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Abstract: In this paper, we study what are the most important factors that deteriorate the 
performance of the k-means algorithm, and how much this deterioration can be 
overcome either by using a better initialization technique, or by repeating (restarting) the 
algorithm. Our main finding is that when the clusters overlap, k-means can be 
significantly improved using these two tricks. Simple furthest point heuristic (Maxmin) 
reduces the number of erroneous clusters from 15% to 6%, on average, with our 
clustering benchmark. Repeating the algorithm 100 times reduces it further down to 1%. 
This accuracy is more than enough for most pattern recognition applications. However, 
when the data has well separated clusters, the performance of k-means depends 
completely on the goodness of the initialization. Therefore, if high clustering accuracy is 
needed, a better algorithm should be used instead. 

Keywords: Clustering algorithms, k-means, initialization, clustering accuracy, prototype 
selection. 

 
1. Introduction 

K-means (KM) algorithm [1, 2, 3] groups N data points into k clusters by minimizing 
the sum of squared distances between every point and its nearest cluster mean 
(centroid). This objective function is called sum-of-squared errors (SSE). Although 
k-means was originally designed for minimizing SSE of numerical data, it has also been 
applied for other objective functions (even some non-numeric).  

Sometimes the term k-means is used to refer to the clustering problem of minimizing 
SSE [4, 5, 6, 7]. However, we consider here k-means as an algorithm. We study how 
well it performs as a clustering algorithm to minimize the given objective function. This 
approach follows the recommendation in [8] to establish a clear distinction between the 
clustering method (objective function) and the clustering algorithm (how it is 
optimized). 

In real-life applications, the selection of the objective function is much more important. 
Clustering results depend primarily on the selected objective function, and only 
secondarily on the selected algorithm. Wrong choice of the function can easily reverse 
the benefit of a good algorithm so that a proper objective function with a worse 
algorithm can provide better clustering than good algorithm with wrong objective 
function. However, it is an open question how much clustering results are biased 
because of using an inferior algorithm. 

There are other algorithms that are known, in many situations, to provide better 
clustering results than k-means. However, k-means is popular for good reasons. First, it 
is simple to implement. Second, people often prefer to use an extensively studied 
algorithm whose limitations are known rather than a potentially better, but less studied, 
algorithm that might have unknown or hidden limitations. Third, the local fine-tuning 
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capability of k-means is very effective, and for this reason, it is also used as part of 
better algorithms such as the genetic algorithm [9, 10], random swap [11,12], particle 
swarm optimization [13], spectral clustering [14], and density clustering [15]. 
Therefore, our results can also help better understand those more complex algorithms 
that rely on the use of k-means. 

K-means starts by selecting k random data points as the initial set of centroids, which is 
then improved by two subsequent steps. In the assignment step, every point is put into 
the cluster of the nearest centroid. In the update step, the centroid of every cluster is 
recalculated as the mean of all data points assigned to the cluster. Together, these two 
steps constitute one iteration of k-means. These steps fine-tune both the cluster borders 
and the centroid locations. The algorithm is iterated a fixed number of times, or until 
convergence (no further improvement is obtained). MacQueen also presented sequential 
variant of k-means [2], where the centroid is updated immediately after every single 
assignment. 

K-means has excellent fine-tuning capabilities. Given a rough allocation of the initial 
cluster centroids, it can usually optimize their locations locally. However, the main 
limitation of k-means is that it rarely succeeds in optimizing the centroid locations 
globally. The reason is that the centroids cannot move between the clusters if their 
distance is big, or if there are other stable clusters in between preventing the movements, 
see Fig. 1. The k-means result therefore depends a lot on the initialization. Poor 
initialization can cause the iterations to get stuck into an inferior local minimum. 

 

Figure 1: K-means is excellent in fine-tuning cluster borders locally  
but fails to relocate the centroids globally. Here a minus sign (-) represents a centroid 

that is not needed, and a plus sign (+) a cluster where more centroids would be needed. 
K-means cannot do it because there are stable clusters in between. 

 

Fortunately, finding the exact optimum is not always important. In pattern recognition 
applications, the goal can be merely to model the distribution of the data, and the 
clustering result is used as a part in a more complex system. In [16], the quality of the 
clustering was shown not to be critical for the speaker recognition performance when 
any reasonable clustering algorithm, including repeated k-means, was used.  
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However, if the quality of clustering is important then k-means algorithm has problems. 
For example, if we need to solve the number of clusters, the goodness of the algorithm 
matters much more. Experiments with three different indexes (WB, DBI, Dunn) have 
shown that k-means rarely achieves the correct number of clusters whereas random 
swap succeeded in most cases [17]. Similar observations were made with stability-based 
approach in [18].  

To compensate for the mentioned weaknesses of k-means, two main approaches have 
been considered: (1) using a better initialization, (2) repeating k-means several times by 
different initial solution. Numerous initialization techniques have been presented in the 
literature, including the following: 

 Random points 
 Furthest point heuristic 
 Sorting heuristic 
 Density-based 
 Projection-based 
 Splitting technique 

Few comparative studies exists [19-22], but there is no consensus of which technique 
should be used. A clear state-of-the-art is missing. Pena et al. [19] studied four basic 
variants: random centroids [1] and MacQueen’s variant of it [2], random partition and 
Kaufman’s variant of the Maxmin heuristic [23]. Their results show that random 
partition and Maxmin outperform the random centroid variants with the three datasets 
(Iris, Ruspini, Glass). 

He et al. [20] studied random centroids, random perturbation of the mean [24], greedy 
technique [25], Maxmin [26], and Kaufman’s variant of Maxmin [23]. They observed 
that the Maxmin variants provide slightly better performance. Their argument is that the 
Maxmin variants are based on distance optimization, which tends to help k-means 
provide better cluster separation. 

Steinley and Brusco [21] studied 12 variants including complete algorithms like 
agglomerative clustering [27] and global k-means [28]. They ended up recommending 
these two algorithms and Steinley’s variant [29] without much reservation. The first two 
are already complete stand-alone algorithms themselves and not true initialization 
techniques, whereas the last one is a trivial improvement of the random partition. 

Steinley and Brusco also concluded that agglomerative clustering should be used only if 
the size, dimensionality or the number of clusters is big; and that global k-means 
(GKM) [28] should be used if not enough memory to store the N2 pairwise distances. 
However, these recommendations are not sound. First, agglomerative clustering can be 
implemented without storing the distance matrix [30]. Second, GKM is extremely slow 
and not practical for bigger datasets. Both these alternatives are also standalone 
algorithms and they provide better clustering even without k-means. 

Celebi et al. [22] performed the most extensive comparison so far with 8 different 
initialization techniques on 32 real and 12,228 synthetic datasets. They concluded that 
random centroids and Maxmin often perform poorly and should not be used, and that 
there are significantly better alternatives with comparable computational requirements. 
However, their results do not clearly point out a single technique that would be 
consistently better than others. 

The detailed results in [22] showed that a sub-sampling and repeat strategy [31] 
performs consistently in the best group and k-means++ performs generally well. For 
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small datasets Bradley’s sub-sampling strategy or greedy variant of k-means++ was 
recommended. For large data, split-based algorithm was recommended. 

The second major improvement, besides the initializations, is to repeat k-means [32]. 
The idea is simply to restart k-means several times from different initial solution to 
produce several candidate solutions, and then keeping the best result found as the final 
solution. This approach requires that the initialization technique produces different 
starting solutions by involving some randomness in the process. We call this variant 
repeated k-means (RKM). The number of repeats is typically small like R=20 in [33]. 

Many researchers consider the repeats as an obvious and necessary improvement to the 
k-means at the cost of increased processing time. Bradley & Fayyad [31] used slightly 
different variant by combining the repeats and sub-sampling to avoid the increase in the 
processing time. Besides these papers, it is hard to find any systematic study how the 
repeats affect on the k-means. For example, none of the review papers investigate the 
effect of the repeats on the performance. 

To sum up, existing literature provides merely relative comparisons between the 
selected initialization techniques. They lack clear answers of the significance of the 
results, and present no analysis on which type of data the techniques work and fail. 
Many of the studies also use classification datasets, which have limited suitability for 
studying the clustering performance. 

We made a brief survey about how recent research papers apply k-means. Random 
centroids [34, 35, 5] seems to be the most popular initialization method, along with k-
means++ [36, 33, 6]. Some papers do not specify how they initialize [37], or it had to be 
concluded indirectly. For example, Boutsidis [5] used the default method available in 
MATLAB, which was random centroids in the 2014a version and k-means++ starting 
from the 2014b version. The method in [38] initializes both the centroids and the 
partition labels at random. However, as they apply the centroid step first, the random 
partition is effectively applied. 

The number of k-means repeats varies from a relatively small amount of 10-20 [5, 35, 
33] to a relatively high value of 100 [36]. The most extreme example is [34] where 20 
hours time limit is applied. Although they stop iterating if the running time grows twice 
as that of their proposed algorithm, it is still quite extensive. Several papers do not 
repeat k-means at all [37, 6, 7].  

The choice of the initialization and the number of repeats might also vary depending on 
the motivation. The aim of using k-means can be to have a good clustering result, or to 
provide merely a point of comparison. In the first case, all the good tricks are used, such 
as more repeats and better initialization. In the second case, some simpler variant is 
more likely applied. A counter-example is in [34] where serious efforts seem to be made 
to ensure all algorithms have the best possible performance. 

In this paper we study the most popular initialization heuristics. We aim at answering 
the following questions. First, to what extent k-means can be improved by a better 
initialization technique? Second, can the fundamental weakness of k-means be 
eliminated simply by repeating the algorithm several times? Third, can we predict under 
which conditions k-means works, and which it fails? 

In a recent study [39], it was shown that k-means performs poorly when the clusters are 
well separated. Here we will answer how much a better initialization or repeats can 
compensate for this weakness. We will also show that dimensionality does not matter 
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for most variants, and that unbalance of cluster sizes deteriorates the performance of 
most initializations. 

The rest of the paper is organized as follows. In Section 2, we define the methodology 
and data. We also give brief review of the properties of the standard k-means algorithm. 
Different initialization techniques are then studied in Section 3. Experimental analysis is 
performed in Section 4, and conclusions are drawn in Section 5. 

 
2. Performance of k-means 

Following the recommendation of Jain [8], we make a clear distinction between the 
clustering method and algorithm. Clustering method refers to the objective function, and 
clustering algorithm to the process optimizing it. Without this distinction, it would be 
easy to draw wrong conclusions. 

For example, k-means has been reported to work poorly with unbalanced cluster sizes 
[40], and that it can cause large clusters to be wrongly split and smaller clusters wrongly 
merged [41]. These observations themselves are correct but they miss the root cause, 
which is the SSE objective function. Even an optimal algorithm minimizing SSE would 
end up with the same incorrect result. Such observations therefore relate to the objective 
function, and not to the k-means algorithm. 

Fig. 2 demonstrates the situation. An algorithm minimizing SSE would find spherical 
clusters regardless of the data. If the data contain non-spherical clusters, they would be 
divided into spherical sub-clusters, usually along the direction of the highest variance. 
Clusters of variable sizes would also cause large clusters to be split, and smaller ones to 
be merged. In these cases, if natural clusters are wanted, a better clustering result could 
be achieved by using an objective function based on Mahalanobis distance [42] or 
Gaussian mixture model [43] instead of SSE. 

 

Non-spherical
5 clusters

Different 
variance

2 clusters

Different density
8 clusters

 

Figure 2: Three examples of clustering result when using SSE cost function. Gaussian 
cluster is split into several spherical clusters (left); mismatch of the variance causes the 
larger cluster to be split (middle); mismatch of the cluster sizes does not matter if the 

clusters are well-separated. 

 

 5



2.1 Datasets 

In this paper, we focus on the algorithmic performance of k-means rather than the 
choice of the objective function. We use the clustering basic benchmark [39] as all 
these datasets can be clustered correctly with SSE. Therefore, any clustering errors 
made by k-means must originate from the properties of the algorithm, and not from the 
choice of wrong objective function. The datasets are summarized in Table 1. They are 
designed to vary the following properties as defined in [39]: 

 Cluster overlap 
 Number of clusters 
 Dimensionality 
 Unbalance of cluster sizes 

Table 1: Basic clustering benchmark [39]. 
The data is publicly available here:  http://cs.uef.fi/sipu/datasets/ 

Dataset Varying Size Dimensions Clusters Per cluster 
A Number of clusters 3000-7500 2 20-50 150 
S Overlap 5000 2 15 333 
Dim Dimensions 1024 32-1024 16 64 
G2 Dimensions  + overlap 2048 2-1024 2 1024 
Birch Structure 100,000 2 100 1000 
Unbalance Balance 6500 2 8 100-2000 

 
 
2.2 Methodology 

To measure the success of the algorithm, the value of the objective function itself is the 
most obvious measure. Existing literature reviews of k-means use either SSE [19, 22], 
or the deviation of the clusters [20], which is also a variant of SSE. It is calculated as:  

SSE = 



N

i
ji cx

1

2
 (1) 

where xi is a data point and cj is its nearest centroid. In [39], SSE is also measured 
relative to the SSE-value of the ground truth solution (SSEopt): 

-ratio = 
 

opt

opt

SSE

SSESSE 
 (2) 

If the ground truth is known, external indexes such as adjusted Rand index (ARI), Van 
Dongen (VD), variation of information (VI) or normalized mutual information (NMI) 
can also be used [22]. A comparative study of several suitable indexes can be found in 
[44]. The number of iterations have also been studied in [19, 22], and the time 
complexities reported in [22]. 

The problem of SSE, and most of the external indexes, is that the raw value does not tell 
how significant the result is. We therefore use Centroid Index (CI) [45], which indicates 
how many cluster centroids are wrongly located. Specifically, the value CI=0 implies 
that the clustering structure is correct with respect to the ground truth. 

An example is shown in Fig. 3, where k-means provides SSE=3.081010, which is 52% 
higher than that of the ground truth. But what do these numbers really mean? How 
significant is the difference? On the other hand, the value CI=4 tells that exactly four 
real clusters are missing a centroid. 
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Missing centroids

Too many centroids

CI=4

 

Figure 3: Performance of k-means with the A2 dataset: CI=4, SSE=3.08 (1010), =0.52.  
 

Based on CI, a success rate (%) was also defined in [39] to measure the probability of 
finding the correct clustering. For example, when running k-means 5000 times with 
dataset A2 (Fig. 3), CI=0 was never reached, and thus, its success rate is 0%. Another 
example with dataset S2 (Fig. 4) results in success rate of 1/6 = 17%. 

The success rate has an important implication. Any value higher than 0% indicates that 
the correct clustering can be found simply by repeating k-means. For a success rate p, 
the expected number of repeats is 1/p. For instance, p=50% indicates that expected 
number of repeats is 2; and p=1% indicates 100 repeats. Even with as low value as 
p =0.1% the correct solution is expected to be found in 1000 repeats. This is time 
consuming, but feasible. However, for some of our datasets the success rate is so low 
that the number repeats would be unreasonably high. For example, even 200,000 repeats 
produces 0% success rate in our experiments with some datasets. 
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Figure 4: Centroid index measures how many real clusters are missing a centroid (+), 
or how many centroids are allocated to wrong cluster (-).  

Six examples are shown for S2 dataset. 

 

2.3 Properties of k-means 

We next briefly summarize the main properties of the k-means algorithm. Generally the 
clustering problem is the easier the more the clusters are separated. However, in [39] it 
was found that for k-means it is just the opposite; the less overlap the worse the 
clustering performance, see Fig. 5. This is a fundamental weakness of the k-means 
algorithm. 

S1 S2 S3 S4

3% 11% 12% 26%

overlap increasesoverlap increases

 

Figure 5: Success rate (%) of k-means, measured as the probability of finding correct 
clustering, improves when the cluster overlap increases. 

 

In [39], it was also found that the number of errors has linear dependency on the number 
of clusters (k). For example, the CI-values for the A sets with k=20, 35, 50 clusters were 
measured as CI=2.5, 4.5, 6.5, respectively. The relative CI-values (CI/k) correspond to a 
constant of 13% of centroids being wrongly located. Results with the subsets of Birch2 
(varying k from 1 to 100) converge to about 16% when k approaches to 100, see Fig. 6. 
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Figure 6: CI-value of k-means increases linearly with k,  
and relative CI converges to 16% with the Birch2 subsets. 

 

Two series of datasets are used to study the dimensionality: DIM and G2. The DIM sets 
have 16 well separated clusters in high-dimensional space with dimensionality varying 
from D=32 to 1024. Because of clear cluster separation, these datasets should be easy 
for any good clustering algorithm to reach CI=0 and 100% success rate. However, 
k-means again performs poorly; it obtains the values CI=3.6 and 0% success rate 
regardless of the dimensionality. The reason for the poor performance is again the lack 
of cluster overlap, and not the dimensionality. 

The results with the G2 sets confirmed the dependency between the dimensionality and 
the success rate. We allocated four centroids with 3:1 unbalance so that the first cluster 
had three centroids and the second only one. We then ran k-means and checked whether 
it found the expected 2:2 allocation by moving one of the three centroids to the second 
group. The results in Fig. 7 show that the overlap is the mediating factor for the success 
rate: the more overlap, the lower the success rate of k-means. 
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Figure 7: The effect of overlap for the success of k-means with the G2 datasets. The 
numbers circled with blue are for the three sample datasets shown above. The dataset 
names are coded as G2-DIM-SD, where DIM refers to the dimensions and SD to the 

standard deviation; the higher the SD, the more the two clusters overlap. 

 

The cluster size unbalance was also shown in [39] to result in poor performance. The 
main reason for this was the random initialization, which cannot pick the initial 
centroids in a balanced way. Another reason was the k-means iterations which fail to 
improve the initial solution due to lack of cluster overlap. 

The effect of the different properties of data on k-means can be summarized as follows: 

Property: Effect: 

Cluster overlap Overlap is good 
Number of clusters Linear dependency 
Dimension No direct effect 
Unbalance Bad 
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3. K-means initialization techniques 

Next we study how much these problems of k-means can be solved by the following 
two improvements: 

 Better initialization 
 Repeating k-means 

K-means is a good algorithm for local fine-tuning but it has serious limitation to 
relocate the centroids when the clusters do not overlap. It is therefore unrealistic to 
expect the clustering problem to be solved simply by inventing a better initialization for 
k-means. The question is merely, how much a better initialization can compensate for 
the weakness of k-means. 

Any clustering algorithm could be used as an initialization technique for k-means. 
However, solving the location of initial centroids is not significantly easier than the 
original clustering problem itself. Therefore, for an algorithm to be considered as 
initialization technique for k-means, in contrast to being a standalone algorithm, we set 
the following requirements: 

1. Simple to implement 
2. Lower (or equal) time complexity than k-means 
3. No additional parameters 

First, the algorithm should be trivial, or at least very easy to implement. Measuring 
implementation complexity can be subjective. The number of functions and the lines of 
code were used in [16]. Repeated k-means was counted to have 5 functions and 162 
lines of C-code. In comparison, random swap [11,12], fast agglomerative clustering 
variant [30], and sophisticated splitting algorithm [46] had 7, 12 and 22 functions, and 
226, 317 and 947 lines of codes, respectively. Random initialization had 2 functions and 
26 lines of code. 

Second, the algorithm should have lower or equal time complexity compared to 
k-means. Celebi [22] categorizes the algorithms to linear, log-linear and quadratic based 
on their time complexities. Spending quadratic time cannot be justified as the fastest 
agglomerative algorithms are already working in close to quadratic time [30]. A faster 
O(N logN) time variant also exists [47] but it is significantly more complex to 
implement and requires to calculate k-near neighbors (KNN). K-means requires O(gkN) 
time, where g is the number of iterations and typically varies from 20 to 50.  

The third requirement is that the algorithm should be free of parameters; others than k. 
For instance, there are algorithms [48, 25] that select the first centroid using some 
simple rule, and the rest greedily by cluster growing, based on whether the point is 
within a given distance. Density-connectivity criterion was also used in [49]. 
Nevertheless, this approach requires one or more threshold parameters. 

The most common heuristics are summarized in Table 2. We categorize them roughly 
into random, furthest point, sorting, and projection-based heuristics. Two standalone 
algorithms are also considered: Luxburg [50] and Split algorithm. For a good review of 
several others we refer to [51]. 
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Table 2: Summary of the initialization techniques compared in this paper. Time refers 
to the average processing time with the A3 dataset (N=7500, k=50). Randomized refers 
to whether the technique include randomness naturally. Randomness will be needed for 
the repeated k-means variant later. 

Technique Ref. Complexity Time Randomized Parameters 
Random partitions [3] O(N) 10 ms Yes - 
Random centroids [1,2] O(N) 13 ms Yes - 
Maxmin [54] O(kN) 16 ms Modified - 
kmeans++ [59] O(kN) 19 ms Yes - 
Bradley [31] O(kN+Rk2) 41 ms Yes R=10, s=10% 
Sorting heuristic [62] O(N logN) 13 ms Modified - 
Projection-based [72] O(N logN) 14 ms Yes - 
Luxburg [50] O(kN logk) 29 ms Yes - 
Split [68, 46] O(N logN) 67 ms Yes k=2 

 

3.1. Random centroids 

By far the most common technique is to select k random data objects as the set of initial 
centroids [1,2]. It guarantees that every cluster includes at least one point. We use 
shuffling method by swapping the position of every data point with another randomly 
chosen point. This takes O(N) time. After that, we take the first k points from the array. 
This guarantees that we do not select the same point twice, and that the selection is 
independent on the order of the data. For the random number generator we use the 
method in [52]. We refer to this initialization method as random centroids. 

Slightly different variant in [2] selects simply the first k data points. This is the default 
option in the Quick Cluster in IBM SPSS Statistics [53]. If the data is in random order 
the result is effectively the same as random centroids, except that it always provides the 
same selection. 

We note that the randomness is actually a required property for the repeated k-means 
variant. This is because we must be able to produce different solutions at every repeat. 
Some practitioners might not like the randomness and prefer deterministic algorithms 
always producing the same result. However, both of these goals can actually be 
achieved if so wanted. We simply use pseudo-random number generator with the same 
seed number. In this way, single runs of k-means will produce different result but the 
overall algorithm still produces always the same result for the same input. 

 

3.2. Random partitions 

An alternative to random centroids is to generate random partitions. Every point is put 
into a randomly chosen cluster and their centroids are then calculated. The positive 
effect is that it avoids selecting outliers from the border areas. The negative effect is that 
the resulting centroids are concentrated in the central area of the data due to the 
averaging. According to our observations, the technique works well when the clusters 
are highly overlapped but performs poorly otherwise, see Fig. 8. 

According to [19], the random partition avoids the worst case behavior more often than 
the random centroids. According to our experiments, this is indeed the case but only 
when the clusters have high overlap. The behavior of the random partition is also more 
deterministic than that of random centroids. This is because the centroids are practically 
always near the center of the data. Unfortunately, this also reduces the benefits of the 
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repeated k-means because there is very little variation in the initial solutions, and 
therefore, also the final solutions often become identical. 

Steinley [29] repeats the initialization 5000 times and selects the one with the smallest 
SSE. However, repeating only the initialization does not fix the problem. Instead, it 
merely slows down the initialization because it takes 5000N steps, which is typically 
much more than O(kN). 

Thiesson et al. [24] calculate the mean point of the data set and then add random vectors 
to it. This effectively creates initial centroids like a cloud around the center of the data, 
with very similar effect as the random partition. The size of this cloud is a parameter. If 
it is set up high enough, the variant becomes similar to the random centroids technique, 
with the exception that it can select points also from empty areas.  
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Fig. 8 shows the effect of the random partition and Steinley’s variant. Both variants 
locate the initial centroids near the center of the data. If the clusters have low overlap, 
k-means cannot provide enough movement and many of the far away clusters will lack 
centroids in the final solution. 

 

Initial FinalSteinley

 

Initial FinalSteinley

 

Figure 8: Initial centroids created by random partition (left), by Steinley’s variant 
(middle), and the final result after the k-means iterations (right). 

 

3.3. Furthest point heuristic (Maxmin) 

Another popular technique is the furthest point heuristic [54]. It was originally 
presented as standalone 2-approximate clustering algorithm but has been widely used to 
initialize k-means. It selects an arbitrary point as the first centroid and then adds new 
centroids one by one. At each step, the next centroid is the point that is furthest (max) 
from its nearest (min) existing centroid. This is also known as Maxmin [19, 22, 55, 21]. 

Straightforward implementation requires O(k2N) time but it can be easily reduced to 
O(kN) as follows. For each point, we maintain pointer to its nearest centroid. When 
adding a new centroid, we calculate the distance of every point to this new centroid. If 
the new distance is smaller than to the previous nearest, then it is updated. This requires 
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N distance calculations. The process is repeated k times, and the time complexity is 
therefore O(kN) in total, which is the same as one iteration of k-means. Further speedup 
can be achived by searching for the furthest point in just a subset of the data [56]. 

There are several alternative ways to choose the first centroid. In the original variant the 
selection is arbitrary [54]. In [55], the furthest pair of points are chosen as the first two 
centroids. Another variant selects the one with maximum distance to the origin [57] 
because it is likely to be located far from the center. Maximum density has also been 
used [51, 58]. 

K-means++ [59] is a randomized variant of the furthest point heuristic. It chooses the 
first centroid randomly and the next ones using a weighted probability 
pi=costi/SUM(costi), where costi is the squared distance of the data point xi to its nearest 
centroids. This algorithm is an O(log k)-approximation to the problem. We also 
implement k-means++ for our tests because of its popularity. 

Chiang and Mirkin [55] recalculate all the centroids after updating the partitions, and 
the next centroid is selected as the farthest from the recently added centroid. Slightly 
more complex variant [23] selects the point that decreases the objective function most. 
It requires calculation of all distances between every pair of points, which takes O(N2) 
time. Thus, it does not qualify our criteria for k-means initialization. With the same 
amount of computation we can already run implement agglomerative clustering 
algorithm. 

Other authors also weight the distances by the density of the point [51, 58]. This reduces 
the probability that outliers are selected. Erisoglu et al. [60] use cumulative distance to 
all previous centroids instead of the maxmin criterion. However, this performs worse 
because it can easily choose two nearby points provided that they have large cumulative 
distance to all other centroids [61].  

We use here a variant that selects the first point randomly [59, 54]. This adds 
randomness to the process as required by the repeated k-means variant. The next 
centroids we select using the original maxmin criterion, i.e. choosing the point with 
biggest distance to its nearest centroid. 

Maxmin technique helps to avoid worst case behavior of the random centroids, 
especially when the cluster sizes have serious unbalance. It also has tendency to pick up 
outlier points from the border areas, which leads to slightly inferior performance in the 
case of datasets with high overlap (S3 and S4). However, k-means usually works better 
with such datasets [39], which compensates for the weakness of Maxmin. Fig. 9 
demonstrates the performance of the Maxmin technique. 
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Figure 9: Example of the maxmin heuristic for S3 dataset. The blue dots are the initial 
and the red dots the final centroids. The trajectories show their movement during the 

k-means iterations. 
 
 

3.4. Sorting heuristics 

Another popular technique is to sort the data points according to some criterion. Sorting 
requires O(N log N) time, which is less than that of one k-means iteration, O(kN), 
assuming that logN  k. After sorting, k points are selected from the sorted list using one 
of the following heuristics:  

  First k points. 
  First k points while disallowing points closer than   to already chosen centroids. 
  Every (N/k)th point (uniform partition) 

For the sorting, at least the following criteria have been considered: 

  Distance to center point [62] 
  Density [63, 21] 
  Centrality [64] 
  Attribute with the greatest variance [65] 

Hartigan & Wong [62] sort the data points according to their distance to the center of 
the data. The centroids are then selected as every N/kth point in this order. We include 
this variant in our tests. To have randomness, we choose a random data point as 
a reference point instead of the center. This heuristic fulfills our requirements: it is fast, 
simple, and requires no additional parameters. 

Astrahan [63] calculates density as the number of other points within a distance d1. First 
centroid is the point with the highest density, and the remaining k-1 centroids are chosen 
at a decreasing order, with the condition that they are not closer than distance d2 from an 
already chosen centroid. Steinley [21] recommends using the average pairwise distance 
(pd) both for d1 and d2. This makes the technique free from parameters but it is still slow, 
O(N2) time, for calculating the pairwise distances. 

It would be possible to simplify this technique further and use random sampling: select 
N pairs of points, and use this subsample to estimate the value of pd. However, the 
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calculation of the densities is still the bottleneck, which prevents this approach from 
meeting the requirements for k-means initialization as such. 

Cao et al. [64] proposed a similar approach. They use a primary criterion (cohesion) to 
estimate how central a point is (how far from boundary). Secondary threshold criterion 
(coupling) is used to prevent centroids from being neighbors. 

Al-Daoud [65] sorts the data points according to the dimension with the largest variance. 
The points are then partitioned into k equal size clusters. Median of each cluster is 
selected instead of the mean. This approach belongs to a more general class of 
projection-based techniques where the objects are mapped to some linear axis such as 
diagonal or principal axis. 

The sorting heuristic would work if the clusters were well separated, and all have 
different criterion value (such as the distance from center point). This actually happens 
with the very high dimensional DIM datasets in our benchmark. However, with most 
other datasets the clusters tend to be randomly located in respect to the center point, and 
it is unlikely that all the clusters would have different criterion values.  What happens in 
practice, is that the selected centroids are just random data points in the space, see 
Fig. 10. 

 
3.5. Projection-based heuristics 

Sorting heuristics can also be seen as a projection of the points into a one-dimensional 
(non-linear) curve in the space. Most criteria would just produce an arbitrary curve 
connecting the points randomly, and lacking convexity or any sensible shape. However, 
several linear projection-based techniques have been considered in the literature: 

  Diagonal axis [65] 
  Single axis [66, 67] 
  Principal axis [68, 69, 46, 70, 67, 71] 
  Two random points [72] 
  Furthest points [72] 

After the projection is performed, the points are partitioned into k equal size clusters 
similarly as with the sorting-based heuristics. 

Yedla et al. [66] sort the points according to their distance to origin, and then select 
every N/kth point. If the origin is the center of data, this is essentially the same technique 
as in [62]. If the attributes are non-negative, then this is essentially the same as 
projecting the data to the diagonal axis. Such projection is trivial to implement by 
calculating the average of the attribute values. It has also been used for speeding-up 
nearest neighbor searches in clustering in [73]. 

Al-Daoud [65] sorts the points according to the dimension with the largest variance. The 
points are then partitioned into k equal size clusters. Median of each cluster is selected 
instead of the mean. This adapts to the data slightly better than just using the diagonal. 

A more common approach is to use principal axis, which is the axis of projection that 
maximizes variance. It has been used effectively in divisive clustering algorithms [68, 
69, 46, 70, 67, 71]. Calculation of the principal axis takes O(DN)-O(D2N) depending on 
the variant [46]. A more complex principal curve has also been used for clustering [74]. 

We consider two simple variants: random and two furthest points projection as studied 
in [72]. The first heuristic takes two random data points and projects to the line passing 
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by these two reference points. The key idea is the randomness; single selection may 
provide poor initialization but when repeating several times, the chances to find one 
good initialization increases, see Fig. 11. We include this technique into our 
experiments and refer to it as Projection. 

The second heuristic is slightly more deterministic but still random. We start by 
selecting a random point, and calculate its furthest point. The projection axis is the line 
passing by these two reference points. We again rely on randomness, but now the 
choices are expected to be more sensible, potentially providing better results using 
fewer trials. However, according to [72] this variant does not perform any better than 
the simpler random heuristic. 

Projection works well if the data has one-dimensional structure. In [72], projective value 
is calculated to estimate how well a given projection axis models the data. From our 
data, Birch2 and G2 have high projective values and suitable for projection-based 
technique. However, with all other datasets, the projection does not make much more 
sense than the naïve sorting heuristics, see Fig. 10. 

We also note that projection-based techniques also generalize to segmentation-based 
clustering, where k-1 dividing planes are searched simultaneously using dynamic 
programming [75, 74]. These clustering results usually require fine-tuning by k-means 
at the final step, but nevertheless, they are standalone algorithms. 

 

   

Figure 10: Examples of sorting and projection-based techniques. 

 
Random projection Furthest point projection

 

Figure 11: Examples of the two projection-based heuristics for A2 dataset: random 
points (left), and the furthest point projections (right) [72]. 
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3.6. Density-based heuristics 

Density was already used both with the furthest point and the sorting heuristics, but the 
concept deserves a little bit further discussion. The idea of using density itself is 
appealing but it is not trivial how to calculate the density, and how to use it in clustering. 
Especially since the initialization technique should be fast and simple. 

The main bottleneck of the algorithms is how to calculate the density is estimated for 
the points. There are three common approaches for this: 

  Buckets 
  -radius circle 
  k-nearest neighbors (KNN) 

The first approach divides the space by a regular grid, and counts the frequency of the 
points in every bucket [76]. The density of a point is then inherited from the bucket it is 
in. This approach is feasible in low-dimensional space but would become impractical in 
higher-dimensional spaces. In [61], the problem is addressed by processing the 
dimensions independently in a heuristic manner. Other authors have used kd-tree [51, 
57] or space-filling curve [77] to partition the space into buckets containing roughly the 
same number of points. In [51, 57], the number of buckets is 10k.  

The other two approaches calculate the density for every point individually. The 
traditional one is to define a neighborhood using a cutoff threshold (-radius), and then 
counting the number of other points within this neighborhood [63, 21, 64, 78]. The third 
approach finds the k-nearest neighbors of a point [79], and then calculates the average 
distance to the points within this neighborhood. Lemke and Keller calculate the density 
between every pair of points [49].  

The bottleneck of the last two approaches is that we need to find the points that are 
within the neighborhood. This requires O(N2) distance calculations in both cases. 
Several speed-up techniques and approximate variants exist [80, 81] but none that is 
both fast and simple to implement. Calculating density values only for a subset of size 
SQRT(N) would reduce the complexity to O(N1.5) depending whether the distances are 
calculated to all points or only within the subset. In [82], density is calculated in each 
dimension separately, and then final approximation is obtained by summing up the 
individual densities. This allows rapid O(DN) time estimation with more accurate 
estimation than the sub-sampling approach. 

Once calculated, the density can be used jointly with the furthest point heuristic, with 
the sorting heuristic, or some of their combination. For example, in [51] the furthest 
point heuristic was modified by weighting the distance by its density so that outliers are 
less likely chosen. The density peaks algorithm in [78] finds for every point its nearest 
neighbor with higher density. It then applies sorting heuristic based on one of the two 
features: density and the distance to its neighbor. The method works as a standalone 
algorithm and does not require k-means at all. 

Luxburg [50] first selects k*SQRT(k) preliminary clusters using k-means and then 
eliminates the smallest ones. After this, the furthest point heuristic is used to select the 
k clusters from the preliminary set of clusters. When minimizing SSE, the size of the 
clusters correlates to their density. Thus, Luxburg’s technique indirectly implements 
a density-based approach which favors clusters of high density. We include this 
technique in our experiments although it does not satisfy our simplicity criterion. 
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We also note that there are several standalone clustering algorithms based on density 
[78, 49, 83, 84]. However, they do not fit to our requirements for speed and simplicity. 
If combined with the faster density estimation in [82], some of these techniques could 
be made competitive also in speed.  

 
3.7. Splitting algorithm 

Split algorithm puts all points into a single cluster, and then iteratively splits one cluster 
at a time until k clusters are reached. This approach is seemingly simple and tempting to 
consider for initializing k-means. However, there are two non-trivial design choices to 
make: which cluster to split, and how to split it. We therefore consider split mainly as 
a standalone algorithm, but discuss briefly some existing techniques that have been used 
within k-means.  

Linde, Buzo and Gray [85] uses binary split for initialization of their LBG algorithm in 
the vector quantization context. Every cluster is split by replacing the original centroid c 
by c+ and c-, where  refers to a random vector. Splitting every cluster avoids the 
question of which cluster to split but it does not have any real speed benefit. In [46],  
was calculated as the standard deviation of the points in the cluster, in each dimension 
separately.  

Projection-based approaches are also suitable for the splitting algorithm. The idea is to 
divide a chosen cluster according to a hyperplane perpendicular to the projection axis. It 
is possible to find the optimal choice of the cluster to be split, and the optimal location 
of the hyperplane in O(N) time [68, 46]. This results in a fast, O(NlogNlogk) time 
algorithm, but the implementation is quite complex. It requires 22 functions and 947 
lines of codes, compared to 5 functions and 162 lines in repeated k-means [16]. 

There is also a split-kmeans variant that applies k-means iteration after every split in 
[46], later popularized under the name Bisecting k-means in document clustering [86]. 
However, this would increase the time complexity to O(k2N), which equals to O(N2) if k 
 SQRT(N). Tri-level k-means [87] performs the clustering in two stages. It first creates 
less clusters than k, and then splits the clusters with highest variation before applying 
the traditional k-means. All these variants are definitely standalone algorithms, and do 
not qualify as an initialization technique here. 

In this paper, we therefore implement a simpler variant. We always select the biggest 
cluster to be split. The split is done by selecting two random points in the cluster. 
K-means is then applied but only within the cluster that was split as done in [68]. The 
main difference to the bisecting k-means [86] and its original split+kmeans variant in 
[46], is that the time complexity sums up to only O(NlogN); a proof can be easily 
derived from the one in [46]. 

 
3.8. Repeated k-means 

Repeated k-means performs k-means multiple times starting with different initialization, 
and then keeping the result with lowest SSE-value. This is sometimes referred as multi-
start k-means. The basic idea of the repeats is to increase the probability of success. 
Repeated k-means can be formulated as a probabilistic algorithm as follows. If we know 
that k-means with a certain initialization technique will succeed with a probability of p, 
the expected number of repeats (R) to find the correct clustering would be: 

 R = 1/p 
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In other words, it is enough that k-means succeeds even sometimes (p>0). It is then 
merely a question of how many repeats are needed. Only if p0 the number of repeats 
can be unrealistically high. For example, standard k-means with random centroids 
succeeds 6-26% of the time with the S1-S4 datasets. These corresponds to R=7 to 14 
repeats, on average. 

If the initialization technique is deterministic (no randomness), then it either succeeds 
(p=100%) or fails (p=0%) every time. To justify the repeats, a basic requirement is that 
there is some randomness in the initialization so that the different runs produce different 
results. Most techniques have the randomness implicitly. The rest of the techniques we 
modify as follows: 

 Rand-P Already included 
 Rand-C Already included 
 Maxmin First centroid randomly 
 Kmeans++ Already included 
 Bradley Already included 
 Sorting Reference point randomly 
 Projection Reference points randomly 
 Luxburg Already included 
 Split Split centroids randomly 

 
Repeats add one new parameter R. Since p is not known in practice, we cannot derive 
value for R automatically. In this paper, we use R=100 unless otherwise noted. Fig. 12 
shows the overall scheme of the repeated k-means. 

Repeating k-means also multiplies the processing time by a factor of R. It is possible to 
compensate for this by dividing the data into random subsets. For instance, if we divide 
the data into R subsets of size N/R, the total processing time would be roughly the same 
as that of a single run. 

For example, Bradley&Fayyad [31] apply k-means for a subsample of size N/R, where 
R=10 was recommended. Each sample is clustered by k-means starting with random 
centroids. However, instead of taking the best clustering of the repeats, a new dataset is 
created from the Rk centroids. This new dataset is then clustered by repeated k-means 
(R repeats). The total time complexity is Rk(N/R) + Rk2 = kN+Rk2, where the first part 
comes from clustering the sub-samples, and the second part from clustering the 
combined set. If k=SQRT(N), then this would be N1.5 + RN. Overall, the algorithm is 
fast and satisfies the criteria for initialization technique. 

Bahmani et al. [88] have a similar approach. They repeat k-means++ R=O(logN) times 
to obtain Rk preliminary centroids, which are then used as a new dataset for clustering 
by standard k-means. They reported that R=5 would be sufficient for the number of 
repeats. In our experiments, we consider the Bradley&Fayyad [31] as an initialization, 
and use R=100 repeats as with all techniques. 
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Figure 12: General principle of repeated k-means (RKM). The key idea is that the 
initialization includes randomness to produce different solutions at every repeat.  

 

 
4. Experimental results 

We study next the overall performance of different initialization techniques, and how 
the results depend on the following factors: 

 Overlap of clusters 
 Number of clusters 
 Dimensions 
 Unbalance of cluster sizes 

The overall results (CI-values and success rates) are summarized in Table 3. We also 
record (as fails) how many datasets provide success rate p=0%. This means that the 
algorithm cannot find the correct clustering even with 5000 repeats. We test the 
following methods: 

 Rand-P 
 Rand-C 
 Maxmin 
 kmeans++ 
 Bradley 
 Sorting 
 Projection 
 Luxburg 
 Split 
 

4.1. Overall results 

CI-values: Random partition works clearly worse (CI=12.4) than the random centroids 
(CI=4.5). Bradley and sorting heuristics are slightly better (CI=3.1 and 3.3), but the 
maxmin heuristics (Maxmin and kmeans++) are the best among the true initialization 
techniques (CI=2.2 and 2.3). The standalone algorithms (Luxburg and Split) are better 
(CI=1.2 and 1.2), but even they provide the correct result (CI=0) only for the easiest 
dataset: DIM32. 

Success rates: The results show that Maxmin is a reasonable heuristic. Its average 
success rate is 22% compared to 5% of random centroids. It also fails (success rate=0%) 
only in case of three datasets; the datasets with a high number of clusters (A3, Birch1, 
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Birch2). Random partition works with S2, S3 and S4 but fails with all the other 
8 datasets. The standalone algorithms (Luxburg and Split) provide 40% success rates, 
on average, and fail only with Birch1 and Unbalance. 

Effect of iterations: From the initial results we can see that Luxburg and Bradley are 
already standalone algorithms for which k-means brings only little improvement. The 
average CI-value of Luxburg improves only from 1.7 to 1.2 (~30%), and Bradley from 
3.4 to 3.1 (~10%). The latter is more understandable as k-means is already involved in 
the iterations. Split heuristic, although a standalone algorithm, leaves more space for 
k-means to improve (61%). 

Number of iterations: The main observation is that the easier the dataset, and the better 
the initialization, the fewer the iterations needed. The differences between the 
initialization vary from 20 (Luxburg) to 36 (Rand-C); with the exception of random 
partition (Rand-P), which takes 65 iterations.  
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Table 3: Average CI-values before and after k-means iterations, success rates, and the 
number of iterations performed. The results are averages of 5000 runs. Fail records for 
how many datasets the correct solution was never found (success rate=0%). From DIM 
datasets we report only DIM32; the results for the others are practically the same. Note: 
The values for Impr. and Aver. columns are calculated from precise values and not from 
the shown rounded values. 

CI-values (initial) 
Method  s1  s2  s3  s4  a1  a2  a3  unb b1  b2  dim32  Aver.   

Rand‐P  12.5  14.0  12.8  14.0  19.0 32.9 48.1 7.0  96.0 96.6 13.1  33.3   

Rand‐C  5.3  5.5  5.4  5.4  7.3  12.7 18.2 4.6  36.6 36.6 5.8  13.0   

Maxmin  1.3  2.9  6.1  6.8  2.1  4.1  5.0  0.9  21.4 9.6  0.0  5.5   

kmeans++  1.7  2.3  3.2  3.3  3.1  5.6  7.9  0.8  21.3 10.4 0.1  5.4   

Bradley  1.0  0.7  0.6  0.5  1.5  3.4  5.3  3.3  5.7  13.6 1.7  3.4   

Sorting  3.3  3.7  4.1  4.4  4.9  10.4 15.6 4.0  34.1 7.2  1.7  8.5   

Projection  3.0  3.4  3.9  4.2  4.5  9.8  15.2 4.0  33.7 1.0  1.1  7.6   

Luxburg  0.8  0.8  1.1  1.3  0.9  1.1  1.2  4.2  5.6  1.7  0.0  1.7   

Split  0.5  0.8  1.4  1.4  1.3  2.4  3.5  4.5  12.0 2.7  0.0  2.8   

CI-values (final) 
Method  s1  s2  s3  s4  a1  a2  a3  unb b1  b2  dim32  Aver.  Impr.

Rand‐P  3.3  0.6  1.2  0.4  6.0  10.7 17.9 4.0  11.3 75.6 5.3  12.4  63 % 

Rand‐C  1.8  1.4  1.3  0.9  2.5  4.5  6.6  3.9  6.6  16.6 3.6  4.5  65 % 

Maxmin  0.7  1.0  0.7  1.0  1.0  2.6  2.9  0.9  5.5  7.3  0.0  2.2  62 % 
kmeans++  1.0  0.9  1.0  0.8  1.5  2.9  4.2  0.5  4.9  7.2  0.1  2.3  57 % 

Bradley  0.9  0.6  0.5  0.4  1.3  3.0  4.8  3.5  4.6  12.5 1.6  3.1  11 % 

Sorting  1.3  1.1  1.0  0.7  1.5  3.6  5.5  4.0  5.7  4.3  1.4  2.7  69 % 

Projection  1.2  0.9  0.8  0.6  1.2  3.3  5.2  4.0  5.3  0.2  0.9  2.2  71 % 

Luxburg  0.5  0.4  0.6  0.4  0.6  0.9  1.0  4.0  2.7  1.6  0.0  1.2  29 % 

Split  0.2  0.3  0.4  0.4  0.5  1.1  1.8  4.0  2.8  1.6  0.0  1.2  61 % 

Success-% 
Method  s1  s2  s3  s4  a1  a2  a3  unb b1  b2  dim32  Aver.  Fails 

Rand‐P  0%  47%  5%  63%  0%  0%  0%  0%  0%  0%  0%  10%  8 

Rand‐C  3%  11%  12%  26%  1%  0%  0%  0%  0%  0%  0%  5%  6 

Maxmin  37%  16%  36%  9%  15% 1%  0%  22% 0%  0%  100%  22%  3 

kmeans++  21%  24%  18%  30%  7%  0%  0%  51% 0%  0%  88%  22%  4 

Bradley  21%  46%  49%  64%  7%  0%  0%  0%  0%  0%  2%  17%  5 

Sorting  12%  20%  22%  36%  10% 0%  0%  0%  0%  12% 15%  12%  4 

Projection  16%  29%  30%  42%  18% 0%  0%  0%  0%  92% 34%  24%  4 

Luxburg  52%  60%  45%  61%  45% 33% 31% 0%  0%  17% 95%  40%  2 

Split  78%  75%  62%  64%  51% 17% 5%  0%  0%  10% 99%  42%  2 

Number of iterations 
Method  s1  s2  s3  s4  a1  a2  a3  unb b1  b2  dim32  Aver.   

Rand‐P  32  37  37  39  43  58  76  36  228  130 3  65   

Rand‐C  20  24  27  40  22  26  27  33  117  48  5  36   

Maxmin  13  19  24  37  20  18  20  4  92  43  2  26   

kmeans++  14  19  24  35  17  20  22  13  89  43  2  27   

Bradley  13  12  13  17  12  17  19  24  77  45  2  23   

Sorting  17  21  25  37  19  24  26  38  104  33  3  32   

Projection  15  20  25  35  17  24  25  36  99  6  3  28   
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Luxburg  9  12  17  27  11  12  12  33  62  23  2  20   

Split  7  11  19  27  12  16  18  35  65  27  2  22   

 

4.2. Cluster overlap 

The results with the S1-S4 datasets (Table 3) demonstrate the effect of the overlap in 
general: the less overlap, the worse the k-means’ performance. Some initialization 
techniques can compensate for this weakness. For example, the maxmin variants and the 
standalone algorithms reduce this phenomenon but do not remove it completely. They 
provide better initial solution with S1 (less overlap) than with S4 (more overlap), but the 
final result after the k-means iterations is still not much different. An extreme case is 
DIM32, for which all these better techniques provide correct solution. However, they do 
it even without k-means iterations! 

Further tests with G2 confirm the observation, see Fig. 13. When overlap is less than 
2%, the k-means iterations do not help much and the result depends mostly on the 
initialization. If the correct clustering is found, it is found without k-means. Thus, the 
clustering is solved by a better algorithm, not by better k-means initialization. In case of 
high overlap, k-means reaches almost the same result (about 88% success rate) 
regardless of how it was initialized. 
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Figure 13: Average success rates for all G2 datasets before (gray) and after k-means 
(white). The datasets were divided into two categories: those with low overlap <2% 

(left), and those with high overlap 2% (right). 

 

4.3 Number of clusters 

The results with the A1-A3 datasets (Table 3) show that the more there are clusters the 
higher the CI-value and the lower the success rate. This phenomenon holds for all 
initialization techniques and it is not specific to k-means algorithm only. If an algorithm 
provides correct clustering with success rate p for a dataset of size k, then p is expected 
to decrease when k increases. Fig. 14 confirms this dependency with the Birch2 subsets. 
Projection heuristic is the only technique that manages to capture the hidden 
1-dimensional structure in this data. The success rate of all other true initialization 
techniques eventually decreases to 0%. 

Fig. 15 shows that the CI-value has a near linear dependency on the number of clusters. 
In most cases, the relative CI-value converges to a constant when k approaches its 
maximum (k=100). An exception is Luxburg, which is less sensitive to the increase of k; 
providing values CI=(0.82, 1.25, 1.42, 1.54) for k=(25, 50, 75, 100). Besides this 
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exception, we conclude that the performance has linear dependency on k regardless of 
the initialization technique. 
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Figure 14: Dependency of the success rate and the  

number of clusters when using the subsets of Birch2 (B2-sub). 
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Figure 15: Dependency of the relative CI-values (CI/k) and the  
number of clusters when using the subsets of Birch2 (B2-sub). 

 

4.4 Dimensions 

We tested the effect of dimensions using the DIM and G2 datasets. Two variants 
(Maxmin, Split) solve the DIM sets almost every time (99-100%), whereas Kmeans++ 
and Luxburg solve them most of the times (95%), see Fig. 16. Interestingly, they find 
the correct result by the initialization and no k-means iterations are needed. In general, 
if the initialization technique is able to solve the clustering, it does it regardless of the 
dimensionality. 

The sorting and projection heuristics are exceptions in this sense; their performance 
actually improves with the highest dimensions. The reason is that when the dimensions 
increase, the clusters eventually become so clearly separated that even such naïve 
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heuristics will be able to cluster the data. In general, the reason for success or failure is 
not the dimensionality but the cluster separation. 

The results with G2 confirm the above observation, see Fig. 16. With the lowest 
dimensions, k-means iterations work because some cluster overlap exists. However, for 
higher dimensions the overlap eventually disappears and the performance starts to 
depend mainly on the initialization. We also calculated how much the success rate 
correlates with the dimensions and the overlap. The results in Table 4 show that the 
final result correlates much stronger with the overlap than with the dimensionality. 

Since there is causality between dimensions and overlap, it is unclear whether the 
dimensionality has any role at all. To test this further, we generated additional datasets 
with D=2-16 and compared only those with overlap = 2%, 4%, 8%. The results showed 
that success of the k-means iterations do not depend on the dimensions even when the 
clusters overlap.  

To sum up, our conclusion is that k-means iterations cannot solve the problem when the 
clusters are well separated. All techniques that solve these datasets, do it already by the 
initialization technique without any help of k-means. When there is overlap, k-means 
works better. But even then, the performance does not depend on the dimensionality. 
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Figure 16: Dependency of success rate on the dimensions when no overlap (DIM sets), 
and with overlap (G2 datasets). The results of G2 are average success rates for all 

sd=10-100 (G2-D-sd) with a given dimension D, before and after k-means. 
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Table 4: Correlation of success rate with increasing overlap (left) and dimensions 
(right) with the G2 datasets (3:3 centroid allocation test). Red>0.60, Yellow=0.30-0.53. 

Overlap  Dimension 
  Init  Final  Init  Final 

Rand‐P  ‐0.34  0.68  0.11  ‐0.46 

Rand‐C  0.08  0.82  0.13  ‐0.35 

Maxmin  0.61 0.73  -0.23 ‐0.32 

kmeans++  0.63  0.80  ‐0.39  ‐0.41 

Bradley  0.67  0.71  ‐0.48  ‐0.47 

Sorting  0.46  0.69  ‐0.53  ‐0.51 

Projection  0.02  0.45  0.01  ‐0.27 

Luxburg  0.12  0.80  ‐0.32  ‐0.38 

Split  ‐0.61  0.06  ‐0.39  ‐0.79 

 

 

4.5 Unbalance 

Unbalance dataset shows one weakness of k-means. The problem is not the different 
densities as such, but the unbalance of cluster sizes together with the separation of the 
clusters. If no centroids are selected from the sparse area, k-means iterations manage to 
move only one centroid into this area, and all other centroids will remain in the dense 
area, see Fig. 17. The probability that a single random centroid would be selected from 
the sparse area is p = 500/6500 = 7%. To pick all required five centroids from the sparse 
area would happen with probability of 0.01%1, i.e. only once every 8430 runs. 

Besides Rand-C and Rand-P, sorting and projection heuristics, Luxburg and Split 
algorithms all fail with this data by allocating most centroids to the dense area. Bradley 
works only slightly better and often allocates two centroids to the sparse area. Maxmin 
heuristics work best because they rely more on distances than on frequencies. 
K-means++ typically misses one centroid whereas Maxmin does the opposite and 
allocates one too many centroids in the sparse area. They provide success rates of 22% 
(Maxmin) and 51% (KM++), in contrast to the other techniques that result in 0% 
success. 

To sum up, success depends mainly on the goodness of the initialization; k-means 
iterations can do very little with this kind of data. If the correct clustering is found, it is 
found mainly without k-means. 
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Figure 17: Examples of the initialization technique on the Unbalance dataset.  
The only techniques that do not badly fail are the maxmin heuristics.  
The numbers indicate the order in which the centroids are selected. 

 

4.6 Repeats 

We next investigate to what extent the k-means performance can be improved by 
repeating the algorithm several times. Table 5 summarizes the results. We can see that 
significant improvement is achieved with all initialization techniques. When the success 
rate of a single run of k-means is 2% or higher, CI=0 can always be reached thanks to 
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the repeats. However, none of the variants can solve all datasets. Overall performance of 
the different initialization techniques can be summarized as follows: 

 Random partition is almost hopeless and the repeats do not help much. It only 
works when the clusters have strong overlap. But even then, k-means works 
relatively well anyway regardless of the initialization. 

 Random centroids is improved from CI=4.5 to 2.1, on average, but still it can solve 
only three datasets (S2, S3, S4). Two other datasets (S1, A1) could be solved with 
significantly more repeats, but not the rest. 

 Maxmin variants are the best among the simple initialization techniques providing 
CI=0.7, on average, compared to 2.1 of Rand-C. They still fail with four datasets. 
K-means++ is not significantly better than the simpler Maxmin. 

 The standalone algorithms (Luxburg and Split) are the best. They provide average 
value of CI=1.2 without the repeats, and CI=0.4 with 100 repeats. They fail only 
with the Unbalance datasets. 

The improvement from the repeats is achieved at the cost of increased processing time. 
We used the fast k-means variant [89] that utilizes the activity of the centroids. For the 
smaller data sets the results are close to real-time, but with the largest dataset (Birch1, 
N=100,000), the 100 repeats can take from 10-30 minutes. 
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Table 5: Performance of the repeated k-means (100 repeats). The last two columns 
show the average results of all datasets without repeats (KM) and with repeats (RKM). 

CI-values 
Method  s1  s2  s3  s4  a1  a2  a3  unb b1  b2  dim32  KM  RKM

Rand‐P  1.4  0.0  0.0  0.0  4.9  8.8  16.7 3.6  8.5  74.0 2.6  12.4  11.0 

Rand‐C  0.1  0.0  0.0  0.0  0.3  1.8  2.9  2.9  2.8  10.9 1.1  4.5  2.1 

Maxmin  0.0  0.0  0.0  0.0  0.0  0.5  0.6  0.0  2.8  3.9  0.0  2.2  0.7 

kmeans++  0.0  0.0  0.0  0.0  0.0  0.8  1.6  0.0  1.7  3.4  0.0  2.3  0.7 

Bradley  0.0  0.0  0.0  0.0  0.0  0.9  2.1  1.2  2.0  8.5  0.0  3.1  1.3 

Sorting  0.0  0.0  0.0  0.0  0.0  0.8  2.2  4.0  2.2  0.0  0.0  2.7  0.8 

Projection  0.0  0.0  0.0  0.0  0.0  0.9  2.0  3.9  1.9  0.0  0.0  2.2  0.4 

Luxburg  0.0  0.0  0.0  0.0  0.0  0.0  0.0  3.7  0.6  0.0  0.0  1.2  0.4 

Split  0.0  0.0  0.0  0.0  0.0  0.0  0.0  4.0  0.6  0.0  0.0  1.2  0.4 

Success rate (%) 
Method  s1  s2  s3  s4  a1  a2  a3  unb b1  b2  dim32  Aver.  Fails 

Rand‐P  0%  100% 100% 100%  0%  0%  0%  0%  0%  0%  0%  27%  10 

Rand‐C  96%  100% 100% 100%  56% 2%  0%  0%  0%  0%  2%  41%  10 

Maxmin  100% 100% 100% 100% 100% 58% 36% 100% 0%  0%  100%  72%  4 

kmeans++  100% 100% 100% 100%  98% 20% 0%  100% 0%  0%  100%  65%  4 

Bradley  100% 100% 100% 100% 100% 4%  4%  4%  0%  0%  84%  54%  6 

Sorting  100% 100% 100% 100% 100% 24% 0%  0%  2%  100% 100%  66%  4 

Projection  100% 100% 100% 100% 100% 18% 0%  0%  0%  100% 100%  65%  4 

Luxburg  100% 100% 100% 100% 100% 100% 100% 0%  46% 100% 100%  86%  2 

Split  100% 100% 100% 100% 100% 100% 100% 0%  36% 100% 100%  85%  2 

Running time (s) 
Method  s1  s2  s3  s4  a1  a2  a3  unb b1  b2  dim32     

Rand‐P  3.2  4.4  4.7  6.6  3.1  8.9  15  5.0  1657 1037 0.3     

Rand‐C  2.6  3.2  4.1  8.2  2.0  4.4  7.5  4.8  882  172 0.4     

Maxmin  1.9  2.4  3.7  5.6  1.8  3.2  5.6  2.5  596  146 0.3     

kmeans++  1.9  2.8  3.7  6.6  1.9  3.7  6.4  4.1  604  143 0.4     

Bradley  2.5  2.7  3.5  5.6  1.9  4.5  7.8  4.7  605  195 1.0     

Sorting  2.3  3.1  3.8  7.6  1.9  4.4  6.8  4.9  815  148 0.3     

Projection  2.1  3.0  3.7  7.1  1.7  4.1  6.6  5.0  768  84  0.3     

Luxburg  1.9  2.4  3.2  6.1  1.7  3.5  5.5  4.9  431  126 0.4     

Split  3.5  3.9  5.3  6.9  2.3  5.8  10  11  1072 988 1.2     

 
 
We extended the tests and ran 200,000 repeats for A3 and Unbalance datasets. The 
results in Table 6 show that Maxmin would need 216 repeats to reach CI=0 with A3, on 
average, whereas k-means++ would require 8,696 repeats even though it finds CI=1 
already after 138 repeats. The results also show that Unbalance dataset is difficult for 
almost all initialization techniques but the maxmin heuristics are most suitable for this 
type of data. 
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Table 6: Number of repeats in RKM to reach certain CI-level. Missing values (-) 
indicate that this CI-level was never reached during the 200,000 repeats. 

A3 
CI‐value 

Initialization 
6  5  4  3  2  1  0 

Rand‐P  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Rand‐C  2  4  11  54  428  11111  ‐ 

Maxmin        1  3  14  216 

Kmeans++    1  2  3  14  138  8696 

Bradley    1  2  8  58  1058  33333 

Sorting  1  2  4  13  73  1143  ‐ 

Projection  1  2  3  9  46  581  18182 

Luxburg            1  3 

Split          1  2  9 

Unbalance 
CI‐value 

Initialization 
6  5  4  3  2  1  0 

Rand‐P      1  97  8333  ‐  ‐ 

Rand‐C      1  16  69  1695  100k 

Maxmin            1  4 

Kmeans++            1  2 

Bradley      1  3  6  70  1471 

Sorting      1  ‐  ‐  ‐  ‐ 

Projection      1  935  16667  ‐  ‐ 

Luxburg      1  59  16667  ‐  ‐ 

Split      1  9524  ‐  ‐  ‐ 

 

 

4.7 Summary 

We make the following observations: 

 Random partition provides an initial solution of similar quality regardless of 
overlap, but the errors in initial solution can be better fixed by k-means iterations 
when clusters have high overlap. In this case it can even outperform random 
centroids. However, repeats do not improve the results much, especially with sets 
having many clusters (A3, Birch2).  

 Cluster overlap is the biggest factor. If there is high overlap, k-means iterations 
work well regardless of the initialization. If there is no overlap, then the success 
depends completely on the initialization technique: if it fails, k-means will also fail. 

 Practically all initialization techniques perform worse when the number of clusters 
increases. Success of the k-means depends linearly on the number of clusters. The 
more clusters, the more errors there are, before and after the iterations. 

 Dimensionality does not have a direct effect. It has a slight effect on some 
initialization techniques but k-means iterations are basically independent on the 
dimensions. 
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 Unbalance of cluster sizes can be problematic especially for the random 
initializations but also for the other techniques. Only the maxmin variants with 100 
repeats can overcome this problem. 

Table 7 summarizes how the four factors affect the different initialization techniques 
and the k-means iterations.  

 

Table 7: How the four factors have effect on the performance of the initialization and 
on the k-means iterations. 

Method  Overlap  Clusters  Dimension  Unbalance 

Rand‐P  No effect  Constant No effect  Very bad 

Rand‐C  No effect  Constant No effect  Very bad 

Maxmin  Bad Constant No effect A bit worse 

kmeans++  A bit worse Constant No effect  A bit worse 

Bradley  Good Constant No effect  Bad 

Sorting  A bit worse Constant No effect  Very bad 
Projection  A bit worse Constant No effect  Very bad 
Luxburg  A bit worse  Minor effect  No effect  Very bad 
Split  A bit worse  Constant  No effect  Very bad 
KM iterations  Good  Constant  No effect  No effect 

 
 
5. Conclusions 

On average, k-means caused errors with about 15% of the clusters (CI=4.5). By 
repeating k-means 100 times this errors was reduced to 6% (CI=2.0). Using a better 
initialization technique (Maxmin), the corresponding numbers were 6% (CI=2.1) with 
k-means as such, and 1% (CI=0.7) with 100 repeats. For most pattern recognition 
applications this accuracy is more than enough when clustering is just one component 
within a complex system. 

The most important factor is the cluster overlap. In general, well separated clusters 
make the clustering problem easier but for k-means it is just the opposite. When the 
clusters overlap, k-means iterations work reasonably well regardless of the initialization. 
This is the expected situation in most pattern recognition applications. 

The number of errors have a linear dependency on the number of clusters (k): the more 
clusters, the more errors k-means makes, but the percentage remains constant. 
Unbalance of cluster sizes is more problematic. Most initialization techniques fail, and 
only the maxmin heuristics worked in this case. The clustering result then depends 
merely on the goodness of the initialization technique. 

Dimensionality itself is not a factor. It merely matters how the dimensions affect the 
cluster overlap. With our data, the clusters became more separated when the dimensions 
were increased, which in turn worsened the k-means performance. Besides this indirect 
effect, the dimensions did not matter much.  

With real data the effect might be just the opposite. If the features (attributes) are added 
in the order of their clustering capability, it is expected that the clusters would become 
more overlapping when adding more features. As a result, k-means would start to work 
better but the data itself would become more difficult to cluster, possibly losing the 
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clustering structure. And vice versa, if good feature selection is applied, the clusters can 
be more separated, which has the danger that k-means would start to perform worse.  

Based on these observations, choosing an initialization technique like Maxmin can 
compensate for the weaknesses of k-means. With unbalanced cluster sizes it might work 
best overall. However, it is preferable to repeat the k-means 10-100 times; each time 
taking a random point as the first centroids and selecting the rest using the Maxmin 
heuristic. This will keep the number of errors relatively small. 

However, the fundamental problem of k-means still remains when the clusters are well 
separated. From all the tested combinations, none was able to solve all the benchmark 
datasets despite them being seemingly simple. With 100 repeats, Maxmin and 
k-means++ solved 7 datasets (out of the 11), thus being the best initialization 
techniques. The better standalone algorithms (Luxburg and Split) managed to solve 9. 

To sum up, if the clusters overlap, the choice of initialization technique does not matter 
much, and repeated k-means is usually good enough for the application. However, if the 
data has well-separated clusters, the result of k-means depends merely on the 
initialization algorithm.  

In general, the problem of initialization is not any easier than solving the clustering 
problem itself. Therefore, if the accuracy of clustering is important, then a better 
algorithm should be used. Using the same computing time spent for repeating k-means, 
a simple alternative called random swap (RS) [12] solves all the benchmark datasets. 
Other standalone algorithms that we have found able to solve all the benchmark sets 
include genetic algorithm (GA) [10], the split algorithm [46], split k-means [46], and 
density peaks [78]. Agglomerative clustering [30] solves 10 out of 11. 
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