average, with our clustering benchmark.

Repeating the algorithm 100 times reduces it further down to 1%. This accuracy is more than enough for

most pattern recognition applications. However, when the data has well separated clusters, the perfor-

mance of k-means depends completely on the goodness of the initialization. Therefore, if high clustering

accuracy is needed, a better algorithm should be used instead.

© 2019 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

t

p

t

o

a

n

p

m

t

p

t

c

i

t

l

t

w

a

s

q

a

t

k

m

g

t

d

i

t

[

a

b

u

s

I

n

i

t

T

c

h

0

. Introduction

K-means (KM) algorithm [1–3] groups N data points into k clus-

ers by minimizing the sum of squared distances between every

oint and its nearest cluster mean (centroid). This objective func-

ion is called sum-of-squared errors (SSE). Although k-means was

riginally designed for minimizing SSE of numerical data, it has

lso been applied for other objective functions (even some non-

umeric).

Sometimes the term k-means is used to refer to the clustering

roblem of minimizing SSE [4–7] . However, we consider here k-

eans as an algorithm . We study how well it performs as a clus-

ering algorithm to minimize the given objective function. This ap-

roach follows the recommendation in [8] to establish a clear dis-

inction between the clustering method (objective function) and the

lustering algorithm (how it is optimized).

In real-life applications, the selection of the objective function

s much more important. Clustering results depend primarily on

he selected objective function, and only secondarily on the se-

ected algorithm. Wrong choice of the function can easily reverse

he benefit of a good algorithm so that a proper objective function

ith a worse algorithm can provide better clustering than good

lgorithm with wrong objective function. However, it is an open
∗ Corresponding author.

E-mail addresses: pasi.franti@uef.fi (P. Fränti), sami.sieranoja@uef.fi,

amisi@cs.uef.fi (S. Sieranoja).

c

p

u

a

ttps://doi.org/10.1016/j.patcog.2019.04.014

031-3203/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article u
uestion how much clustering results are biased because of using

n inferior algorithm.

There are other algorithms that are known, in many situa-

ions, to provide better clustering results than k-means. However,

-means is popular for good reasons. First, it is simple to imple-

ent. Second, people often prefer to use an extensively studied al-

orithm whose limitations are known rather than a potentially bet-

er, but less studied, algorithm that might have unknown or hid-

en limitations. Third, the local fine-tuning capability of k-means

s very effective, and for this reason, it is also used as part of bet-

er algorithms such as the genetic algorithm [9,10] , random swap

11,12] , particle swarm optimization [13] , spectral clustering [14] ,

nd density clustering [15] . Therefore, our results can also help

etter understand those more complex algorithms that rely on the

se of k-means.

K-means starts by selecting k random data points as the initial

et of centroids, which is then improved by two subsequent steps.

n the assignment step , every point is put into the cluster of the

earest centroid. In the update step , the centroid of every cluster

s recalculated as the mean of all data points assigned to the clus-

er. Together, these two steps constitute one iteration of k-means.

hese steps fine-tune both the cluster borders and the centroid lo-

ations. The algorithm is iterated a fixed number of times, or until

onvergence (no further improvement is obtained). MacQueen also

resented sequential variant of k-means [2] , where the centroid is

pdated immediately after every single assignment.

K-means has excellent fine-tuning capabilities. Given a rough

llocation of the initial cluster centroids, it can usually optimize
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.patcog.2019.04.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.04.014&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:pasi.franti@uef.fi
mailto:sami.sieranoja@uef.fi
mailto:samisi@cs.uef.fi
https://doi.org/10.1016/j.patcog.2019.04.014
http://creativecommons.org/licenses/by/4.0/

96 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Fig. 1. K-means is excellent in fine-tuning cluster borders locally but fails to re-

locate the centroids globally. Here a minus sign (−) represents a centroid that is

not needed, and a plus sign (+) a cluster where more centroids would be needed.

K-means cannot do it because there are stable clusters in between.

v

p

M

t

p

m

a

a

t

p

i

o

u

H

e

t

t

d

k

s

1

a

t

c

p

o

r

k

s

m

r

t

s

l

d

i

n

s

i

b

i

s

p

o

p

c

a

o

s

p

p

S

b

f

t

T

l

t

their locations locally. However, the main limitation of k-means is

that it rarely succeeds in optimizing the centroid locations globally.

The reason is that the centroids cannot move between the clusters

if their distance is big, or if there are other stable clusters in be-

tween preventing the movements, see Fig. 1 . The k-means result

therefore depends a lot on the initialization. Poor initialization can

cause the iterations to get stuck into an inferior local minimum.

Fortunately, finding the exact optimum is not always impor-

tant. In pattern recognition applications, the goal can be merely

to model the distribution of the data, and the clustering result is

used as a part in a more complex system. In [16] , the quality of the

clustering was shown not to be critical for the speaker recognition

performance when any reasonable clustering algorithm, including

repeated k-means, was used.

However, if the quality of clustering is important then k-means

algorithm has problems. For example, if we need to solve the num-

ber of clusters, the goodness of the algorithm matters much more.

Experiments with three different indexes (WB, DBI, Dunn) have

shown that k-means rarely achieves the correct number of clus-

ters whereas random swap succeeded in most cases [17] . Similar

observations were made with stability-based approach in [18] .

To compensate for the mentioned weaknesses of k-means, two

main approaches have been considered: (1) using a better initial-

ization, (2) repeating k-means several times by different initial so-

lution. Numerous initialization techniques have been presented in

the literature, including the following:

• Random points
• Furthest point heuristic
• Sorting heuristic
• Density-based

• Projection-based

• Splitting technique

Few comparative studies exists [19–22] , but there is no consen-

sus of which technique should be used. A clear state-of-the-art is

missing. Pena et al. [19] studied four basic variants: random cen-

troids [1] and MacQueen’s variant of it [2] , random partition and

Kaufman’s variant of the Maxmin heuristic [23] . Their results show

that random partition and Maxmin outperform the random cen-

troid variants with the three datasets (Iris, Ruspini, Glass).

He et al. [20] studied random centroids, random perturbation of

the mean [24] , greedy technique [25] , Maxmin [26] , and Kaufman’s
ariant of Maxmin [23] . They observed that the Maxmin variants

rovide slightly better performance. Their argument is that the

axmin variants are based on distance optimization, which tends

o help k-means provide better cluster separation.

Steinley and Brusco [21] studied 12 variants including com-

lete algorithms like agglomerative clustering [27] and global k-

eans [28] . They ended up recommending these two algorithms

nd Steinley’s variant [29] without much reservation. The first two

re already complete stand-alone algorithms themselves and not

rue initialization techniques, whereas the last one is a trivial im-

rovement of the random partition.

Steinley and Brusco also concluded that agglomerative cluster-

ng should be used only if the size, dimensionality or the number

f clusters is big; and that global k-means (GKM) [28] should be

sed if not enough memory to store the N

2 pairwise distances.

owever, these recommendations are not sound. First, agglom-

rative clustering can be implemented without storing the dis-

ance matrix [30] . Second, GKM is extremely slow and not prac-

ical for bigger datasets. Both these alternatives are also stan-

alone algorithms and they provide better clustering even without

-means.

Celebi et al. [22] performed the most extensive comparison

o far with 8 different initialization techniques on 32 real and

2,228 synthetic datasets. They concluded that random centroids

nd Maxmin often perform poorly and should not be used, and

hat there are significantly better alternatives with comparable

omputational requirements. However, their results do not clearly

oint out a single technique that would be consistently better than

thers.

The detailed results in [22] showed that a sub-sampling and

epeat strategy [31] performs consistently in the best group and

-means ++ performs generally well . For small datasets Bradley’s

ub-sampling strategy or greedy variant of k-means ++ was recom-

ended. For large data, split-based algorithm was recommended.

The second major improvement, besides the initializations, is to

epeat k-means [32] . The idea is simply to restart k-means several

imes from different initial solution to produce several candidate

olutions, and then keeping the best result found as the final so-

ution. This approach requires that the initialization technique pro-

uces different starting solutions by involving some randomness

n the process. We call this variant repeated k-means (RKM). The

umber of repeats is typically small like R = 20 in [33] .

Many researchers consider the repeats as an obvious and neces-

ary improvement to the k-means at the cost of increased process-

ng time. Bradley and Fayyad [31] used slightly different variant

y combining the repeats and sub-sampling to avoid the increase

n the processing time. Besides these papers, it is hard to find any

ystematic study how the repeats affect on the k-means. For exam-

le, none of the review papers investigate the effect of the repeats

n the performance.

To sum up, existing literature provides merely relative com-

arisons between the selected initialization techniques. They lack

lear answers of the significance of the results, and present no

nalysis on which type of data the techniques work and fail. Many

f the studies also use classification datasets, which have limited

uitability for studying the clustering performance.

We made a brief survey about how recent research papers ap-

ly k-means. Random centroids [5,34,35] seems to be the most

opular initialization method, along with k-means ++ [6,33,36] .

ome papers do not specify how they initialize [37] , or it had to

e concluded indirectly. For example, Boutsidis [5] used the de-

ault method available in MATLAB, which was random centroids in

he 2014a version and k-means ++ starting from the 2014b version.

he method in [38] initializes both the centroids and the partition

abels at random. However, as they apply the centroid step first,

he random partition is effectively applied.

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 97

Fig. 2. Three examples of clustering result when using SSE cost function. Gaussian cluster is split into several spherical clusters (left); mismatch of the variance causes the

larger cluster to be split (middle); mismatch of the cluster sizes does not matter if the clusters are well-separated.

a

T

p

a

e

a

c

p

s

s

i

r

t

e

n

i

w

f

p

h

w

f

t

d

t

t

a

S

2

t

m

t

e

u

b

o

w

m

o

t

w

t

s

C

a

a

a

s

2

m

c

t

k

n

s

p

2

t

r

c

S

w

i

l

ε

R

n

p

n

t

t

f
The number of k-means repeats varies from a relatively small

mount of 10–20 [5,33,35] to a relatively high value of 100 [36] .

he most extreme example is [34] where 20 h time limit is ap-

lied. Although they stop iterating if the running time grows twice

s that of their proposed algorithm, it is still quite extensive. Sev-

ral papers do not repeat k-means at all [6,7,37] .

The choice of the initialization and the number of repeats might

lso vary depending on the motivation. The aim of using k-means

an be to have a good clustering result, or to provide merely a

oint of comparison. In the first case, all the good tricks are used,

uch as more repeats and better initialization. In the second case,

ome simpler variant is more likely applied. A counter-example is

n [34] where serious effort s seem to be made to ensure all algo-

ithms have the best possible performance.

In this paper we study the most popular initialization heuris-

ics. We aim at answering the following questions. First, to what

xtent k-means can be improved by a better initialization tech-

ique? Second, can the fundamental weakness of k-means be elim-

nated simply by repeating the algorithm several times? Third, can

e predict under which conditions k-means works, and which it

ails?

In a recent study [39] , it was shown that k-means performs

oorly when the clusters are well separated. Here we will answer

ow much a better initialization or repeats can compensate for this

eakness. We will also show that dimensionality does not matter

or most variants, and that unbalance of cluster sizes deteriorates

he performance of most initializations.

The rest of the paper is organized as follows. In Section 2 , we

efine the methodology and data. We also give brief review of

he properties of the standard k-means algorithm. Different ini-

ialization techniques are then studied in Section 3 . Experimental

nalysis is performed in Section 4 , and conclusions are drawn in

ection 5 .

. Performance of k-means

Following the recommendation of Jain [8] , we make a clear dis-

inction between the clustering method and algorithm. Clustering

ethod refers to the objective function, and clustering algorithm

o the process optimizing it. Without this distinction, it would be

asy to draw wrong conclusions.

For example, k-means has been reported to work poorly with

nbalanced cluster sizes [40] , and that it can cause large clusters to

e wrongly split and smaller clusters wrongly merged [41] . These

bservations themselves are correct but they miss the root cause,

hich is the SSE objective function. Even an optimal algorithm

inimizing SSE would end up with the same incorrect result. Such

bservations therefore relate to the objective function, and not to

he k-means algorithm .
Fig. 2 demonstrates the situation. An algorithm minimizing SSE

ould find spherical clusters regardless of the data. If the data con-

ain non-spherical clusters, they would be divided into spherical

ub-clusters, usually along the direction of the highest variance.

lusters of variable sizes would also cause large clusters to be split,

nd smaller ones to be merged. In these cases, if natural clusters

re wanted, a better clustering result could be achieved by using

n objective function based on Mahalanobis distance [42] or Gaus-

ian mixture model [43] instead of SSE.

.1. Datasets

In this paper, we focus on the algorithmic performance of k-

eans rather than the choice of the objective function. We use the

lustering basic benchmark [39] as all these datasets can be clus-

ered correctly with SSE. Therefore, any clustering errors made by

-means must originate from the properties of the algorithm, and

ot from the choice of wrong objective function. The datasets are

ummarized in Table 1 . They are designed to vary the following

roperties as defined in [39] :

• Cluster overlap

• Number of clusters
• Dimensionality
• Unbalance of cluster sizes

.2. Methodology

To measure the success of the algorithm, the value of the objec-

ive function itself is the most obvious measure. Existing literature

eviews of k-means use either SSE [19,22] , or the deviation of the

lusters [20] , which is also a variant of SSE. It is calculated as:

SE =

N ∑

i =1

∥∥x i − c j
∥∥2

(1)

here x i is a data point and c j is its nearest centroid. In [39] , SSE

s also measured relative to the SSE-value of the ground truth so-

ution (SSE opt):

 − ratio =

(SSE − SS E opt)

SS E opt
(2)

If the ground truth is known, external indexes such as adjusted

and index (ARI), Van Dongen (VD), variation of information (VI) or

ormalized mutual information (NMI) can also be used [22] . A com-

arative study of several suitable indexes can be found in [44] . The

umber of iterations have also been studied in [19,22] , and the

ime complexities reported in [22] .

The problem of SSE, and most of the external indexes, is that

he raw value does not tell how significant the result is. We there-

ore use Centroid Index (CI) [45] , which indicates how many cluster

98 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 1

Basic clustering benchmark [39] . The data is publicly available here: http://cs.uef.fi/sipu/datasets/ .

Dataset Varying Size Dimensions Clusters Per cluster

A Number of clusters 30 0 0–750 0 2 20–50 150

S Overlap 50 0 0 2 15 333

Dim Dimensions 1024 32–1024 16 64

G2 Dimensions + overlap 2048 2–1024 2 1024

Birch Structure 10 0,0 0 0 2 100 10 0 0

Unbalance Balance 6500 2 8 10 0–20 0 0

Fig. 3. Performance of k-means with the A2 dataset: CI = 4, SSE = 3.08 (�10 10),

ε = 0.52.

t

t

d

v

a

r

R

v

D

h

t

b

s

t

s

c

t

c

c

c

o

s

t

p

t

w

p

s

3

s

r

o

t

T

p

t

c
centroids are wrongly located. Specifically, the value CI = 0 implies

that the clustering structure is correct with respect to the ground

truth.

An example is shown in Fig. 3 , where k-means provides

SSE = 3.08 × 10 10 , which is 52% higher than that of the ground

truth. But what do these numbers really mean? How significant is

the difference? On the other hand, the value CI = 4 tells that ex-

actly four real clusters are missing a centroid.

Based on CI, a success rate (%) was also defined in [39] to mea-

sure the probability of finding the correct clustering. For example,

when running k-means 50 0 0 times with dataset A2 (Fig. 3), CI = 0

was never reached, and thus, its success rate is 0%. Another exam-

ple with dataset S2 (Fig. 4) results in success rate of 1/6 = 17%.

The success rate has an important implication. Any value higher

than 0% indicates that the correct clustering can be found simply

by repeating k-means. For a success rate p , the expected number of

repeats is 1/ p. For instance, p = 50% indicates that expected number

of repeats is 2; and p = 1% indicates 100 repeats. Even with as low

value as p = 0.1% the correct solution is expected to be found in

10 0 0 repeats. This is time consuming, but feasible. However, for

some of our datasets the success rate is so low that the number

repeats would be unreasonably high. For example, even 20 0,0 0 0

repeats produces 0% success rate in our experiments with some

datasets.

2.3. Properties of k-means

We next briefly summarize the main properties of the k-means

algorithm. Generally the clustering problem is the easier the more

the clusters are separated. However, in [39] it was found that for

k-means it is just the opposite; the less overlap the worse the clus-
ering performance, see Fig. 5 . This is a fundamental weakness of

he k-means algorithm.

In [39] , it was also found that the number of errors has linear

ependency on the number of clusters (k). For example, the CI-

alues for the A sets with k = 20, 35, 50 clusters were measured

s CI = 2.5, 4.5, 6.5, respectively. The relative CI-values (CI/ k) cor-

espond to a constant of 13% of centroids being wrongly located.

esults with the subsets of Birch2 (varying k from 1 to 100) con-

erge to about 16% when k approaches to 100, see Fig. 6 .

Two series of datasets are used to study the dimensionality:

IM and G2. The DIM sets have 16 well separated clusters in

igh-dimensional space with dimensionality varying from D = 32

o 1024. Because of clear cluster separation, these datasets should

e easy for any good clustering algorithm to reach CI = 0 and 100%

uccess rate. However, k-means again performs poorly; it obtains

he values CI = 3.6 and 0% success rate regardless of the dimen-

ionality. The reason for the poor performance is again the lack of

luster overlap, and not the dimensionality.

The results with the G2 sets confirmed the dependency be-

ween the dimensionality and the success rate. We allocated four

entroids with 3:1 unbalance so that the first cluster had three

entroids and the second only one. We then ran k-means and

hecked whether it found the expected 2:2 allocation by moving

ne of the three centroids to the second group. The results in Fig. 7

how that the overlap is the mediating factor for the success rate:

he more overlap, the lower the success rate of k-means.

The cluster size unbalance was also shown in [39] to result in

oor performance. The main reason for this was the random ini-

ialization, which cannot pick the initial centroids in a balanced

ay. Another reason was the k-means iterations which fail to im-

rove the initial solution due to lack of cluster overlap.

The effect of the different properties of data on k-means can be

ummarized as follows:

Property: Effect:

Cluster overlap Overlap is good

Number of clusters Linear dependency

Dimension No direct effect

Unbalance Bad

. K-means initialization techniques

Next we study how much these problems of k-means can be

olved by the following two improvements:

• Better initialization

• Repeating k-means

K-means is a good algorithm for local fine-tuning but it has se-

ious limitation to relocate the centroids when the clusters do not

verlap. It is therefore unrealistic to expect the clustering problem

o be solved simply by inventing a better initialization for k-means.

he question is merely, how much a better initialization can com-

ensate for the weakness of k-means.

Any clustering algorithm could be used as an initialization

echnique for k-means. However, solving the location of initial

entroids is not significantly easier than the original clustering

http://cs.uef.fi/sipu/datasets/

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 99

Fig. 4. Centroid index measures how many real clusters are missing a centroid (+), or how many centroids are allocated to wrong cluster (−). Six examples are shown for

S2 dataset.

Fig. 5. Success rate (%) of k-means, measured as the probability of finding correct clustering, improves when the cluster overlap increases.

0 %

5 %

10 %

15 %

20 %

0 10 20 30 40 50 60 70 80 90 100

Number of clusters (k)

R
el

at
iv

e
C

I-v
al

ue

Birch2
subsets

K-means

Repeated
k-means

Fig. 6. CI-value of k-means increases linearly with k , and relative CI converges to

16% with the Birch2 subsets.

p

t

a

i

t

[

l

a

[

c

l

p

g

c

f

q

[

t

w

5

o

[

t

i

u

t

roblem itself. Therefore, for an algorithm to be considered as ini-

ialization technique for k-means, in contrast to being a standalone

lgorithm, we set the following requirements:

1. Simple to implement

2. Lower (or equal) time complexity than k-means
3. No additional parameters
First, the algorithm should be trivial, or at least very easy to

mplement. Measuring implementation complexity can be subjec-

ive. The number of functions and the lines of code were used in

16] . Repeated k-means was counted to have 5 functions and 162

ines of C-code. In comparison, random swap [11,12] , fast agglomer-

tive clustering variant [30] , and sophisticated splitting algorithm

46] had 7, 12 and 22 functions, and 226, 317 and 947 lines of

odes, respectively. Random initialization had 2 functions and 26

ines of code.

Second, the algorithm should have lower or equal time com-

lexity compared to k-means. Celebi et al. [22] categorizes the al-

orithms to linear, log-linear and quadratic based on their time

omplexities. Spending quadratic time cannot be justified as the

astest agglomerative algorithms are already working in close to

uadratic time [30] . A faster O(N log N) time variant also exists

47] but it is significantly more complex to implement and requires

o calculate k-near neighbors (KNN). K-means requires O(gkN) time,

here g is the number of iterations and typically varies from 20 to

0.

The third requirement is that the algorithm should be free

f parameters; others than k . For instance, there are algorithms

25,48] that select the first centroid using some simple rule, and

he rest greedily by cluster growing, based on whether the point

s within a given distance. Density-connectivity criterion was also

sed in [49] . Nevertheless, this approach requires one or more

hreshold parameters.

100 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 2

Summary of the initialization techniques compared in this paper. Time refers to the aver-

age processing time with the A3 dataset (N = 7500, k = 50). Randomized refers to whether

the technique include randomness naturally. Randomness will be needed for the repeated

k-means variant later.

Technique Ref. Complexity Time Randomized Parameters

Random partitions [3] O(N) 10 ms Yes –

Random centroids [1,2] O(N) 13 ms Yes –

Maxmin [54] O(kN) 16 ms Modified –

kmeans ++ [59] O(kN) 19 ms Yes –

Bradley [31] O(kN + Rk 2) 41 ms Yes R = 10, s = 10%

Sorting heuristic [62] O(N log N) 13 ms Modified –

Projection-based [72] O(N log N) 14 ms Yes –

Luxburg [50] O(kN log k) 29 ms Yes –

Split [46,68] O(N log N) 67 ms Yes k = 2

Fig. 7. The effect of overlap for the success of k-means with the G2 datasets. The

numbers circled are for the three sample datasets shown above. The dataset names

are coded as G2-DIM-SD, where DIM refers to the dimensions and SD to the stan-

dard deviation; the higher the SD, the more the two clusters overlap.

t

o

m

c

p

S

t

t

f

t

m

a

c

r

s

a

3

t

c

s

t

d

n

f

b

e

h

m

t

f

b

t

t

t

t

m

t

t

e

t

r

p

The most common heuristics are summarized in Table 2 . We

categorize them roughly into random, furthest point, sorting , and

projection-based heuristics. Two standalone algorithms are also

considered: Luxburg [50] and Split algorithm. For a good review of

several others we refer to [51] .

3.1. Random centroids

By far the most common technique is to select k random data

objects as the set of initial centroids [1,2] . It guarantees that ev-

ery cluster includes at least one point. We use shuffling method

by swapping the position of every data point with another ran-

domly chosen point. This takes O(N) time. After that, we take the

first k points from the array. This guarantees that we do not select
he same point twice, and that the selection is independent on the

rder of the data. For the random number generator we use the

ethod in [52] . We refer to this initialization method as random

entroids .

Slightly different variant in [2] selects simply the first k data

oints. This is the default option in the Quick Cluster in IBM SPSS

tatistics [53] . If the data is in random order the result is effec-

ively the same as random centroids, except that it always provides

he same selection.

We note that the randomness is actually a required property

or the repeated k-means variant. This is because we must be able

o produce different solutions at every repeat. Some practitioners

ight not like the randomness and prefer deterministic algorithms

lways producing the same result. However, both of these goals

an actually be achieved if so wanted. We simply use pseudo-

andom number generator with the same seed number . In this way,

ingle runs of k-means will produce different result but the overall

lgorithm still produces always the same result for the same input.

.2. Random partitions

An alternative to random centroids is to generate random par-

itions. Every point is put into a randomly chosen cluster and their

entroids are then calculated. The positive effect is that it avoids

electing outliers from the border areas. The negative effect is that

he resulting centroids are concentrated in the central area of the

ata due to the averaging. According to our observations, the tech-

ique works well when the clusters are highly overlapped but per-

orms poorly otherwise, see Fig. 8 .

According to [19] , the random partition avoids the worst case

ehavior more often than the random centroids. According to our

xperiments, this is indeed the case but only when the clusters

ave high overlap. The behavior of the random partition is also

ore deterministic than that of random centroids. This is because

he centroids are practically always near the center of the data. Un-

ortunately, this also reduces the benefits of the repeated k-means

ecause there is very little variation in the initial solutions, and

herefore, also the final solutions often become identical.

Steinley [29] repeats the initialization 50 0 0 times and selects

he one with the smallest SSE. However, repeating only the ini-

ialization does not fix the problem. Instead, it merely slows down

he initialization because it takes 50 0 0 �N steps, which is typically

uch more than O(kN).

Thiesson et al. [24] calculate the mean point of the data set and

hen add random vectors to it. This effectively creates initial cen-

roids like a cloud around the center of the data, with very similar

ffect as the random partition. The size of this cloud is a parame-

er. If it is set up high enough, the variant becomes similar to the

andom centroids technique, with the exception that it can select

oints also from empty areas.

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 101

Fig. 8. Initial centroids created by random partition (left), by Steinley’s variant (middle), and the final result after the k-means iterations (right).

v

o

v

c

3

I

a

a

o

f

k

b

t

w

t

i

p

w

c

o

t

t

A

g

i

h

u

t

T

a

i

f

[

r

w

k

c

p

l

c

w

t

[

r

o

tance to its nearest centroid.
Fig. 8 shows the effect of the random partition and Steinley’s

ariant. Both variants locate the initial centroids near the center

f the data. If the clusters have low overlap, k-means cannot pro-

ide enough movement and many of the far away clusters will lack

entroids in the final solution.

.3. Furthest point heuristic (Maxmin)

Another popular technique is the furthest point heuristic [54] .

t was originally presented as standalone 2-approximate clustering

lgorithm but has been widely used to initialize k-means. It selects

n arbitrary point as the first centroid and then adds new centroids

ne by one. At each step, the next centroid is the point that is

urthest (max) from its nearest (min) existing centroid. This is also

nown as Maxmin [19,21,22,55] .

Straightforward implementation requires O(k 2 N) time but it can

e easily reduced to O(kN) as follows. For each point, we main-

ain pointer to its nearest centroid. When adding a new centroid,

e calculate the distance of every point to this new centroid. If

he new distance is smaller than to the previous nearest, then it

s updated. This requires N distance calculations. The process is re-

eated k times, and the time complexity is therefore O(kN) in total,

hich is the same as one iteration of k-means. Further speedup

an be achived by searching for the furthest point in just a subset

f the data [56] .

There are several alternative ways to choose the first cen-

roid. In the original variant the selection is arbitrary [54] . In [55] ,

he furthest pair of points are chosen as the first two centroids.
nother variant selects the one with maximum distance to the ori-

in [57] because it is likely to be located far from the center. Max-

mum density has also been used [51,58] .

K-means ++ [59] is a randomized variant of the furthest point

euristic. It chooses the first centroid randomly and the next ones

sing a weighted probability p i = cost i /SUM(cost i), where cost i is

he squared distance of the data point x i to its nearest centroids.

his algorithm is an O(log k)-approximation to the problem. We

lso implement k-means ++ for our tests because of its popularity.

Chiang and Mirkin [55] recalculate all the centroids after updat-

ng the partitions, and the next centroid is selected as the farthest

rom the recently added centroid. Slightly more complex variant

23] selects the point that decreases the objective function most. It

equires calculation of all distances between every pair of points,

hich takes O(N

2) time. Thus, it does not qualify our criteria for

-means initialization. With the same amount of computation we

an already run implement agglomerative clustering algorithm.

Other authors also weight the distances by the density of the

oint [51,58] . This reduces the probability that outliers are se-

ected. Erisoglu et al. [60] use cumulative distance to all previous

entroids instead of the maxmin criterion. However, this performs

orse because it can easily choose two nearby points provided

hat they have large cumulative distance to all other centroids [61] .

We use here a variant that selects the first point randomly

54,59] . This adds randomness to the process as required by the

epeated k-means variant. The next centroids we select using the

riginal maxmin criterion, i.e. choosing the point with biggest dis-

102 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Fig. 9. Example of the maxmin heuristic for S3 dataset. The blue dots are the initial

and the red dots the final centroids. The trajectories show their movement during

the k-means iterations. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

d

i

d

o

d

s

r

p

d

m

c

f

t

w

e

m

b

a

a

f

m

o

t

h

t

s

3

i

t

r

s

t

i

h

o

o

t

j

i

a

t

t

s

m

d

a

f

t
Maxmin technique helps to avoid worst case behavior of the

random centroids, especially when the cluster sizes have serious

unbalance. It also has tendency to pick up outlier points from the

border areas, which leads to slightly inferior performance in the

case of datasets with high overlap (S3 and S4). However, k-means

usually works better with such datasets [39] , which compensates

for the weakness of Maxmin. Fig. 9 demonstrates the performance

of the Maxmin technique.

3.4. Sorting heuristics

Another popular technique is to sort the data points according

to some criterion. Sorting requires O(N log N) time, which is less

than that of one k-means iteration, O(kN), assuming that log N ≤ k .

After sorting, k points are selected from the sorted list using one

of the following heuristics:

• First k points.
• First k points while disallowing points closer than ε to already

chosen centroids.
• Every (N / k)th point (uniform partition)

For the sorting, at least the following criteria have been consid-

ered:

• Distance to center point [62]
• Density [21,63]
• Centrality [64]
• Attribute with the greatest variance [65]

Hartigan and Wong [62] sort the data points according to their

distance to the center of the data. The centroids are then selected

as every N / k th point in this order. We include this variant in our

tests. To have randomness, we choose a random data point as a

reference point instead of the center. This heuristic fulfills our re-

quirements: it is fast, simple, and requires no additional parame-

ters.

Astrahan [63] calculates density as the number of other points

within a distance d . First centroid is the point with the highest
1
ensity, and the remaining k -1 centroids are chosen at a decreas-

ng order, with the condition that they are not closer than distance

 2 from an already chosen centroid. Steinley and Brusco [21] rec-

mmends using the average pairwise distance (pd) both for d 1 and

 2 . This makes the technique free from parameters but it is still

low, O(N

2) time, for calculating the pairwise distances.

It would be possible to simplify this technique further and use

andom sampling: select N pairs of points, and use this subsam-

le to estimate the value of pd . However, the calculation of the

ensities is still the bottleneck, which prevents this approach from

eeting the requirements for k-means initialization as such.

Cao et al. [64] proposed a similar approach. They use a primary

riterion (cohesion) to estimate how central a point is (how far

rom boundary). Secondary threshold criterion (coupling) is used

o prevent centroids from being neighbors.

Al-Daoud [65] sorts the data points according to the dimension

ith the largest variance. The points are then partitioned into k

qual size clusters. Median of each cluster is selected instead of the

ean. This approach belongs to a more general class of projection-

ased techniques where the objects are mapped to some linear

xis such as diagonal or principal axis.

The sorting heuristic would work if the clusters were well sep-

rated, and all have different criterion value (such as the distance

rom center point). This actually happens with the very high di-

ensional DIM datasets in our benchmark. However, with most

ther datasets the clusters tend to be randomly located in respect

o the center point, and it is unlikely that all the clusters would

ave different criterion values. What happens in practice, is that

he selected centroids are just random data points in the space,

ee Fig. 10 .

.5. Projection-based heuristics

Sorting heuristics can also be seen as a projection of the points

nto a one-dimensional (non-linear) curve in the space. Most cri-

eria would just produce an arbitrary curve connecting the points

andomly, and lacking convexity or any sensible shape. However,

everal linear projection-based techniques have been considered in

he literature:

• Diagonal axis [65]
• Single axis [66,67]
• Principal axis [46,67–71]
• Two random points [72]
• Furthest points [72]

After the projection is performed, the points are partitioned

nto k equal size clusters similarly as with the sorting-based

euristics.

Yedla et al. [66] sort the points according to their distance to

rigin, and then select every N / k th point. If the origin is the center

f data, this is essentially the same technique as in [62] . If the at-

ributes are non-negative, then this is essentially the same as pro-

ecting the data to the diagonal axis. Such projection is trivial to

mplement by calculating the average of the attribute values. It has

lso been used for speeding-up nearest neighbor searches in clus-

ering in [73] .

Al-Daoud [65] sorts the points according to the dimension with

he largest variance. The points are then partitioned into k equal

ize clusters. Median of each cluster is selected instead of the

ean. This adapts to the data slightly better than just using the

iagonal.

A more common approach is to use principal axis , which is the

xis of projection that maximizes variance. It has been used ef-

ectively in divisive clustering algorithms [46,67–71] . Calculation of

he principal axis takes O(DN)-O(D

2 N) depending on the variant

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 103

Fig. 10. Examples of sorting and projection-based techniques.

Fig. 11. Examples of the two projection-based heuristics for A2 dataset: random points (left), and the furthest point projections (right) [72] .

[

t

p

r

r

m

t

W

P

d

t

e

a

s

d

I

p

h

H

m

i

a

T

t

3

s

c

t

i

s

d

p

c

s

p

p

d

t

c

t

1

i

i

o

a

c

h

o

fi

O

n

f

a
46] . A more complex principal curve has also been used for clus-

ering [74] .

We consider two simple variants: random and two furthest

oints projection as studied in [72] . The first heuristic takes two

andom data points and projects to the line passing by these two

eference points. The key idea is the randomness; single selection

ay provide poor initialization but when repeating several times,

he chances to find one good initialization increases, see Fig. 11 .

e include this technique into our experiments and refer to it as

rojection .

The second heuristic is slightly more deterministic but still ran-

om. We start by selecting a random point, and calculate its fur-

hest point. The projection axis is the line passing by these two ref-

rence points. We again rely on randomness, but now the choices

re expected to be more sensible, potentially providing better re-

ults using fewer trials. However, according to [72] this variant

oes not perform any better than the simpler random heuristic.

Projection works well if the data has one-dimensional structure.

n [72] , projective value is calculated to estimate how well a given

rojection axis models the data. From our data, Birch2 and G2 have

igh projective values and suitable for projection-based technique.

owever, with all other datasets, the projection does not make

uch more sense than the naïve sorting heuristics, see Fig. 10 .

We also note that projection-based techniques also general-

ze to segmentation-based clustering, where k -1 dividing planes

re searched simultaneously using dynamic programming [74,75] .

hese clustering results usually require fine-tuning by k-means at

he final step, but nevertheless, they are standalone algorithms.

.6. Density-based heuristics

Density was already used both with the furthest point and the

orting heuristics, but the concept deserves a little bit further dis-

ussion. The idea of using density itself is appealing but it is not
rivial how to calculate the density, and how to use it in cluster-

ng. Especially since the initialization technique should be fast and

imple.

The main bottleneck of the algorithms is how to calculate the

ensity is estimated for the points. There are three common ap-

roaches for this:

• Buckets
• ε-radius circle
• k-nearest neighbors (KNN)

The first approach divides the space by a regular grid, and

ounts the frequency of the points in every bucket [76] . The den-

ity of a point is then inherited from the bucket it is in. This ap-

roach is feasible in low-dimensional space but would become im-

ractical in higher-dimensional spaces. In [61] , the problem is ad-

ressed by processing the dimensions independently in a heuris-

ic manner. Other authors have used kd-tree [51,57] or space-filling

urve [77] to partition the space into buckets containing roughly

he same number of points. In [51,57] , the number of buckets is

0 �k .

The other two approaches calculate the density for every point

ndividually. The traditional one is to define a neighborhood us-

ng a cutoff threshold (ε-radius), and then counting the number

f other points within this neighborhood [21,63,64,78] . The third

pproach finds the k-nearest neighbors of a point [79] , and then

alculates the average distance to the points within this neighbor-

ood. Lemke and Keller calculate the density between every pair

f points [49] .

The bottleneck of the last two approaches is that we need to

nd the points that are within the neighborhood. This requires

(N

2) distance calculations in both cases. Several speed-up tech-

iques and approximate variants exist [80,81] but none that is both

ast and simple to implement. Calculating density values only for

 subset of size SQRT(N) would reduce the complexity to O(N

1.5)

104 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Fig. 12. General principle of repeated k-means (RKM). The key idea is that the ini-

tialization includes randomness to produce different solutions at every repeat.

p

T

s

t

[

3

w

e

T

c

r

t

n

R

t

a

c

s

s

t

j

d

f

r

p

w

s

t
depending whether the distances are calculated to all points or

only within the subset. In [82] , density is calculated in each di-

mension separately, and then final approximation is obtained by

summing up the individual densities. This allows rapid O(DN) time

estimation with more accurate estimation than the sub-sampling

approach.

Once calculated, the density can be used jointly with the fur-

thest point heuristic, with the sorting heuristic, or some of their

combination. For example, in [51] the furthest point heuristic was

modified by weighting the distance by its density so that outliers

are less likely chosen. The density peaks algorithm in [78] finds for

every point its nearest neighbor with higher density. It then ap-

plies sorting heuristic based on one of the two features: density

and the distance to its neighbor. The method works as a standalone

algorithm and does not require k-means at all.

Luxburg [50] first selects k ∗SQRT(k) preliminary clusters using

k-means and then eliminates the smallest ones. After this, the fur-

thest point heuristic is used to select the k clusters from the pre-

liminary set of clusters. When minimizing SSE, the size of the clus-

ters correlates to their density. Thus, Luxburg’s technique indirectly

implements a density-based approach which favors clusters of high

density. We include this technique in our experiments although it

does not satisfy our simplicity criterion.

We also note that there are several standalone clustering algo-

rithms based on density [49,78,83,84] . However, they do not fit to

our requirements for speed and simplicity. If combined with the

faster density estimation in [82] , some of these techniques could

be made competitive also in speed.

3.7. Splitting algorithm

Split algorithm puts all points into a single cluster, and then it-

eratively splits one cluster at a time until k clusters are reached.

This approach is seemingly simple and tempting to consider for

initializing k-means. However, there are two non-trivial design

choices to make: which cluster to split, and how to split it. We

therefore consider split mainly as a standalone algorithm, but dis-

cuss briefly some existing techniques that have been used within

k-means.

Linde et al. [85] uses binary split for initialization of their LBG

algorithm in the vector quantization context. Every cluster is split

by replacing the original centroid c by c + ε and c - ε, where ε refers

to a random vector. Splitting every cluster avoids the question of

which cluster to split but it does not have any real speed benefit.

In [46] , ε was calculated as the standard deviation of the points in

the cluster, in each dimension separately.

Projection-based approaches are also suitable for the splitting

algorithm. The idea is to divide a chosen cluster according to a

hyperplane perpendicular to the projection axis. It is possible to

find the optimal choice of the cluster to be split, and the opti-

mal location of the hyperplane in O(N) time [46,68] . This results

in a fast, O(N �log N �log k) time algorithm, but the implementation

is quite complex. It requires 22 functions and 947 lines of codes,

compared to 5 functions and 162 lines in repeated k-means [16] .

There is also a split-kmeans variant that applies k-means itera-

tion after every split in [46] , later popularized under the name Bi-

secting k-means in document clustering [86] . However, this would

increase the time complexity to O(k 2 N), which equals to O(N

2) if

k ≈ SQRT(N). Tri-level k-means [87] performs the clustering in two

stages. It first creates less clusters than k , and then splits the clus-

ters with highest variation before applying the traditional k-means.

All these variants are definitely standalone algorithms, and do not

qualify as an initialization technique here.

In this paper, we therefore implement a simpler variant. We

always select the biggest cluster to be split. The split is done by

selecting two random points in the cluster. K-means is then ap-
lied but only within the cluster that was split as done in [68] .

he main difference to the bisecting k-means [86] and its original

plit + kmeans variant in [46] , is that the time complexity sums up

o only O(N �log N); a proof can be easily derived from the one in

46] .

.8. Repeated k-means

Repeated k-means performs k-means multiple times starting

ith different initialization, and then keeping the result with low-

st SSE-value. This is sometimes referred as multi-start k-means .

he basic idea of the repeats is to increase the probability of suc-

ess. Repeated k-means can be formulated as a probabilistic algo-

ithm as follows. If we know that k-means with a certain initializa-

ion technique will succeed with a probability of p , the expected

umber of repeats (R) to find the correct clustering would be:

 = 1 /p

In other words, it is enough that k-means succeeds even some-

imes (p > 0). It is then merely a question of how many repeats

re needed. Only if p ≈ 0 the number of repeats can be unrealisti-

ally high. For example, standard k-means with random centroids

ucceeds 6–26% of the time with the S1-S4 datasets. These corre-

ponds to R = 7 to 14 repeats, on average.

If the initialization technique is deterministic (no randomness),

hen it either succeeds (p = 100%) or fails (p = 0%) every time. To

ustify the repeats, a basic requirement is that there is some ran-

omness in the initialization so that the different runs produce dif-

erent results. Most techniques have the randomness implicitly. The

est of the techniques we modify as follows:

• Rand-P Already included
• Rand-C Already included
• Maxmin First centroid randomly
• Kmeans ++ Already included
• Bradley Already included
• Sorting Reference point randomly
• Projection Reference points randomly
• Luxburg Already included
• Split Split centroids randomly

Repeats add one new parameter R . Since p is not known in

ractice, we cannot derive value for R automatically. In this paper,

e use R = 100 unless otherwise noted. Fig. 12 shows the overall

cheme of the repeated k-means.

Repeating k-means also multiplies the processing time by a fac-

or of R . It is possible to compensate for this by dividing the data

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 105

i

s

s

s

i

i

i

t

i

c

t

O

t

m

w

m

b

F

t

4

t

i

s

c

m

4

t

t

t

t

(

v

a

o

o

(

b

(

o

L

k

L

3

a

d

t

t

2

t

4

e

k

s

s

i

o

k

D

t

W

m

c

c

i

s

t

4

m

s

n

a

d

F

t

h

o

o

v

e

p

B

e

4

d

m

t

t

a

s

s

m

c
nto random subsets. For instance, if we divide the data into R sub-

ets of size N / R , the total processing time would be roughly the

ame as that of a single run.

For example, Bradley and Fayyad [31] apply k-means for a sub-

ample of size N / R , where R = 10 was recommended. Each sample

s clustered by k-means starting with random centroids. However,

nstead of taking the best clustering of the repeats, a new dataset

s created from the R �k centroids. This new dataset is then clus-

ered by repeated k-means (R repeats). The total time complexity

s R �k �(N / R) + R �k 2 = kN + Rk 2 , where the first part comes from

lustering the sub-samples, and the second part from clustering

he combined set. If k = SQRT(N), then this would be N

1. 5 + RN .

verall, the algorithm is fast and satisfies the criteria for initializa-

ion technique.

Bahmani et al. [88] have a similar approach. They repeat k-

eans ++ R = O (log N) times to obtain R �k preliminary centroids,

hich are then used as a new dataset for clustering by standard k-

eans. They reported that R = 5 would be sufficient for the num-

er of repeats. In our experiments, we consider the Bradley and

ayyad [31] as an initialization, and use R = 100 repeats as with all

echniques.

. Experimental results

We study next the overall performance of different initialization

echniques, and how the results depend on the following factors:

• Overlap of clusters
• Number of clusters
• Dimensions
• Unbalance of cluster sizes

The overall results (CI-values and success rates) are summarized

n Table 3 . We also record (as fails) how many datasets provide

uccess rate p = 0%. This means that the algorithm cannot find the

orrect clustering even with 50 0 0 repeats. We test the following

ethods:

• Rand-P
• Rand-C

• Maxmin

• kmeans ++

• Bradley
• Sorting
• Projection

• Luxburg
• Split

.1. Overall results

CI-values : Random partition works clearly worse (CI = 12.4)

han the random centroids (CI = 4.5). Bradley and sorting heuris-

ics are slightly better (CI = 3.1 and 3.3), but the maxmin heuris-

ics (Maxmin and kmeans ++) are the best among the true ini-

ialization techniques (CI = 2.2 and 2.3). The standalone algorithms

Luxburg and Split) are better (CI = 1.2 and 1.2), but even they pro-

ide the correct result (CI = 0) only for the easiest dataset: DIM32.

Success rates : The results show that Maxmin is a reason-

ble heuristic. Its average success rate is 22% compared to 5%

f random centroids. It also fails (success rate = 0%) only in case

f three datasets; the datasets with a high number of clusters

A3, Birch1, Birch2). Random partition works with S2, S3 and S4

ut fails with all the other 8 datasets. The standalone algorithms

Luxburg and Split) provide 40% success rates, on average, and fail

nly with Birch1 and Unbalance.

Effect of iterations : From the initial results we can see that

uxburg and Bradley are already standalone algorithms for which
-means brings only little improvement. The average CI-value of

uxburg improves only from 1.7 to 1.2 (∼30%), and Bradley from

.4 to 3.1 (∼10%). The latter is more understandable as k-means is

lready involved in the iterations. Split heuristic, although a stan-

alone algorithm, leaves more space for k-means to improve (61%).

Number of iterations : The main observation is that the easier

he dataset, and the better the initialization, the fewer the itera-

ions needed. The differences between the initialization vary from

0 (Luxburg) to 36 (Rand-C); with the exception of random parti-

ion (Rand-P), which takes 65 iterations.

.2. Cluster overlap

The results with the S1–S4 datasets (Table 3) demonstrate the

ffect of the overlap in general: the less overlap, the worse the

-means’ performance. Some initialization techniques can compen-

ate for this weakness. For example, the maxmin variants and the

tandalone algorithms reduce this phenomenon but do not remove

t completely. They provide better initial solution with S1 (less

verlap) than with S4 (more overlap), but the final result after the

-means iterations is still not much different. An extreme case is

IM32, for which all these better techniques provide correct solu-

ion. However, they do it even without k-means iterations!

Further tests with G2 confirm the observation, see Fig. 13 .

hen overlap is less than 2%, the k-means iterations do not help

uch and the result depends mostly on the initialization. If the

orrect clustering is found, it is found without k-means. Thus, the

lustering is solved by a better algorithm, not by better k-means

nitialization. In case of high overlap, k-means reaches almost the

ame result (about 88% success rate) regardless of how it was ini-

ialized.

.3. Number of clusters

The results with the A1–A3 datasets (Table 3) show that the

ore there are clusters the higher the CI-value and the lower the

uccess rate. This phenomenon holds for all initialization tech-

iques and it is not specific to k-means algorithm only. If an

lgorithm provides correct clustering with success rate p for a

ataset of size k , then p is expected to decrease when k increases.

ig. 14 confirms this dependency with the Birch2 subsets. Projec-

ion heuristic is the only technique that manages to capture the

idden 1-dimensional structure in this data. The success rate of all

ther true initialization techniques eventually decreases to 0%.

Fig. 15 shows that the CI-value has a near linear dependency

n the number of clusters. In most cases, the relative CI-value con-

erges to a constant when k approaches its maximum (k = 100). An

xception is Luxburg, which is less sensitive to the increase of k ;

roviding values CI = (0.82, 1.25, 1.42, 1.54) for k = (25, 50, 75, 100).

esides this exception, we conclude that the performance has lin-

ar dependency on k regardless of the initialization technique.

.4. Dimensions

We tested the effect of dimensions using the DIM and G2

atasets. Two variants (Maxmin, Split) solve the DIM sets al-

ost every time (99–100%), whereas Kmeans ++ and Luxburg solve

hem most of the times (≈95%), see Fig. 16 . Interestingly, they find

he correct result by the initialization and no k-means iterations

re needed. In general, if the initialization technique is able to

olve the clustering, it does it regardless of the dimensionality.

The sorting and projection heuristics are exceptions in this

ense; their performance actually improves with the highest di-

ensions. The reason is that when the dimensions increase, the

lusters eventually become so clearly separated that even such

106 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 3

Average CI-values before and after k-means iterations, success rates, and the number of iterations performed. The results are

averages of 50 0 0 runs. Fail records for how many datasets the correct solution was never found (success rate = 0%). From DIM

datasets we report only DIM32; the results for the others are practically the same. Note: The values for Impr. and Aver. columns

are calculated from precise values and not from the shown rounded values. (For interpretation of the references to color in the

Table the reader is referred to the web version of this article.)

CI-values (initial)

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver.

Rand-P 12.5 14.0 12.8 14.0 19.0 32.9 48.1 7.0 96.0 96.6 13.1 33.3

Rand-C 5.3 5.5 5.4 5.4 7.3 12.7 18.2 4.6 36.6 36.6 5.8 13.0

Maxmin 1.3 2.9 6.1 6.8 2.1 4.1 5.0 0.9 21.4 9.6 0.0 5.5

kmeans ++ 1.7 2.3 3.2 3.3 3.1 5.6 7.9 0.8 21.3 10.4 0.1 5.4

Bradley 1.0 0.7 0.6 0.5 1.5 3.4 5.3 3.3 5.7 13.6 1.7 3.4

Sorting 3.3 3.7 4.1 4.4 4.9 10.4 15.6 4.0 34.1 7.2 1.7 8.5

Projection 3.0 3.4 3.9 4.2 4.5 9.8 15.2 4.0 33.7 1.0 1.1 7.6

Luxburg 0.8 0.8 1.1 1.3 0.9 1.1 1.2 4.2 5.6 1.7 0.0 1.7

Split 0.5 0.8 1.4 1.4 1.3 2.4 3.5 4.5 12.0 2.7 0.0 2.8

CI-values (final)

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Impr.

Rand-P 3.3 0.6 1.2 0.4 6.0 10.7 17.9 4.0 11.3 75.6 5.3 12.4 63%

Rand-C 1.8 1.4 1.3 0.9 2.5 4.5 6.6 3.9 6.6 16.6 3.6 4.5 65%

Maxmin 0.7 1.0 0.7 1.0 1.0 2.6 2.9 0.9 5.5 7.3 0.0 2.2 62%

kmeans ++ 1.0 0.9 1.0 0.8 1.5 2.9 4.2 0.5 4.9 7.2 0.1 2.3 57%

Bradley 0.9 0.6 0.5 0.4 1.3 3.0 4.8 3.5 4.6 12.5 1.6 3.1 11%

Sorting 1.3 1.1 1.0 0.7 1.5 3.6 5.5 4.0 5.7 4.3 1.4 2.7 69%

Projection 1.2 0.9 0.8 0.6 1.2 3.3 5.2 4.0 5.3 0.2 0.9 2.2 71%

Luxburg 0.5 0.4 0.6 0.4 0.6 0.9 1.0 4.0 2.7 1.6 0.0 1.2 29%

Split 0.2 0.3 0.4 0.4 0.5 1.1 1.8 4.0 2.8 1.6 0.0 1.2 61%

Success-%

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Fails

Rand-P 0% 47% 5% 63% 0% 0% 0% 0% 0% 0% 0% 10% 8

Rand-C 3% 11% 12% 26% 1% 0% 0% 0% 0% 0% 0% 5% 6

Maxmin 37% 16% 36% 9% 15% 1% 0% 22% 0% 0% 100% 22% 3

kmeans ++ 21% 24% 18% 30% 7% 0% 0% 51% 0% 0% 88% 22% 4

Bradley 21% 46% 49% 64% 7% 0% 0% 0% 0% 0% 2% 17% 5

Sorting 12% 20% 22% 36% 10% 0% 0% 0% 0% 12% 15% 12% 4

Projection 16% 29% 30% 42% 18% 0% 0% 0% 0% 92% 34% 24% 4

Luxburg 52% 60% 45% 61% 45% 33% 31% 0% 0% 17% 95% 40% 2

Split 78% 75% 62% 64% 51% 17% 5% 0% 0% 10% 99% 42% 2

Number of iterations

Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver.

Rand-P 32 37 37 39 43 58 76 36 228 130 3 65

Rand-C 20 24 27 40 22 26 27 33 117 48 5 36

Maxmin 13 19 24 37 20 18 20 4 92 43 2 26

kmeans ++ 14 19 24 35 17 20 22 13 89 43 2 27

Bradley 13 12 13 17 12 17 19 24 77 45 2 23

Sorting 17 21 25 37 19 24 26 38 104 33 3 32

Projection 15 20 25 35 17 24 25 36 99 6 3 28

Luxburg 9 12 17 27 11 12 12 33 62 23 2 20

Split 7 11 19 27 12 16 18 35 65 27 2 22

0 %

20 %

40 %

60 %

80 %

100 %

Rand
-P

Rand
-C

Max
Min

KMplu
s

Brad
ley

Proj
ec

t

Sort
ing

Proj
RP

Spli
t

Low overlap

0 %

20 %

40 %

60 %

80 %

100 %

Rand
-P

Rand
-C

Max
Min

KMplu
s

Brad
ley

Proj
ec

t

Sort
ing

Proj
RP

Spli
t

High overlap

Fig. 13. Average success rates for all G2 datasets before (gray) and after k-means (white). The datasets were divided into two categories: those with low overlap < 2% (left),

and those with high overlap ≥2% (right).

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 107

0%

20%

40%

60%

80%

100%

10 20 30 40 50 60 70 80 90 100

Clusters (k)

Su
cc

es
s

ra
te

Maxmin
Luxburg

KM++

Split

Bradley

Projection

SortingRand-C

Fig. 14. Dependency of the success rate and the number of clusters when using the

subsets of Birch2 (B2-sub).

0%

5%

10%

15%

20%

10 20 30 40 50 60 70 80 90 100

Clusters (k)

R
el

at
iv

e
C

I-v
al

ue

Rand-C

Maxmin

Luxburg

KM++

Split

Sorting

Bradley

Projection

Fig. 15. Dependency of the relative CI-values (CI/ k) and the number of clusters

when using the subsets of Birch2 (B2-sub).

n

s

s

W

s

o

p

t

T

s

u

f

p

t

m

s

n

t

m

p

4

l

c

t

a

t

t

a

t

o

L

m

t

h

o

M

t

5

s

t

d

k

4

c

s

i

r

r

s

t

o

[

s

(

b

n

m

1
(

8
)

p 5 (1 − p)
3
.
aïve heuristics will be able to cluster the data. In general, the rea-

on for success or failure is not the dimensionality but the cluster

eparation.

The results with G2 confirm the above observation, see Fig. 16 .

ith the lowest dimensions, k-means iterations work because

ome cluster overlap exists. However, for higher dimensions the

verlap eventually disappears and the performance starts to de-

end mainly on the initialization. We also calculated how much

he success rate correlates with the dimensions and the overlap.

he results in Table 4 show that the final result correlates much

tronger with the overlap than with the dimensionality.

Since there is causality between dimensions and overlap, it is

nclear whether the dimensionality has any role at all. To test this

urther, we generated additional datasets with D = 2–16 and com-

ared only those with overlap = 2%, 4%, 8%. The results showed

hat success of the k-means iterations do not depend on the di-

ensions even when the clusters overlap.

To sum up, our conclusion is that k-means iterations cannot

olve the problem when the clusters are well separated. All tech-

iques that solve these datasets, do it already by the initialization

echnique without any help of k-means. When there is overlap, k-

eans works better. But even then, the performance does not de-

end on the dimensionality.
.5. Unbalance

Unbalance dataset shows one weakness of k-means. The prob-

em is not the different densities as such, but the unbalance of

luster sizes together with the separation of the clusters. If no cen-

roids are selected from the sparse area, k-means iterations man-

ge to move only one centroid into this area, and all other cen-

roids will remain in the dense area, see Fig. 17 . The probability

hat a single random centroid would be selected from the sparse

rea is p = 50 0/650 0 = 7%. To pick all required five centroids from

he sparse area would happen with probability of 0.01%, 1 i.e. only

nce every 8430 runs.

Besides Rand-C and Rand-P, sorting and projection heuristics,

uxburg and Split algorithms all fail with this data by allocating

ost centroids to the dense area. Bradley works only slightly bet-

er and often allocates two centroids to the sparse area. Maxmin

euristics work best because they rely more on distances than

n frequencies. K-means ++ typically misses one centroid whereas

axmin does the opposite and allocates one too many centroids in

he sparse area. They provide success rates of 22% (Maxmin) and

1% (KM ++), in contrast to the other techniques that result in 0%

uccess.

To sum up, success depends mainly on the goodness of the ini-

ialization; k-means iterations can do very little with this kind of

ata. If the correct clustering is found, it is found mainly without

-means.

.6. Repeats

We next investigate to what extent the k-means performance

an be improved by repeating the algorithm several times. Table 5

ummarizes the results. We can see that significant improvement

s achieved with all initialization techniques. When the success

ate of a single run of k-means is 2% or higher, CI = 0 can always be

eached thanks to the repeats. However, none of the variants can

olve all datasets. Overall performance of the different initialization

echniques can be summarized as follows:

• Random partition is almost hopeless and the repeats do not

help much. It only works when the clusters have strong overlap.

But even then, k-means works relatively well anyway regardless

of the initialization.
• Random centroids is improved from CI = 4.5 to 2.1, on average,

but still it can solve only three datasets (S2, S3, S4). Two other

datasets (S1, A1) could be solved with significantly more re-

peats, but not the rest.
• Maxmin variants are the best among the simple initialization

techniques providing CI = 0.7, on average, compared to 2.1 of

Rand-C. They still fail with four datasets. K-means ++ is not sig-

nificantly better than the simpler Maxmin.
• The standalone algorithms (Luxburg and Split) are the best.

They provide average value of CI = 1.2 without the repeats, and

CI = 0.4 with 100 repeats. They fail only with the Unbalance

datasets.

The improvement from the repeats is achieved at the cost

f increased processing time. We used the fast k-means variant

89] that utilizes the activity of the centroids. For the smaller data

ets the results are close to real-time, but with the largest dataset

Birch1, N = 10 0,0 0 0), the 10 0 repeats can take from 10–30 min.

We extended the tests and ran 20 0,0 0 0 repeats for A3 and Un-

alance datasets. The results in Table 6 show that Maxmin would

eed 216 repeats to reach CI = 0 with A3, on average, whereas k-

eans ++ would require 8696 repeats even though it finds CI = 1
5

108 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 4

Correlation of success rate with increasing overlap (left) and dimensions (right) with

the G2 datasets (3:3 centroid allocation test). Red > 0.60, Yellow = 0.30–0.53.

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg

Initial

Projection

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg
Final

Projection

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Bradley

MaxminRand-C

LuxburgInitial

Rand-P

Split
Sorting

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-P Maxmin

Bradley

Luxburg

Final

Split
Sorting

Rand-C

Fig. 16. Dependency of success rate on the dimensions when no overlap (DIM sets), and with overlap (G2 datasets). The results of G2 are average success rates for all

sd = 10–100 (G2-D-sd) with a given dimension D, before and after k-means.

already after 138 repeats. The results also show that Unbalance

dataset is difficult for almost all initialization techniques but the

maxmin heuristics are most suitable for this type of data.

4.7. Summary

We make the following observations:

• Random partition provides an initial solution of similar qual-

ity regardless of overlap, but the errors in initial solution can

be better fixed by k-means iterations when clusters have high

overlap. In this case it can even outperform random centroids.

However, repeats do not improve the results much, especially

with sets having many clusters (A3, Birch2).
• Cluster overlap is the biggest factor. If there is high overlap,

k-means iterations work well regardless of the initialization.

If there is no overlap, then the success depends completely

on the initialization technique: if it fails, k-means will also

fail.
• Practically all initialization techniques perform worse when the

number of clusters increases. Success of the k-means depends

linearly on the number of clusters. The more clusters, the more

errors there are, before and after the iterations.
• Dimensionality does not have a direct effect. It has a slight ef-

fect on some initialization techniques but k-means iterations

are basically independent on the dimensions.
• Unbalance of cluster sizes can be problematic especially for the

random initializations but also for the other techniques. Only

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 109

Table 5

Performance of the repeated k-means (100 repeats). The last two columns show the average results of all datasets without repeats (KM) and

with repeats (RKM). (For interpretation of the references to color in the Table the reader is referred to the web version of this article.)

t

5

t

r

(

m

t

w

w

f

m

i

a

o

b

m

m

d

d

t
the maxmin variants with 100 repeats can overcome this prob-

lem.

Table 7 summarizes how the four factors affect the different ini-

ialization techniques and the k-means iterations.

. Conclusions

On average, k-means caused errors with about 15% of the clus-

ers (CI = 4.5). By repeating k-means 100 times this errors was

educed to 6% (CI = 2.0). Using a better initialization technique

Maxmin), the corresponding numbers were 6% (CI = 2.1) with k-

eans as such, and 1% (CI = 0.7) with 100 repeats. For most pat-

ern recognition applications this accuracy is more than enough

hen clustering is just one component within a complex system.
The most important factor is the cluster overlap. In general,

ell separated clusters make the clustering problem easier but

or k-means it is just the opposite. When the clusters overlap, k-

eans iterations work reasonably well regardless of the initial-

zation. This is the expected situation in most pattern recognition

pplications.

The number of errors have a linear dependency on the number

f clusters (k): the more clusters, the more errors k-means makes,

ut the percentage remains constant. Unbalance of cluster sizes is

ore problematic. Most initialization techniques fail, and only the

axmin heuristics worked in this case. The clustering result then

epends merely on the goodness of the initialization technique.

Dimensionality itself is not a factor. It merely matters how the

imensions affect the cluster overlap. With our data, the clus-

ers became more separated when the dimensions were increased,

110 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

Table 6

Number of repeats in RKM to reach certain CI-level. Missing values (−)

indicate that this CI-level was never reached during the 20 0,0 0 0 repeats.

A3

CI-value

Initialization 6 5 4 3 2 1 0

Rand-P – – – – – – –

Rand-C 2 4 11 54 428 11,111 –

Maxmin 1 3 14 216

Kmeans ++ 1 2 3 14 138 8696

Bradley 1 2 8 58 1058 33,333

Sorting 1 2 4 13 73 1143 –

Projection 1 2 3 9 46 581 18,182

Luxburg 1 3

Split 1 2 9

Unbalance

CI-value

Initialization 6 5 4 3 2 1 0

Rand-P 1 97 8333 – –

Rand-C 1 16 69 1695 100k

Maxmin 1 4

Kmeans ++ 1 2

Bradley 1 3 6 70 1471

Sorting 1 – – – –

Projection 1 935 16,667 – –

Luxburg 1 59 16,667 – –

Split 1 9524 – – –

Table 7

How the four factors have effect on the performance of the initialization and on

the k-means iterations.

Method Overlap Clusters Dimension Unbalance

Rand-P No effect Constant No effect Very bad

Rand-C No effect Constant No effect Very bad

Maxmin Bad Constant No effect A bit worse

kmeans ++ A bit worse Constant No effect A bit worse

Bradley Good Constant No effect Bad

Sorting A bit worse Constant No effect Very bad

Projection A bit worse Constant No effect Very bad

Luxburg A bit worse Minor effect No effect Very bad

Split A bit worse Constant No effect Very bad

KM iterations Good Constant No effect No effect

Fig. 17. Examples of the initialization technique on the Unbalance dataset. The only

techniques that do not badly fail are the maxmin heuristics. The numbers indicate

the order in which the centroids are selected.

t

g

s

i

s

c

U

s

b

f

r
which in turn worsened the k-means performance. Besides this in-

direct effect, the dimensions did not matter much.

With real data the effect might be just the opposite. If the fea-

tures (attributes) are added in the order of their clustering capa-

bility, it is expected that the clusters would become more overlap-

ping when adding more features. As a result, k-means would start

to work better but the data itself would become more difficult to

cluster, possibly losing the clustering structure. And vice versa, if

good feature selection is applied, the clusters can be more sepa-

rated, which has the danger that k-means would start to perform

worse.

Based on these observations, choosing an initialization tech-

nique like Maxmin can compensate for the weaknesses of k-means.

With unbalanced cluster sizes it might work best overall. However,

it is preferable to repeat the k-means 10–100 times; each time tak-

ing a random point as the first centroids and selecting the rest

using the Maxmin heuristic. This will keep the number of errors

relatively small.

However, the fundamental problem of k-means still remains

when the clusters are well separated. From all the tested combi-

nations, none was able to solve all the benchmark datasets despite

them being seemingly simple. With 100 repeats, Maxmin and k-

means ++ solved 7 datasets (out of the 11), thus being the best ini-

tialization techniques. The better standalone algorithms (Luxburg

and Split) managed to solve 9.
To sum up, if the clusters overlap, the choice of initialization

echnique does not matter much, and repeated k-means is usually

ood enough for the application. However, if the data has well-

eparated clusters, the result of k-means depends merely on the

nitialization algorithm.

In general, the problem of initialization is not any easier than

olving the clustering problem itself. Therefore, if the accuracy of

lustering is important, then a better algorithm should be used.

sing the same computing time spent for repeating k-means, a

imple alternative called random swap (RS) [12] solves all the

enchmark datasets. Other standalone algorithms that we have

ound able to solve all the benchmark sets include genetic algo-

ithm (GA) [10] , the split algorithm [46] , split k-means [46] , and

P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112 111

d

o

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ensity peaks [78] . Agglomerative clustering [30] solves 10 out

f 11.

eferences

[1] E. Forgy , Cluster analysis of multivariate data: efficiency vs. interpretability of

classification, Biometrics 21 (1965) 768–780 .
[2] J. MacQueen , Some methods for classification and analysis of multivariate ob-

servations, in: Berkeley Symposium on Mathematical Statistics and Probability,
1, Statistics University of California Press, Berkeley, Calif., 1967, pp. 281–297 .

[3] S.P. Lloyd , Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (2)
(1982) 129–137 .

[4] L. Wang , C. Pan , Robust level set image segmentation via a local correntropy-

-based k-means clustering, Pattern Recognit. 47 (2014) 1917–1925 .
[5] C. Boutsidis , A. Zouzias , M.W. Mahoney , P. Drineas , Randomized dimensional-

ity reduction for k-means clustering, IEEE Trans. Inf. Theory 61 (2, February)
(2015) 1045–1062 .

[6] M. Capo , Perez A , J.A. Lozano , An efficient approximation to the k-means clus-
tering for massive data, Knowl.-Based Syst. 117 (2017) 56–69 .

[7] Z. Huang , N. Li , K. Rao , C. Liu , Y. Huang , M. Ma , Z. Wang , Development of a

data-processing method based on Bayesian k-means clustering to discriminate
aneugens and clastogens in a high-content micronucleus assay, Hum. Exp. Tox-

icol. 37 (3) (2018) 285–294 .
[8] A.K. Jain , Data clustering: 50 years beyond K-means, Pattern Recognit. Lett. 31

(2010) 651–666 .
[9] K. Krishna , Murty M.N , Genetic k-means algorithm, IEEE Trans. Syst. Man Cy-

bern. Part B 29 (3) (1999) 433–439 .

[10] P. Fränti , Genetic algorithm with deterministic crossover for vector quantiza-
tion, Pattern Recognit. Lett. 21 (1) (20 0 0) 61–68 .

[11] P. Fränti , J. Kivijärvi , Randomized local search algorithm for the clustering
problem, Pattern Anal. Appl. 3 (4) (20 0 0) 358–369 .

[12] P. Fränti , Efficiency of random swap clustering, J. Big Data 5 (13) (2018) 1–29 .
[13] S. Kalyani , K.S. Swarup , Particle swarm optimization based K-means clustering

approach for security assessment in power systems, Expert Syst. Appl. 32 (9)
(2011) 10839–10846 .

[14] D. Yan , L. Huang , M.I. Jordan , Fast approximate spectral clustering, ACM

SIGKDD Int. Conf. Knowl. Discov. Data Min. (2009) 907–916 .
[15] L. Bai , X. Cheng , J. Liang , H. Shen , Y. Guo , Fast density clustering strate-

gies based on the k-means algorithm, Pattern Recognit. 71 (2017) 375–
386 .

[16] T. Kinnunen , I. Sidoroff, M. Tuononen , P. Fränti , Comparison of clustering meth-
ods: a case study of text-independent speaker modeling, Pattern Recognit. Lett.

32 (13, October) (2011) 1604–1617 .

[17] Q. Zhao , P. Fränti , WB-index: a sum-of-squares based index for cluster validity,
Data Knowl. Eng. 92 (July) (2014) 77–89 .

[18] M. Rezaei and P. Fränti Can the number of clusters be solved by external in-
dex? manuscript. (submitted)

[19] J.M Peña , J.A. Lozano , P. Larrañaga , An empirical comparison of four initializa-
tion methods for the k-means algorithm, Pattern Recognit. Lett. 20 (10, Octo-

ber) (1999) 1027–1040 .

20] J. He , M. Lan , C-L Tan , S-Y Sung , H-B Low , Initialization of Cluster Refinement
Algorithms: a review and comparative study, IEEE Int. Joint Conf. Neural Netw.

(2004) .
[21] D. Steinley , M.J. Brusco , Initializing k-means batch clustering: a critical evalua-

tion of several techniques, J. Classification 24 (2007) 99–121 .
22] M.E. Celebi , H.A. Kingravi , P.A. Vela , A comparative study of efficient initial-

ization methods for the k-means clustering algorithm, Expert Syst. Appl. 40

(2013) 200–210 .
23] L. Kaufman , P. Rousseeuw , Finding Groups in data: An introduction to Cluster

Analysis, Wiley Interscience, 1990 .
[24] B. Thiesson, C. Meek, D.M. Chickering, and D. Heckerman, Learning mixtures

of Bayesian networks, Technical Report MSR-TR-97-30 Cooper & Moral, 1997.
25] J.T. Tou , R.C. Gonzales , Pattern Recognition Principles, Addison-Wesley, 1974 .

26] T.F. Gonzalez , Clustering to minimize the maximum intercluster distance,

Theor. Comput. Sci. 38 (2–3) (1985) 293–306 .
[27] J.H. Ward , Hierarchical grouping to optimize an objective function, J. Am. Stat.

Assoc. 58 (301) (1963) 236–244 .
28] A. Likas , N. Vlassis , J. Verbeek , The global k-means clustering algorithm, Pat-

tern Recognit. 36 (2003) 451–461 .
29] D. Steinley , Local optima in k-means clustering: what you don’t know may

hurt you, Psychol. Methods 8 (2003) 294–304 .

30] P. Fränti , T. Kaukoranta , D.-F. Shen , K.-S. Chang , Fast and memory efficient im-
plementation of the exact PNN, IEEE Trans. Image Process. 9 (5, May) (20 0 0)

773–777 .
[31] P. Bradley , U. Fayyad , Refining initial points for k-means clustering, in: Inter-

national Conference on Machine Learning, San Francisco, 1998, pp. 91–99 .
32] R.O. Duda , P.E. Hart , Pattern Classification and Scene Analysis, John Wiley and

Sons, New York, 1973 .
[33] M. Bicego , M.A.T. Figueiredo , Clustering via binary embedding, Pattern Recog-

nit. 83 (2018) 52–63 .

34] N. Karmitsa , A.M. Bagirov , S. Taheri , Clustering in large data sets with
the limited memory bundle method, Pattern Recognit. 83 (2018) 245–

259 .
[35] Y. Zhu , K.M. Ting , M.J. Carman , Grouping points by shared subspaces for effec-

tive subspace clustering, Pattern Recognit. 83 (2018) 230–244 .
36] P.B. Frandsen , B. Calcott , C. Mayer , R. Lanfear , Automatic selection of parti-
tioning schemes for phylogenetic analyses using iterative k-means clustering

of site rates, BMC Evol. Biol. 15 (13) (2015) .
[37] D.G. Márquez , A. Otero , P. Félix , C.A. García , A novel and simple strategy for

evolving prototype based clustering, Pattern Recognit. 82 (2018) 16–30 .
38] L. Huang , H.-Y. Chao , C.-D. Wang , Multi-view intact space clustering, Pattern

Recognit. 86 (2019) 344–353 .
39] P. Fränti , S. Sieranoja , K-means properties on six clustering benchmark

datasets, Appl. Intel. 48 (12) (2018) 4743–4759 .

40] L. Morissette , S. Chartier , The k-means clustering technique: general consider-
ations and implementation in Mathematica, Tutor. Quant. Methods Psychol. 9

(1) (2013) 15–24 .
[41] J. Liang , L. Bai , C. Dang F. Cao , The k-means-type algorithms versus imbal-

anced data distributions, IEEE Trans. Fuzzy Syst. 20 (4, August) (2012) 728–
745 .

42] I. Melnykov , V. Melnykov , On k-means algorithm with the use of Mahalanobis

distances, Stat. Probab. Lett. 84 (January) (2014) 88–95 .
43] V. Melnykov , S. Michael , I. Melnykov , Recent developments in model-based

clustering with applications, in: M. Celebi (Ed.), Partitional Clustering Algo-
rithms, Springer, Cham, 2015 .

44] M. Rezaei , P. Fränti , Set-matching methods for external cluster validity, IEEE
Trans. Knowl. Data Eng. 28 (8, August) (2016) 2173–2186 .

45] P. Fränti , M. Rezaei , Q. Zhao , Centroid index: cluster level similarity measure,

Pattern Recognit. 47 (9) (2014) 3034–3045 .
46] P. Fränti , T. Kaukoranta , O. Nevalainen , On the splitting method for VQ code-

book generation, Opt. Eng. 36 (11, November) (1997) 3043–3051 .
[47] P. Fränti , O. Virmajoki , V. Hautamäki , Fast agglomerative clustering using a k-n-

earest neighbor graph, IEEE Trans. Pattern Anal. Mach. Intel. 28 (11, November)
(2006) 1875–1881 .

48] G.H. Ball , D.J. Hall , A clustering technique for summarizing multivariate data,

Syst. Res. Behav. Sci. 12 (2, March) (1967) 153–155 .
49] O. Lemke , B. Keller , Common nearest neighbor clustering: a benchmark, Algo-

rithms 11 (2) (2018) 19 .
50] U.V. Luxburg , Clustering stability: an overview, Found. Trends Mach. Learn. 2

(3) (2010) 235–274 .
[51] S.J. Redmond , C. Heneghan , A method for initialising the K-means clustering

algorithm using kd-trees, Pattern Recognit. Lett. 28 (8) (2007) 965–973 .

52] S. Tezuka , P.L Equyer , Efficient portable combined Tausworthe random number
generators, ACM Trans. Model. Comput. Simul. 1 (1991) 99–112 .

53] M.J. Norušis , IBM SPSS Statistics 19 Guide to Data Analysis, Prentice Hall, Upper
Saddle River, New Jersey, 2011 .

54] T. Gonzalez , Clustering to minimize the maximum intercluster distance, Theor.
Comput. Sci. 38 (2–3) (1985) 293–306 .

55] M.M.-T. Chiang , B. Mirkin , Intelligent choice of the number of clusters in

k-means clustering: an experimental study with different cluster spreads, J.
Classification 27 (2010) 3–40 .

56] J. Hämäläinen , T. Kärkkäinen , Initialization of big data clustering using distri-
butionally balanced folding, Proceedings of the European Symposium on Arti-

ficial Neural Networks, Comput. Intel. Mach. Learn.-ESANN (2016) .
[57] I. Katsavounidis , C.C.J. Kuo , Z. Zhang , A new initialization technique for gener-

alized Lloyd iteration, IEEE Signal Process Lett. 1 (10) (1994) 144–146 .
58] F. Cao , J. Liang , L. Bai , A new initialization method for categorical data cluster-

ing, Expert Syst. Appl. 36 (7) (2009) 10223–10228 .

59] D. Arthur , S. Vassilvitskii , K-means ++ : the advantages of careful seeding,
ACM-SIAM Symp. on Discrete Algorithms (SODA’07), January 2007 .

60] M. Erisoglu , N. Calis , S. Sakallioglu , A new algorithm for initial cluster centers
in k-means algorithm, Pattern Recognit. Lett. 32 (14) (2011) 1701–1705 .

[61] C. Gingles , M. Celebi , Histogram-based method for effective initialization of
the k-means clustering algorithm, Florida Artificial Intelligence Research So-

ciety Conference, May 2014 .

62] J.A . Hartigan , M.A . Wong , Algorithm AS 136: a k-means clustering algorithm, J.
R. Stat. Soc. C 28 (1) (1979) 100–108 .

63] M.M. Astrahan , Speech Analysis by Clustering, Or the Hyperphome Method,
Stanford Artificial Intelligence Project Memorandum AIM-124, Stanford Univer-

sity, Stanford, CA, 1970 .
64] F. Cao , J. Liang , G. Jiang , An initialization method for the k-means algorithm

using neighborhood model, Comput. Math. Appl. 58 (2009) 474–483 .

65] M. Al-Daoud , A new algorithm for cluster initialization, in: World Enformatika
Conference, 2005, pp. 74–76 .

66] M. Yedla , S.R. Pathakota , T.M. Srinivasa , Enhancing k-means clustering algo-
rithm with improved initial center, Int. J. Comput. Sci. Inf. Technol. 1 (2) (2010)

121–125 .
[67] T. Su , J.G. Dy , In search of deterministic methods for initializing k-means and

gaussian mixture clustering, Intel. Data Anal. 11 (4) (2007) 319–338 .

68] X. Wu , K. Zhang , A better tree-structured vector quantizer, in: IEEE Data Com-
pression Conference, Snowbird, UT, 1991, pp. 392–401 .

69] C.-M. Huang , R.W. Harris , A comparison of several vector quantization code-
book generation approaches, IEEE Trans. Image Process. 2 (1) (1993) 108–112 .

[70] D. Boley , Principal direction divisive partitioning, Data Min. Knowl. Discov. 2
(4) (1998) 325–344 .

[71] M.E. Celebi , H.A. Kingravi , Deterministic initialization of the k-means algorithm

using hierarchical clustering, Int. J. Pattern Recognit Artif Intell. 26 (07) (2012)
1250018 .

[72] S. Sieranoja , P. Fränti , Random projection for k-means clustering, in: Int. Conf.
Artificial Intelligence and Soft Computing (ICAISC), Zakopane, Poland, June

2018, pp. 6 80–6 89 .

http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0001
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0002
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0003
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0004
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0005
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0006
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0007
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0008
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0009
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0010
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0011
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0012
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0012
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0013
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0014
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0015
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0016
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0017
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0018
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0019
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0020
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0021
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0022
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0022
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0022
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0023
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0024
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0025
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0026
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0027
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0028
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0029
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0030
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0031
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0032
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0033
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0034
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0035
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0036
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0036
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0036
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0036
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0037
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0038
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0038
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0038
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0039
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0040
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0040
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0040
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0041
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0041
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0041
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0041
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0042
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0042
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0042
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0043
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0043
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0043
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0043
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0044
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0045
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0046
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0047
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0047
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0047
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0048
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0048
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0049
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0049
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0049
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0050
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0050
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0050
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0051
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0051
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0052
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0052
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0053
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0053
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0053
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0054
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0054
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0054
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0055
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0055
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0055
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0055
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0056
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0056
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0056
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0056
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0057
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0057
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0057
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0058
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0058
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0058
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0058
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0059
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0059
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0059
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0060
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0060
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0060
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0061
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0061
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0062
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0062
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0062
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0062
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0063
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0063
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0064
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0064
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0064
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0064
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0065
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0065
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0065
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0066
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0066
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0066
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0067
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0067
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0067
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0068
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0068
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0069
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0069
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0069
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0070
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0070
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0070

112 P. Fränti and S. Sieranoja / Pattern Recognition 93 (2019) 95–112

t

r

i

t

h

s

S

l

F

[73] S.-W. Ra , J.-K. Kim , A fast mean-distance-ordered partial codebook search algo-
rithm for image vector quantization, IEEE Trans. Circuits Syst. 40 (September)

(1993) 576–579 .
[74] I. Cleju , P. Fränti , X. Wu , Clustering based on principal curve, in: Scandina-

vian Conf. On Image Analysis, LNCS, vol. 3540, Springer, Heidelberg, 2005,
pp. 872–881 .

[75] X. Wu , Optimal quantization by matrix searching, J. Algorithms 12 (4) (1991)
663–673 .

[76] M.B. Al-Daoud , S.A. Roberts , New methods for the initialisation of clusters, Pat-

tern Recognit. Lett. 17 (5) (1996) 451–455 .
[77] P. Gourgaris , C. Makris , A Density Based K-Means Initialization Scheme, EANN

workshops, Rhodes Island, Greece, 2015 .
[78] A. Rodriquez , A. Laio , Clustering by fast search and find of density peaks, Sci-

ence 344 (6191) (2014) 14 92–14 96 .
[79] P. Mitra , C. Murthy , S.K. Pal , Density-based multiscale data condensation, IEEE

Trans. Pattern Anal. Mach. Intel. 24 (6) (2002) 734–747 .

[80] S. Sieranoja , P. Fränti , Constructing a high-dimensional kNN-graph using a
Z-order curve, ACM J. Exp. Algorithmics 23 (1, October) (2018) 1–21 1.9: .

[81] W. Dong , C. Moses , K. Li , Efficient k-nearest neighbor graph construction for
generic similarity measures, in: Proceedings of the ACM International Confer-

ence on World wide web, ACM, 2011, pp. 577–586 .
[82] P. Fränti , S. Sieranoja , Dimensionally distributed density estimation, in: Int.

Conf. Artificial Intelligence and Soft Computing (ICAISC), Zakopane , Poland,

June 2018, pp. 343–353 .
[83] H.J. Curti , R.S. Wainschenker , FAUM: fast Autonomous Unsupervised Multidi-

mensional classification, Inf. Sci. 462 (2018) 182–203 .
[84] J. Xie , Z.Y. Xiong , Y.F. Zhang , Y. Feng , J. Ma , Density core-based clustering algo-
rithm with dynamic scanning radius, Knowl.-Based Syst. 142 (2018) 68–70 .

[85] Y. Linde , A. Buzo , R.M. Gray , An algorithm for vector quantizer design, IEEE
Trans. Commun. 28 (1, January) (1980) 84–95 .

[86] M. Steinbach , G. Karypis , V. Kumar , A comparison of document clustering tech-
niques, in: KDD workshop on text mining, vol. 40 0, Boston, 20 0 0, pp. 525–526 .

[87] S-S. Yu , S-W. Chu , C-M. Wang , Y-K. Chan , T-C. Chang , Two improved k-means
algorithms, Appl. Soft Comput. 68 (2018) 747–755 .

[88] B. Bahmani , B. Mosley , A. Vattani , R. Kumar , S. Vassilvitski , Scal-

able k-means ++ , Proc. VLDB Endow. 5 (7) (2012) 622–633 .
[89] T. Kaukoranta , P. Fränti , O. Nevalainen , A fast exact GLA based on code vector

activity detection, IEEE Trans. Image Process. 9 (8, August) (20 0 0) 1337–1342 .

Pasi Fränti received his MSc and PhD degrees from the University of Turku, 1991

and 1994 in Science. Since 20 0 0, he has been a professor of Computer Science at

he University of Eastern Finland (UEF). He has published 81 journals and 167 peer
eview conference papers, including 14 IEEE transaction papers. His main research

nterests are in machine learning, data mining, pattern recognition including clus-
ering algorithms and intelligent location-aware systems. Significant contributions

ave also been made in image compression, image analysis, vector quantization and
peech technology.

ami Sieranoja received the B.Sc. and M.Sc. degrees in University of Eastern Fin-

and, 2014 and 2015. Currently he is a doctoral student at the University of Eastern
inland. His research interests include neighborhood graphs and data clustering.

http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0071
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0071
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0071
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0072
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0072
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0072
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0072
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0073
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0073
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0074
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0074
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0074
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0075
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0075
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0075
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0076
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0076
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0076
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0077
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0077
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0077
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0077
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0078
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0078
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0078
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0079
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0079
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0079
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0079
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0080
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0080
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0080
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0081
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0081
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0081
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0082
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0082
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0082
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0082
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0082
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0082
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0083
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0083
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0083
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0083
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0084
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0084
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0084
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0084
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0085
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0085
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0085
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0085
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0085
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0085
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0086
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0086
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0086
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0086
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0086
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0086
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0086
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0087
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0087
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0087
http://refhub.elsevier.com/S0031-3203(19)30160-8/sbref0087

	How much can k-means be improved by using better initialization and repeats?
	1 Introduction
	2 Performance of k-means
	2.1 Datasets
	2.2 Methodology
	2.3 Properties of k-means

	3 K-means initialization techniques
	3.1 Random centroids
	3.2 Random partitions
	3.3 Furthest point heuristic (Maxmin)
	3.4 Sorting heuristics
	3.5 Projection-based heuristics
	3.6 Density-based heuristics
	3.7 Splitting algorithm
	3.8 Repeated k-means

	4 Experimental results
	4.1 Overall results
	4.2 Cluster overlap
	4.3 Number of clusters
	4.4 Dimensions
	4.5 Unbalance
	4.6 Repeats
	4.7 Summary

	5 Conclusions
	References

