
How much k-means can be improved
by using better initialization and repeats?

to appear in Pattern Recognition
16.4.2019

Pasi Fränti and Sami Sieranoja*

Machine Learning Group
School of Computing, University of Eastern Finland

P.O. Box 111, FIN-80101 Joensuu, FINLAND
pasi.franti@uef.fi, sami.sieranoja@uef.fi

Abstract: In this paper, we study what are the most important factors that deteriorate the
performance of the k-means algorithm, and how much this deterioration can be
overcome either by using a better initialization technique, or by repeating (restarting) the
algorithm. Our main finding is that when the clusters overlap, k-means can be
significantly improved using these two tricks. Simple furthest point heuristic (Maxmin)
reduces the number of erroneous clusters from 15% to 6%, on average, with our
clustering benchmark. Repeating the algorithm 100 times reduces it further down to 1%.
This accuracy is more than enough for most pattern recognition applications. However,
when the data has well separated clusters, the performance of k-means depends
completely on the goodness of the initialization. Therefore, if high clustering accuracy is
needed, a better algorithm should be used instead.

Keywords: Clustering algorithms, k-means, initialization, clustering accuracy, prototype
selection.

1. Introduction

K-means (KM) algorithm [1, 2, 3] groups N data points into k clusters by minimizing
the sum of squared distances between every point and its nearest cluster mean
(centroid). This objective function is called sum-of-squared errors (SSE). Although
k-means was originally designed for minimizing SSE of numerical data, it has also been
applied for other objective functions (even some non-numeric).

Sometimes the term k-means is used to refer to the clustering problem of minimizing
SSE [4, 5, 6, 7]. However, we consider here k-means as an algorithm. We study how
well it performs as a clustering algorithm to minimize the given objective function. This
approach follows the recommendation in [8] to establish a clear distinction between the
clustering method (objective function) and the clustering algorithm (how it is
optimized).

In real-life applications, the selection of the objective function is much more important.
Clustering results depend primarily on the selected objective function, and only
secondarily on the selected algorithm. Wrong choice of the function can easily reverse
the benefit of a good algorithm so that a proper objective function with a worse
algorithm can provide better clustering than good algorithm with wrong objective
function. However, it is an open question how much clustering results are biased
because of using an inferior algorithm.

There are other algorithms that are known, in many situations, to provide better
clustering results than k-means. However, k-means is popular for good reasons. First, it
is simple to implement. Second, people often prefer to use an extensively studied
algorithm whose limitations are known rather than a potentially better, but less studied,
algorithm that might have unknown or hidden limitations. Third, the local fine-tuning

 1

mailto:pasi.franti@uef.fi
mailto:sami.sieranoja@uef.fi

capability of k-means is very effective, and for this reason, it is also used as part of
better algorithms such as the genetic algorithm [9, 10], random swap [11,12], particle
swarm optimization [13], spectral clustering [14], and density clustering [15].
Therefore, our results can also help better understand those more complex algorithms
that rely on the use of k-means.

K-means starts by selecting k random data points as the initial set of centroids, which is
then improved by two subsequent steps. In the assignment step, every point is put into
the cluster of the nearest centroid. In the update step, the centroid of every cluster is
recalculated as the mean of all data points assigned to the cluster. Together, these two
steps constitute one iteration of k-means. These steps fine-tune both the cluster borders
and the centroid locations. The algorithm is iterated a fixed number of times, or until
convergence (no further improvement is obtained). MacQueen also presented sequential
variant of k-means [2], where the centroid is updated immediately after every single
assignment.

K-means has excellent fine-tuning capabilities. Given a rough allocation of the initial
cluster centroids, it can usually optimize their locations locally. However, the main
limitation of k-means is that it rarely succeeds in optimizing the centroid locations
globally. The reason is that the centroids cannot move between the clusters if their
distance is big, or if there are other stable clusters in between preventing the movements,
see Fig. 1. The k-means result therefore depends a lot on the initialization. Poor
initialization can cause the iterations to get stuck into an inferior local minimum.

Figure 1: K-means is excellent in fine-tuning cluster borders locally
but fails to relocate the centroids globally. Here a minus sign (-) represents a centroid

that is not needed, and a plus sign (+) a cluster where more centroids would be needed.
K-means cannot do it because there are stable clusters in between.

Fortunately, finding the exact optimum is not always important. In pattern recognition
applications, the goal can be merely to model the distribution of the data, and the
clustering result is used as a part in a more complex system. In [16], the quality of the
clustering was shown not to be critical for the speaker recognition performance when
any reasonable clustering algorithm, including repeated k-means, was used.

 2

However, if the quality of clustering is important then k-means algorithm has problems.
For example, if we need to solve the number of clusters, the goodness of the algorithm
matters much more. Experiments with three different indexes (WB, DBI, Dunn) have
shown that k-means rarely achieves the correct number of clusters whereas random
swap succeeded in most cases [17]. Similar observations were made with stability-based
approach in [18].

To compensate for the mentioned weaknesses of k-means, two main approaches have
been considered: (1) using a better initialization, (2) repeating k-means several times by
different initial solution. Numerous initialization techniques have been presented in the
literature, including the following:

 Random points
 Furthest point heuristic
 Sorting heuristic
 Density-based
 Projection-based
 Splitting technique

Few comparative studies exists [19-22], but there is no consensus of which technique
should be used. A clear state-of-the-art is missing. Pena et al. [19] studied four basic
variants: random centroids [1] and MacQueen’s variant of it [2], random partition and
Kaufman’s variant of the Maxmin heuristic [23]. Their results show that random
partition and Maxmin outperform the random centroid variants with the three datasets
(Iris, Ruspini, Glass).

He et al. [20] studied random centroids, random perturbation of the mean [24], greedy
technique [25], Maxmin [26], and Kaufman’s variant of Maxmin [23]. They observed
that the Maxmin variants provide slightly better performance. Their argument is that the
Maxmin variants are based on distance optimization, which tends to help k-means
provide better cluster separation.

Steinley and Brusco [21] studied 12 variants including complete algorithms like
agglomerative clustering [27] and global k-means [28]. They ended up recommending
these two algorithms and Steinley’s variant [29] without much reservation. The first two
are already complete stand-alone algorithms themselves and not true initialization
techniques, whereas the last one is a trivial improvement of the random partition.

Steinley and Brusco also concluded that agglomerative clustering should be used only if
the size, dimensionality or the number of clusters is big; and that global k-means
(GKM) [28] should be used if not enough memory to store the N2 pairwise distances.
However, these recommendations are not sound. First, agglomerative clustering can be
implemented without storing the distance matrix [30]. Second, GKM is extremely slow
and not practical for bigger datasets. Both these alternatives are also standalone
algorithms and they provide better clustering even without k-means.

Celebi et al. [22] performed the most extensive comparison so far with 8 different
initialization techniques on 32 real and 12,228 synthetic datasets. They concluded that
random centroids and Maxmin often perform poorly and should not be used, and that
there are significantly better alternatives with comparable computational requirements.
However, their results do not clearly point out a single technique that would be
consistently better than others.

The detailed results in [22] showed that a sub-sampling and repeat strategy [31]
performs consistently in the best group and k-means++ performs generally well. For

 3

small datasets Bradley’s sub-sampling strategy or greedy variant of k-means++ was
recommended. For large data, split-based algorithm was recommended.

The second major improvement, besides the initializations, is to repeat k-means [32].
The idea is simply to restart k-means several times from different initial solution to
produce several candidate solutions, and then keeping the best result found as the final
solution. This approach requires that the initialization technique produces different
starting solutions by involving some randomness in the process. We call this variant
repeated k-means (RKM). The number of repeats is typically small like R=20 in [33].

Many researchers consider the repeats as an obvious and necessary improvement to the
k-means at the cost of increased processing time. Bradley & Fayyad [31] used slightly
different variant by combining the repeats and sub-sampling to avoid the increase in the
processing time. Besides these papers, it is hard to find any systematic study how the
repeats affect on the k-means. For example, none of the review papers investigate the
effect of the repeats on the performance.

To sum up, existing literature provides merely relative comparisons between the
selected initialization techniques. They lack clear answers of the significance of the
results, and present no analysis on which type of data the techniques work and fail.
Many of the studies also use classification datasets, which have limited suitability for
studying the clustering performance.

We made a brief survey about how recent research papers apply k-means. Random
centroids [34, 35, 5] seems to be the most popular initialization method, along with k-
means++ [36, 33, 6]. Some papers do not specify how they initialize [37], or it had to be
concluded indirectly. For example, Boutsidis [5] used the default method available in
MATLAB, which was random centroids in the 2014a version and k-means++ starting
from the 2014b version. The method in [38] initializes both the centroids and the
partition labels at random. However, as they apply the centroid step first, the random
partition is effectively applied.

The number of k-means repeats varies from a relatively small amount of 10-20 [5, 35,
33] to a relatively high value of 100 [36]. The most extreme example is [34] where 20
hours time limit is applied. Although they stop iterating if the running time grows twice
as that of their proposed algorithm, it is still quite extensive. Several papers do not
repeat k-means at all [37, 6, 7].

The choice of the initialization and the number of repeats might also vary depending on
the motivation. The aim of using k-means can be to have a good clustering result, or to
provide merely a point of comparison. In the first case, all the good tricks are used, such
as more repeats and better initialization. In the second case, some simpler variant is
more likely applied. A counter-example is in [34] where serious efforts seem to be made
to ensure all algorithms have the best possible performance.

In this paper we study the most popular initialization heuristics. We aim at answering
the following questions. First, to what extent k-means can be improved by a better
initialization technique? Second, can the fundamental weakness of k-means be
eliminated simply by repeating the algorithm several times? Third, can we predict under
which conditions k-means works, and which it fails?

In a recent study [39], it was shown that k-means performs poorly when the clusters are
well separated. Here we will answer how much a better initialization or repeats can
compensate for this weakness. We will also show that dimensionality does not matter

 4

for most variants, and that unbalance of cluster sizes deteriorates the performance of
most initializations.

The rest of the paper is organized as follows. In Section 2, we define the methodology
and data. We also give brief review of the properties of the standard k-means algorithm.
Different initialization techniques are then studied in Section 3. Experimental analysis is
performed in Section 4, and conclusions are drawn in Section 5.

2. Performance of k-means

Following the recommendation of Jain [8], we make a clear distinction between the
clustering method and algorithm. Clustering method refers to the objective function, and
clustering algorithm to the process optimizing it. Without this distinction, it would be
easy to draw wrong conclusions.

For example, k-means has been reported to work poorly with unbalanced cluster sizes
[40], and that it can cause large clusters to be wrongly split and smaller clusters wrongly
merged [41]. These observations themselves are correct but they miss the root cause,
which is the SSE objective function. Even an optimal algorithm minimizing SSE would
end up with the same incorrect result. Such observations therefore relate to the objective
function, and not to the k-means algorithm.

Fig. 2 demonstrates the situation. An algorithm minimizing SSE would find spherical
clusters regardless of the data. If the data contain non-spherical clusters, they would be
divided into spherical sub-clusters, usually along the direction of the highest variance.
Clusters of variable sizes would also cause large clusters to be split, and smaller ones to
be merged. In these cases, if natural clusters are wanted, a better clustering result could
be achieved by using an objective function based on Mahalanobis distance [42] or
Gaussian mixture model [43] instead of SSE.

Non-spherical
5 clusters

Different
variance

2 clusters

Different density
8 clusters

Figure 2: Three examples of clustering result when using SSE cost function. Gaussian
cluster is split into several spherical clusters (left); mismatch of the variance causes the
larger cluster to be split (middle); mismatch of the cluster sizes does not matter if the

clusters are well-separated.

 5

2.1 Datasets

In this paper, we focus on the algorithmic performance of k-means rather than the
choice of the objective function. We use the clustering basic benchmark [39] as all
these datasets can be clustered correctly with SSE. Therefore, any clustering errors
made by k-means must originate from the properties of the algorithm, and not from the
choice of wrong objective function. The datasets are summarized in Table 1. They are
designed to vary the following properties as defined in [39]:

 Cluster overlap
 Number of clusters
 Dimensionality
 Unbalance of cluster sizes

Table 1: Basic clustering benchmark [39].
The data is publicly available here: http://cs.uef.fi/sipu/datasets/

Dataset Varying Size Dimensions Clusters Per cluster
A Number of clusters 3000-7500 2 20-50 150
S Overlap 5000 2 15 333
Dim Dimensions 1024 32-1024 16 64
G2 Dimensions + overlap 2048 2-1024 2 1024
Birch Structure 100,000 2 100 1000
Unbalance Balance 6500 2 8 100-2000

2.2 Methodology

To measure the success of the algorithm, the value of the objective function itself is the
most obvious measure. Existing literature reviews of k-means use either SSE [19, 22],
or the deviation of the clusters [20], which is also a variant of SSE. It is calculated as:

SSE =

N

i
ji cx

1

2
 (1)

where xi is a data point and cj is its nearest centroid. In [39], SSE is also measured
relative to the SSE-value of the ground truth solution (SSEopt):

-ratio =

opt

opt

SSE

SSESSE
 (2)

If the ground truth is known, external indexes such as adjusted Rand index (ARI), Van
Dongen (VD), variation of information (VI) or normalized mutual information (NMI)
can also be used [22]. A comparative study of several suitable indexes can be found in
[44]. The number of iterations have also been studied in [19, 22], and the time
complexities reported in [22].

The problem of SSE, and most of the external indexes, is that the raw value does not tell
how significant the result is. We therefore use Centroid Index (CI) [45], which indicates
how many cluster centroids are wrongly located. Specifically, the value CI=0 implies
that the clustering structure is correct with respect to the ground truth.

An example is shown in Fig. 3, where k-means provides SSE=3.081010, which is 52%
higher than that of the ground truth. But what do these numbers really mean? How
significant is the difference? On the other hand, the value CI=4 tells that exactly four
real clusters are missing a centroid.

 6

http://cs.uef.fi/sipu/datasets/

Missing centroids

Too many centroids

CI=4

Figure 3: Performance of k-means with the A2 dataset: CI=4, SSE=3.08 (1010), =0.52.

Based on CI, a success rate (%) was also defined in [39] to measure the probability of
finding the correct clustering. For example, when running k-means 5000 times with
dataset A2 (Fig. 3), CI=0 was never reached, and thus, its success rate is 0%. Another
example with dataset S2 (Fig. 4) results in success rate of 1/6 = 17%.

The success rate has an important implication. Any value higher than 0% indicates that
the correct clustering can be found simply by repeating k-means. For a success rate p,
the expected number of repeats is 1/p. For instance, p=50% indicates that expected
number of repeats is 2; and p=1% indicates 100 repeats. Even with as low value as
p =0.1% the correct solution is expected to be found in 1000 repeats. This is time
consuming, but feasible. However, for some of our datasets the success rate is so low
that the number repeats would be unreasonably high. For example, even 200,000 repeats
produces 0% success rate in our experiments with some datasets.

 7

Figure 4: Centroid index measures how many real clusters are missing a centroid (+),
or how many centroids are allocated to wrong cluster (-).

Six examples are shown for S2 dataset.

2.3 Properties of k-means

We next briefly summarize the main properties of the k-means algorithm. Generally the
clustering problem is the easier the more the clusters are separated. However, in [39] it
was found that for k-means it is just the opposite; the less overlap the worse the
clustering performance, see Fig. 5. This is a fundamental weakness of the k-means
algorithm.

S1 S2 S3 S4

3% 11% 12% 26%

overlap increasesoverlap increases

Figure 5: Success rate (%) of k-means, measured as the probability of finding correct
clustering, improves when the cluster overlap increases.

In [39], it was also found that the number of errors has linear dependency on the number
of clusters (k). For example, the CI-values for the A sets with k=20, 35, 50 clusters were
measured as CI=2.5, 4.5, 6.5, respectively. The relative CI-values (CI/k) correspond to a
constant of 13% of centroids being wrongly located. Results with the subsets of Birch2
(varying k from 1 to 100) converge to about 16% when k approaches to 100, see Fig. 6.

 8

0 %

5 %

10 %

15 %

20 %

0 10 20 30 40 50 60 70 80 90 100

Number of clusters (k)

R
el

at
iv

e
C

I-
va

lu
e

Birch2
subsets

K-means

Repeated
k-means

Figure 6: CI-value of k-means increases linearly with k,
and relative CI converges to 16% with the Birch2 subsets.

Two series of datasets are used to study the dimensionality: DIM and G2. The DIM sets
have 16 well separated clusters in high-dimensional space with dimensionality varying
from D=32 to 1024. Because of clear cluster separation, these datasets should be easy
for any good clustering algorithm to reach CI=0 and 100% success rate. However,
k-means again performs poorly; it obtains the values CI=3.6 and 0% success rate
regardless of the dimensionality. The reason for the poor performance is again the lack
of cluster overlap, and not the dimensionality.

The results with the G2 sets confirmed the dependency between the dimensionality and
the success rate. We allocated four centroids with 3:1 unbalance so that the first cluster
had three centroids and the second only one. We then ran k-means and checked whether
it found the expected 2:2 allocation by moving one of the three centroids to the second
group. The results in Fig. 7 show that the overlap is the mediating factor for the success
rate: the more overlap, the lower the success rate of k-means.

 9

Figure 7: The effect of overlap for the success of k-means with the G2 datasets. The
numbers circled with blue are for the three sample datasets shown above. The dataset
names are coded as G2-DIM-SD, where DIM refers to the dimensions and SD to the

standard deviation; the higher the SD, the more the two clusters overlap.

The cluster size unbalance was also shown in [39] to result in poor performance. The
main reason for this was the random initialization, which cannot pick the initial
centroids in a balanced way. Another reason was the k-means iterations which fail to
improve the initial solution due to lack of cluster overlap.

The effect of the different properties of data on k-means can be summarized as follows:

Property: Effect:

Cluster overlap Overlap is good
Number of clusters Linear dependency
Dimension No direct effect
Unbalance Bad

 10

3. K-means initialization techniques

Next we study how much these problems of k-means can be solved by the following
two improvements:

 Better initialization
 Repeating k-means

K-means is a good algorithm for local fine-tuning but it has serious limitation to
relocate the centroids when the clusters do not overlap. It is therefore unrealistic to
expect the clustering problem to be solved simply by inventing a better initialization for
k-means. The question is merely, how much a better initialization can compensate for
the weakness of k-means.

Any clustering algorithm could be used as an initialization technique for k-means.
However, solving the location of initial centroids is not significantly easier than the
original clustering problem itself. Therefore, for an algorithm to be considered as
initialization technique for k-means, in contrast to being a standalone algorithm, we set
the following requirements:

1. Simple to implement
2. Lower (or equal) time complexity than k-means
3. No additional parameters

First, the algorithm should be trivial, or at least very easy to implement. Measuring
implementation complexity can be subjective. The number of functions and the lines of
code were used in [16]. Repeated k-means was counted to have 5 functions and 162
lines of C-code. In comparison, random swap [11,12], fast agglomerative clustering
variant [30], and sophisticated splitting algorithm [46] had 7, 12 and 22 functions, and
226, 317 and 947 lines of codes, respectively. Random initialization had 2 functions and
26 lines of code.

Second, the algorithm should have lower or equal time complexity compared to
k-means. Celebi [22] categorizes the algorithms to linear, log-linear and quadratic based
on their time complexities. Spending quadratic time cannot be justified as the fastest
agglomerative algorithms are already working in close to quadratic time [30]. A faster
O(N logN) time variant also exists [47] but it is significantly more complex to
implement and requires to calculate k-near neighbors (KNN). K-means requires O(gkN)
time, where g is the number of iterations and typically varies from 20 to 50.

The third requirement is that the algorithm should be free of parameters; others than k.
For instance, there are algorithms [48, 25] that select the first centroid using some
simple rule, and the rest greedily by cluster growing, based on whether the point is
within a given distance. Density-connectivity criterion was also used in [49].
Nevertheless, this approach requires one or more threshold parameters.

The most common heuristics are summarized in Table 2. We categorize them roughly
into random, furthest point, sorting, and projection-based heuristics. Two standalone
algorithms are also considered: Luxburg [50] and Split algorithm. For a good review of
several others we refer to [51].

 11

Table 2: Summary of the initialization techniques compared in this paper. Time refers
to the average processing time with the A3 dataset (N=7500, k=50). Randomized refers
to whether the technique include randomness naturally. Randomness will be needed for
the repeated k-means variant later.

Technique Ref. Complexity Time Randomized Parameters
Random partitions [3] O(N) 10 ms Yes -
Random centroids [1,2] O(N) 13 ms Yes -
Maxmin [54] O(kN) 16 ms Modified -
kmeans++ [59] O(kN) 19 ms Yes -
Bradley [31] O(kN+Rk2) 41 ms Yes R=10, s=10%
Sorting heuristic [62] O(N logN) 13 ms Modified -
Projection-based [72] O(N logN) 14 ms Yes -
Luxburg [50] O(kN logk) 29 ms Yes -
Split [68, 46] O(N logN) 67 ms Yes k=2

3.1. Random centroids

By far the most common technique is to select k random data objects as the set of initial
centroids [1,2]. It guarantees that every cluster includes at least one point. We use
shuffling method by swapping the position of every data point with another randomly
chosen point. This takes O(N) time. After that, we take the first k points from the array.
This guarantees that we do not select the same point twice, and that the selection is
independent on the order of the data. For the random number generator we use the
method in [52]. We refer to this initialization method as random centroids.

Slightly different variant in [2] selects simply the first k data points. This is the default
option in the Quick Cluster in IBM SPSS Statistics [53]. If the data is in random order
the result is effectively the same as random centroids, except that it always provides the
same selection.

We note that the randomness is actually a required property for the repeated k-means
variant. This is because we must be able to produce different solutions at every repeat.
Some practitioners might not like the randomness and prefer deterministic algorithms
always producing the same result. However, both of these goals can actually be
achieved if so wanted. We simply use pseudo-random number generator with the same
seed number. In this way, single runs of k-means will produce different result but the
overall algorithm still produces always the same result for the same input.

3.2. Random partitions

An alternative to random centroids is to generate random partitions. Every point is put
into a randomly chosen cluster and their centroids are then calculated. The positive
effect is that it avoids selecting outliers from the border areas. The negative effect is that
the resulting centroids are concentrated in the central area of the data due to the
averaging. According to our observations, the technique works well when the clusters
are highly overlapped but performs poorly otherwise, see Fig. 8.

According to [19], the random partition avoids the worst case behavior more often than
the random centroids. According to our experiments, this is indeed the case but only
when the clusters have high overlap. The behavior of the random partition is also more
deterministic than that of random centroids. This is because the centroids are practically
always near the center of the data. Unfortunately, this also reduces the benefits of the

 12

repeated k-means because there is very little variation in the initial solutions, and
therefore, also the final solutions often become identical.

Steinley [29] repeats the initialization 5000 times and selects the one with the smallest
SSE. However, repeating only the initialization does not fix the problem. Instead, it
merely slows down the initialization because it takes 5000N steps, which is typically
much more than O(kN).

Thiesson et al. [24] calculate the mean point of the data set and then add random vectors
to it. This effectively creates initial centroids like a cloud around the center of the data,
with very similar effect as the random partition. The size of this cloud is a parameter. If
it is set up high enough, the variant becomes similar to the random centroids technique,
with the exception that it can select points also from empty areas.

 13

Fig. 8 shows the effect of the random partition and Steinley’s variant. Both variants
locate the initial centroids near the center of the data. If the clusters have low overlap,
k-means cannot provide enough movement and many of the far away clusters will lack
centroids in the final solution.

Initial FinalSteinley

Initial FinalSteinley

Figure 8: Initial centroids created by random partition (left), by Steinley’s variant
(middle), and the final result after the k-means iterations (right).

3.3. Furthest point heuristic (Maxmin)

Another popular technique is the furthest point heuristic [54]. It was originally
presented as standalone 2-approximate clustering algorithm but has been widely used to
initialize k-means. It selects an arbitrary point as the first centroid and then adds new
centroids one by one. At each step, the next centroid is the point that is furthest (max)
from its nearest (min) existing centroid. This is also known as Maxmin [19, 22, 55, 21].

Straightforward implementation requires O(k2N) time but it can be easily reduced to
O(kN) as follows. For each point, we maintain pointer to its nearest centroid. When
adding a new centroid, we calculate the distance of every point to this new centroid. If
the new distance is smaller than to the previous nearest, then it is updated. This requires

 14

N distance calculations. The process is repeated k times, and the time complexity is
therefore O(kN) in total, which is the same as one iteration of k-means. Further speedup
can be achived by searching for the furthest point in just a subset of the data [56].

There are several alternative ways to choose the first centroid. In the original variant the
selection is arbitrary [54]. In [55], the furthest pair of points are chosen as the first two
centroids. Another variant selects the one with maximum distance to the origin [57]
because it is likely to be located far from the center. Maximum density has also been
used [51, 58].

K-means++ [59] is a randomized variant of the furthest point heuristic. It chooses the
first centroid randomly and the next ones using a weighted probability
pi=costi/SUM(costi), where costi is the squared distance of the data point xi to its nearest
centroids. This algorithm is an O(log k)-approximation to the problem. We also
implement k-means++ for our tests because of its popularity.

Chiang and Mirkin [55] recalculate all the centroids after updating the partitions, and
the next centroid is selected as the farthest from the recently added centroid. Slightly
more complex variant [23] selects the point that decreases the objective function most.
It requires calculation of all distances between every pair of points, which takes O(N2)
time. Thus, it does not qualify our criteria for k-means initialization. With the same
amount of computation we can already run implement agglomerative clustering
algorithm.

Other authors also weight the distances by the density of the point [51, 58]. This reduces
the probability that outliers are selected. Erisoglu et al. [60] use cumulative distance to
all previous centroids instead of the maxmin criterion. However, this performs worse
because it can easily choose two nearby points provided that they have large cumulative
distance to all other centroids [61].

We use here a variant that selects the first point randomly [59, 54]. This adds
randomness to the process as required by the repeated k-means variant. The next
centroids we select using the original maxmin criterion, i.e. choosing the point with
biggest distance to its nearest centroid.

Maxmin technique helps to avoid worst case behavior of the random centroids,
especially when the cluster sizes have serious unbalance. It also has tendency to pick up
outlier points from the border areas, which leads to slightly inferior performance in the
case of datasets with high overlap (S3 and S4). However, k-means usually works better
with such datasets [39], which compensates for the weakness of Maxmin. Fig. 9
demonstrates the performance of the Maxmin technique.

 15

Figure 9: Example of the maxmin heuristic for S3 dataset. The blue dots are the initial
and the red dots the final centroids. The trajectories show their movement during the

k-means iterations.

3.4. Sorting heuristics

Another popular technique is to sort the data points according to some criterion. Sorting
requires O(N log N) time, which is less than that of one k-means iteration, O(kN),
assuming that logN k. After sorting, k points are selected from the sorted list using one
of the following heuristics:

 First k points.
 First k points while disallowing points closer than to already chosen centroids.
 Every (N/k)th point (uniform partition)

For the sorting, at least the following criteria have been considered:

 Distance to center point [62]
 Density [63, 21]
 Centrality [64]
 Attribute with the greatest variance [65]

Hartigan & Wong [62] sort the data points according to their distance to the center of
the data. The centroids are then selected as every N/kth point in this order. We include
this variant in our tests. To have randomness, we choose a random data point as
a reference point instead of the center. This heuristic fulfills our requirements: it is fast,
simple, and requires no additional parameters.

Astrahan [63] calculates density as the number of other points within a distance d1. First
centroid is the point with the highest density, and the remaining k-1 centroids are chosen
at a decreasing order, with the condition that they are not closer than distance d2 from an
already chosen centroid. Steinley [21] recommends using the average pairwise distance
(pd) both for d1 and d2. This makes the technique free from parameters but it is still slow,
O(N2) time, for calculating the pairwise distances.

It would be possible to simplify this technique further and use random sampling: select
N pairs of points, and use this subsample to estimate the value of pd. However, the

 16

calculation of the densities is still the bottleneck, which prevents this approach from
meeting the requirements for k-means initialization as such.

Cao et al. [64] proposed a similar approach. They use a primary criterion (cohesion) to
estimate how central a point is (how far from boundary). Secondary threshold criterion
(coupling) is used to prevent centroids from being neighbors.

Al-Daoud [65] sorts the data points according to the dimension with the largest variance.
The points are then partitioned into k equal size clusters. Median of each cluster is
selected instead of the mean. This approach belongs to a more general class of
projection-based techniques where the objects are mapped to some linear axis such as
diagonal or principal axis.

The sorting heuristic would work if the clusters were well separated, and all have
different criterion value (such as the distance from center point). This actually happens
with the very high dimensional DIM datasets in our benchmark. However, with most
other datasets the clusters tend to be randomly located in respect to the center point, and
it is unlikely that all the clusters would have different criterion values. What happens in
practice, is that the selected centroids are just random data points in the space, see
Fig. 10.

3.5. Projection-based heuristics

Sorting heuristics can also be seen as a projection of the points into a one-dimensional
(non-linear) curve in the space. Most criteria would just produce an arbitrary curve
connecting the points randomly, and lacking convexity or any sensible shape. However,
several linear projection-based techniques have been considered in the literature:

 Diagonal axis [65]
 Single axis [66, 67]
 Principal axis [68, 69, 46, 70, 67, 71]
 Two random points [72]
 Furthest points [72]

After the projection is performed, the points are partitioned into k equal size clusters
similarly as with the sorting-based heuristics.

Yedla et al. [66] sort the points according to their distance to origin, and then select
every N/kth point. If the origin is the center of data, this is essentially the same technique
as in [62]. If the attributes are non-negative, then this is essentially the same as
projecting the data to the diagonal axis. Such projection is trivial to implement by
calculating the average of the attribute values. It has also been used for speeding-up
nearest neighbor searches in clustering in [73].

Al-Daoud [65] sorts the points according to the dimension with the largest variance. The
points are then partitioned into k equal size clusters. Median of each cluster is selected
instead of the mean. This adapts to the data slightly better than just using the diagonal.

A more common approach is to use principal axis, which is the axis of projection that
maximizes variance. It has been used effectively in divisive clustering algorithms [68,
69, 46, 70, 67, 71]. Calculation of the principal axis takes O(DN)-O(D2N) depending on
the variant [46]. A more complex principal curve has also been used for clustering [74].

We consider two simple variants: random and two furthest points projection as studied
in [72]. The first heuristic takes two random data points and projects to the line passing

 17

by these two reference points. The key idea is the randomness; single selection may
provide poor initialization but when repeating several times, the chances to find one
good initialization increases, see Fig. 11. We include this technique into our
experiments and refer to it as Projection.

The second heuristic is slightly more deterministic but still random. We start by
selecting a random point, and calculate its furthest point. The projection axis is the line
passing by these two reference points. We again rely on randomness, but now the
choices are expected to be more sensible, potentially providing better results using
fewer trials. However, according to [72] this variant does not perform any better than
the simpler random heuristic.

Projection works well if the data has one-dimensional structure. In [72], projective value
is calculated to estimate how well a given projection axis models the data. From our
data, Birch2 and G2 have high projective values and suitable for projection-based
technique. However, with all other datasets, the projection does not make much more
sense than the naïve sorting heuristics, see Fig. 10.

We also note that projection-based techniques also generalize to segmentation-based
clustering, where k-1 dividing planes are searched simultaneously using dynamic
programming [75, 74]. These clustering results usually require fine-tuning by k-means
at the final step, but nevertheless, they are standalone algorithms.

Figure 10: Examples of sorting and projection-based techniques.

Random projection Furthest point projection

Figure 11: Examples of the two projection-based heuristics for A2 dataset: random
points (left), and the furthest point projections (right) [72].

 18

3.6. Density-based heuristics

Density was already used both with the furthest point and the sorting heuristics, but the
concept deserves a little bit further discussion. The idea of using density itself is
appealing but it is not trivial how to calculate the density, and how to use it in clustering.
Especially since the initialization technique should be fast and simple.

The main bottleneck of the algorithms is how to calculate the density is estimated for
the points. There are three common approaches for this:

 Buckets
 -radius circle
 k-nearest neighbors (KNN)

The first approach divides the space by a regular grid, and counts the frequency of the
points in every bucket [76]. The density of a point is then inherited from the bucket it is
in. This approach is feasible in low-dimensional space but would become impractical in
higher-dimensional spaces. In [61], the problem is addressed by processing the
dimensions independently in a heuristic manner. Other authors have used kd-tree [51,
57] or space-filling curve [77] to partition the space into buckets containing roughly the
same number of points. In [51, 57], the number of buckets is 10k.

The other two approaches calculate the density for every point individually. The
traditional one is to define a neighborhood using a cutoff threshold (-radius), and then
counting the number of other points within this neighborhood [63, 21, 64, 78]. The third
approach finds the k-nearest neighbors of a point [79], and then calculates the average
distance to the points within this neighborhood. Lemke and Keller calculate the density
between every pair of points [49].

The bottleneck of the last two approaches is that we need to find the points that are
within the neighborhood. This requires O(N2) distance calculations in both cases.
Several speed-up techniques and approximate variants exist [80, 81] but none that is
both fast and simple to implement. Calculating density values only for a subset of size
SQRT(N) would reduce the complexity to O(N1.5) depending whether the distances are
calculated to all points or only within the subset. In [82], density is calculated in each
dimension separately, and then final approximation is obtained by summing up the
individual densities. This allows rapid O(DN) time estimation with more accurate
estimation than the sub-sampling approach.

Once calculated, the density can be used jointly with the furthest point heuristic, with
the sorting heuristic, or some of their combination. For example, in [51] the furthest
point heuristic was modified by weighting the distance by its density so that outliers are
less likely chosen. The density peaks algorithm in [78] finds for every point its nearest
neighbor with higher density. It then applies sorting heuristic based on one of the two
features: density and the distance to its neighbor. The method works as a standalone
algorithm and does not require k-means at all.

Luxburg [50] first selects k*SQRT(k) preliminary clusters using k-means and then
eliminates the smallest ones. After this, the furthest point heuristic is used to select the
k clusters from the preliminary set of clusters. When minimizing SSE, the size of the
clusters correlates to their density. Thus, Luxburg’s technique indirectly implements
a density-based approach which favors clusters of high density. We include this
technique in our experiments although it does not satisfy our simplicity criterion.

 19

We also note that there are several standalone clustering algorithms based on density
[78, 49, 83, 84]. However, they do not fit to our requirements for speed and simplicity.
If combined with the faster density estimation in [82], some of these techniques could
be made competitive also in speed.

3.7. Splitting algorithm

Split algorithm puts all points into a single cluster, and then iteratively splits one cluster
at a time until k clusters are reached. This approach is seemingly simple and tempting to
consider for initializing k-means. However, there are two non-trivial design choices to
make: which cluster to split, and how to split it. We therefore consider split mainly as
a standalone algorithm, but discuss briefly some existing techniques that have been used
within k-means.

Linde, Buzo and Gray [85] uses binary split for initialization of their LBG algorithm in
the vector quantization context. Every cluster is split by replacing the original centroid c
by c+ and c-, where refers to a random vector. Splitting every cluster avoids the
question of which cluster to split but it does not have any real speed benefit. In [46],
was calculated as the standard deviation of the points in the cluster, in each dimension
separately.

Projection-based approaches are also suitable for the splitting algorithm. The idea is to
divide a chosen cluster according to a hyperplane perpendicular to the projection axis. It
is possible to find the optimal choice of the cluster to be split, and the optimal location
of the hyperplane in O(N) time [68, 46]. This results in a fast, O(NlogNlogk) time
algorithm, but the implementation is quite complex. It requires 22 functions and 947
lines of codes, compared to 5 functions and 162 lines in repeated k-means [16].

There is also a split-kmeans variant that applies k-means iteration after every split in
[46], later popularized under the name Bisecting k-means in document clustering [86].
However, this would increase the time complexity to O(k2N), which equals to O(N2) if k
 SQRT(N). Tri-level k-means [87] performs the clustering in two stages. It first creates
less clusters than k, and then splits the clusters with highest variation before applying
the traditional k-means. All these variants are definitely standalone algorithms, and do
not qualify as an initialization technique here.

In this paper, we therefore implement a simpler variant. We always select the biggest
cluster to be split. The split is done by selecting two random points in the cluster.
K-means is then applied but only within the cluster that was split as done in [68]. The
main difference to the bisecting k-means [86] and its original split+kmeans variant in
[46], is that the time complexity sums up to only O(NlogN); a proof can be easily
derived from the one in [46].

3.8. Repeated k-means

Repeated k-means performs k-means multiple times starting with different initialization,
and then keeping the result with lowest SSE-value. This is sometimes referred as multi-
start k-means. The basic idea of the repeats is to increase the probability of success.
Repeated k-means can be formulated as a probabilistic algorithm as follows. If we know
that k-means with a certain initialization technique will succeed with a probability of p,
the expected number of repeats (R) to find the correct clustering would be:

 R = 1/p

 20

In other words, it is enough that k-means succeeds even sometimes (p>0). It is then
merely a question of how many repeats are needed. Only if p0 the number of repeats
can be unrealistically high. For example, standard k-means with random centroids
succeeds 6-26% of the time with the S1-S4 datasets. These corresponds to R=7 to 14
repeats, on average.

If the initialization technique is deterministic (no randomness), then it either succeeds
(p=100%) or fails (p=0%) every time. To justify the repeats, a basic requirement is that
there is some randomness in the initialization so that the different runs produce different
results. Most techniques have the randomness implicitly. The rest of the techniques we
modify as follows:

 Rand-P Already included
 Rand-C Already included
 Maxmin First centroid randomly
 Kmeans++ Already included
 Bradley Already included
 Sorting Reference point randomly
 Projection Reference points randomly
 Luxburg Already included
 Split Split centroids randomly

Repeats add one new parameter R. Since p is not known in practice, we cannot derive
value for R automatically. In this paper, we use R=100 unless otherwise noted. Fig. 12
shows the overall scheme of the repeated k-means.

Repeating k-means also multiplies the processing time by a factor of R. It is possible to
compensate for this by dividing the data into random subsets. For instance, if we divide
the data into R subsets of size N/R, the total processing time would be roughly the same
as that of a single run.

For example, Bradley&Fayyad [31] apply k-means for a subsample of size N/R, where
R=10 was recommended. Each sample is clustered by k-means starting with random
centroids. However, instead of taking the best clustering of the repeats, a new dataset is
created from the Rk centroids. This new dataset is then clustered by repeated k-means
(R repeats). The total time complexity is Rk(N/R) + Rk2 = kN+Rk2, where the first part
comes from clustering the sub-samples, and the second part from clustering the
combined set. If k=SQRT(N), then this would be N1.5 + RN. Overall, the algorithm is
fast and satisfies the criteria for initialization technique.

Bahmani et al. [88] have a similar approach. They repeat k-means++ R=O(logN) times
to obtain Rk preliminary centroids, which are then used as a new dataset for clustering
by standard k-means. They reported that R=5 would be sufficient for the number of
repeats. In our experiments, we consider the Bradley&Fayyad [31] as an initialization,
and use R=100 repeats as with all techniques.

 21

K-means

Initialize
Repeat

100 times

Figure 12: General principle of repeated k-means (RKM). The key idea is that the
initialization includes randomness to produce different solutions at every repeat.

4. Experimental results

We study next the overall performance of different initialization techniques, and how
the results depend on the following factors:

 Overlap of clusters
 Number of clusters
 Dimensions
 Unbalance of cluster sizes

The overall results (CI-values and success rates) are summarized in Table 3. We also
record (as fails) how many datasets provide success rate p=0%. This means that the
algorithm cannot find the correct clustering even with 5000 repeats. We test the
following methods:

 Rand-P
 Rand-C
 Maxmin
 kmeans++
 Bradley
 Sorting
 Projection
 Luxburg
 Split

4.1. Overall results

CI-values: Random partition works clearly worse (CI=12.4) than the random centroids
(CI=4.5). Bradley and sorting heuristics are slightly better (CI=3.1 and 3.3), but the
maxmin heuristics (Maxmin and kmeans++) are the best among the true initialization
techniques (CI=2.2 and 2.3). The standalone algorithms (Luxburg and Split) are better
(CI=1.2 and 1.2), but even they provide the correct result (CI=0) only for the easiest
dataset: DIM32.

Success rates: The results show that Maxmin is a reasonable heuristic. Its average
success rate is 22% compared to 5% of random centroids. It also fails (success rate=0%)
only in case of three datasets; the datasets with a high number of clusters (A3, Birch1,

 22

Birch2). Random partition works with S2, S3 and S4 but fails with all the other
8 datasets. The standalone algorithms (Luxburg and Split) provide 40% success rates,
on average, and fail only with Birch1 and Unbalance.

Effect of iterations: From the initial results we can see that Luxburg and Bradley are
already standalone algorithms for which k-means brings only little improvement. The
average CI-value of Luxburg improves only from 1.7 to 1.2 (~30%), and Bradley from
3.4 to 3.1 (~10%). The latter is more understandable as k-means is already involved in
the iterations. Split heuristic, although a standalone algorithm, leaves more space for
k-means to improve (61%).

Number of iterations: The main observation is that the easier the dataset, and the better
the initialization, the fewer the iterations needed. The differences between the
initialization vary from 20 (Luxburg) to 36 (Rand-C); with the exception of random
partition (Rand-P), which takes 65 iterations.

 23

Table 3: Average CI-values before and after k-means iterations, success rates, and the
number of iterations performed. The results are averages of 5000 runs. Fail records for
how many datasets the correct solution was never found (success rate=0%). From DIM
datasets we report only DIM32; the results for the others are practically the same. Note:
The values for Impr. and Aver. columns are calculated from precise values and not from
the shown rounded values.

CI-values (initial)
Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver.

Rand‐P 12.5 14.0 12.8 14.0 19.0 32.9 48.1 7.0 96.0 96.6 13.1 33.3

Rand‐C 5.3 5.5 5.4 5.4 7.3 12.7 18.2 4.6 36.6 36.6 5.8 13.0

Maxmin 1.3 2.9 6.1 6.8 2.1 4.1 5.0 0.9 21.4 9.6 0.0 5.5

kmeans++ 1.7 2.3 3.2 3.3 3.1 5.6 7.9 0.8 21.3 10.4 0.1 5.4

Bradley 1.0 0.7 0.6 0.5 1.5 3.4 5.3 3.3 5.7 13.6 1.7 3.4

Sorting 3.3 3.7 4.1 4.4 4.9 10.4 15.6 4.0 34.1 7.2 1.7 8.5

Projection 3.0 3.4 3.9 4.2 4.5 9.8 15.2 4.0 33.7 1.0 1.1 7.6

Luxburg 0.8 0.8 1.1 1.3 0.9 1.1 1.2 4.2 5.6 1.7 0.0 1.7

Split 0.5 0.8 1.4 1.4 1.3 2.4 3.5 4.5 12.0 2.7 0.0 2.8

CI-values (final)
Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Impr.

Rand‐P 3.3 0.6 1.2 0.4 6.0 10.7 17.9 4.0 11.3 75.6 5.3 12.4 63 %

Rand‐C 1.8 1.4 1.3 0.9 2.5 4.5 6.6 3.9 6.6 16.6 3.6 4.5 65 %

Maxmin 0.7 1.0 0.7 1.0 1.0 2.6 2.9 0.9 5.5 7.3 0.0 2.2 62 %
kmeans++ 1.0 0.9 1.0 0.8 1.5 2.9 4.2 0.5 4.9 7.2 0.1 2.3 57 %

Bradley 0.9 0.6 0.5 0.4 1.3 3.0 4.8 3.5 4.6 12.5 1.6 3.1 11 %

Sorting 1.3 1.1 1.0 0.7 1.5 3.6 5.5 4.0 5.7 4.3 1.4 2.7 69 %

Projection 1.2 0.9 0.8 0.6 1.2 3.3 5.2 4.0 5.3 0.2 0.9 2.2 71 %

Luxburg 0.5 0.4 0.6 0.4 0.6 0.9 1.0 4.0 2.7 1.6 0.0 1.2 29 %

Split 0.2 0.3 0.4 0.4 0.5 1.1 1.8 4.0 2.8 1.6 0.0 1.2 61 %

Success-%
Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Fails

Rand‐P 0% 47% 5% 63% 0% 0% 0% 0% 0% 0% 0% 10% 8

Rand‐C 3% 11% 12% 26% 1% 0% 0% 0% 0% 0% 0% 5% 6

Maxmin 37% 16% 36% 9% 15% 1% 0% 22% 0% 0% 100% 22% 3

kmeans++ 21% 24% 18% 30% 7% 0% 0% 51% 0% 0% 88% 22% 4

Bradley 21% 46% 49% 64% 7% 0% 0% 0% 0% 0% 2% 17% 5

Sorting 12% 20% 22% 36% 10% 0% 0% 0% 0% 12% 15% 12% 4

Projection 16% 29% 30% 42% 18% 0% 0% 0% 0% 92% 34% 24% 4

Luxburg 52% 60% 45% 61% 45% 33% 31% 0% 0% 17% 95% 40% 2

Split 78% 75% 62% 64% 51% 17% 5% 0% 0% 10% 99% 42% 2

Number of iterations
Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver.

Rand‐P 32 37 37 39 43 58 76 36 228 130 3 65

Rand‐C 20 24 27 40 22 26 27 33 117 48 5 36

Maxmin 13 19 24 37 20 18 20 4 92 43 2 26

kmeans++ 14 19 24 35 17 20 22 13 89 43 2 27

Bradley 13 12 13 17 12 17 19 24 77 45 2 23

Sorting 17 21 25 37 19 24 26 38 104 33 3 32

Projection 15 20 25 35 17 24 25 36 99 6 3 28

 24

Luxburg 9 12 17 27 11 12 12 33 62 23 2 20

Split 7 11 19 27 12 16 18 35 65 27 2 22

4.2. Cluster overlap

The results with the S1-S4 datasets (Table 3) demonstrate the effect of the overlap in
general: the less overlap, the worse the k-means’ performance. Some initialization
techniques can compensate for this weakness. For example, the maxmin variants and the
standalone algorithms reduce this phenomenon but do not remove it completely. They
provide better initial solution with S1 (less overlap) than with S4 (more overlap), but the
final result after the k-means iterations is still not much different. An extreme case is
DIM32, for which all these better techniques provide correct solution. However, they do
it even without k-means iterations!

Further tests with G2 confirm the observation, see Fig. 13. When overlap is less than
2%, the k-means iterations do not help much and the result depends mostly on the
initialization. If the correct clustering is found, it is found without k-means. Thus, the
clustering is solved by a better algorithm, not by better k-means initialization. In case of
high overlap, k-means reaches almost the same result (about 88% success rate)
regardless of how it was initialized.

0 %

20 %

40 %

60 %

80 %

100 %

Rand
-P

Rand
-C

M
ax

M
in

KM
pl

us

Bra
dl

ey

Pro
je

ct

Sor
tin

g

Pro
jR

P
Spl

it

Low overlap

0 %

20 %

40 %

60 %

80 %

100 %

Rand
-P

Rand
-C

M
ax

M
in

KM
pl

us

Bra
dl

ey

Pro
je

ct

Sor
tin

g

Pro
jR

P
Spl

it

High overlap

Figure 13: Average success rates for all G2 datasets before (gray) and after k-means
(white). The datasets were divided into two categories: those with low overlap <2%

(left), and those with high overlap 2% (right).

4.3 Number of clusters

The results with the A1-A3 datasets (Table 3) show that the more there are clusters the
higher the CI-value and the lower the success rate. This phenomenon holds for all
initialization techniques and it is not specific to k-means algorithm only. If an algorithm
provides correct clustering with success rate p for a dataset of size k, then p is expected
to decrease when k increases. Fig. 14 confirms this dependency with the Birch2 subsets.
Projection heuristic is the only technique that manages to capture the hidden
1-dimensional structure in this data. The success rate of all other true initialization
techniques eventually decreases to 0%.

Fig. 15 shows that the CI-value has a near linear dependency on the number of clusters.
In most cases, the relative CI-value converges to a constant when k approaches its
maximum (k=100). An exception is Luxburg, which is less sensitive to the increase of k;
providing values CI=(0.82, 1.25, 1.42, 1.54) for k=(25, 50, 75, 100). Besides this

 25

exception, we conclude that the performance has linear dependency on k regardless of
the initialization technique.

0%

20%

40%

60%

80%

100%

10 20 30 40 50 60 70 80 90 100

Clusters (k)

S
u

cc
es

s
ra

te

Maxmin

Luxburg

KM++

Split

Bradley

Projection

SortingRand-C

Figure 14: Dependency of the success rate and the

number of clusters when using the subsets of Birch2 (B2-sub).

0%

5%

10%

15%

20%

10 20 30 40 50 60 70 80 90 100

Clusters (k)

R
el

at
iv

e
C

I-
va

lu
e

Rand-C

Maxmin

Luxburg

KM++

Split

Sorting

Bradley

Projection

Figure 15: Dependency of the relative CI-values (CI/k) and the
number of clusters when using the subsets of Birch2 (B2-sub).

4.4 Dimensions

We tested the effect of dimensions using the DIM and G2 datasets. Two variants
(Maxmin, Split) solve the DIM sets almost every time (99-100%), whereas Kmeans++
and Luxburg solve them most of the times (95%), see Fig. 16. Interestingly, they find
the correct result by the initialization and no k-means iterations are needed. In general,
if the initialization technique is able to solve the clustering, it does it regardless of the
dimensionality.

The sorting and projection heuristics are exceptions in this sense; their performance
actually improves with the highest dimensions. The reason is that when the dimensions
increase, the clusters eventually become so clearly separated that even such naïve

 26

heuristics will be able to cluster the data. In general, the reason for success or failure is
not the dimensionality but the cluster separation.

The results with G2 confirm the above observation, see Fig. 16. With the lowest
dimensions, k-means iterations work because some cluster overlap exists. However, for
higher dimensions the overlap eventually disappears and the performance starts to
depend mainly on the initialization. We also calculated how much the success rate
correlates with the dimensions and the overlap. The results in Table 4 show that the
final result correlates much stronger with the overlap than with the dimensionality.

Since there is causality between dimensions and overlap, it is unclear whether the
dimensionality has any role at all. To test this further, we generated additional datasets
with D=2-16 and compared only those with overlap = 2%, 4%, 8%. The results showed
that success of the k-means iterations do not depend on the dimensions even when the
clusters overlap.

To sum up, our conclusion is that k-means iterations cannot solve the problem when the
clusters are well separated. All techniques that solve these datasets, do it already by the
initialization technique without any help of k-means. When there is overlap, k-means
works better. But even then, the performance does not depend on the dimensionality.

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

S
u

c
c

e
s

s
 r

a
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg

Initial

Projection

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024

Dimensions

S
u

c
c

e
s

s
 r

a
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg

Final

Projection

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024

Dimensions

S
u

c
c

e
s

s
 r

a
te

Bradley

MaxminRand-C

LuxburgInitial

Rand-P

Split
Sorting

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024

Dimensions

S
u

cc
es

s
ra

te

Rand-P Maxmin

Bradley

Luxburg

Final

Split
Sorting

Rand-C

Figure 16: Dependency of success rate on the dimensions when no overlap (DIM sets),
and with overlap (G2 datasets). The results of G2 are average success rates for all

sd=10-100 (G2-D-sd) with a given dimension D, before and after k-means.

 27

Table 4: Correlation of success rate with increasing overlap (left) and dimensions
(right) with the G2 datasets (3:3 centroid allocation test). Red>0.60, Yellow=0.30-0.53.

Overlap Dimension
 Init Final Init Final

Rand‐P ‐0.34 0.68 0.11 ‐0.46

Rand‐C 0.08 0.82 0.13 ‐0.35

Maxmin 0.61 0.73 -0.23 ‐0.32

kmeans++ 0.63 0.80 ‐0.39 ‐0.41

Bradley 0.67 0.71 ‐0.48 ‐0.47

Sorting 0.46 0.69 ‐0.53 ‐0.51

Projection 0.02 0.45 0.01 ‐0.27

Luxburg 0.12 0.80 ‐0.32 ‐0.38

Split ‐0.61 0.06 ‐0.39 ‐0.79

4.5 Unbalance

Unbalance dataset shows one weakness of k-means. The problem is not the different
densities as such, but the unbalance of cluster sizes together with the separation of the
clusters. If no centroids are selected from the sparse area, k-means iterations manage to
move only one centroid into this area, and all other centroids will remain in the dense
area, see Fig. 17. The probability that a single random centroid would be selected from
the sparse area is p = 500/6500 = 7%. To pick all required five centroids from the sparse
area would happen with probability of 0.01%1, i.e. only once every 8430 runs.

Besides Rand-C and Rand-P, sorting and projection heuristics, Luxburg and Split
algorithms all fail with this data by allocating most centroids to the dense area. Bradley
works only slightly better and often allocates two centroids to the sparse area. Maxmin
heuristics work best because they rely more on distances than on frequencies.
K-means++ typically misses one centroid whereas Maxmin does the opposite and
allocates one too many centroids in the sparse area. They provide success rates of 22%
(Maxmin) and 51% (KM++), in contrast to the other techniques that result in 0%
success.

To sum up, success depends mainly on the goodness of the initialization; k-means
iterations can do very little with this kind of data. If the correct clustering is found, it is
found mainly without k-means.

1 35 1
5

8
pp

 28

Rand-C
INIT

Rand-C
FINAL

1

7

2

6

3

4

8

5

2

6

3

48

5

1

7

Maxmin
INIT

KM++
INIT

1

Projection
INIT

6

3
4

8

5
2

7

Figure 17: Examples of the initialization technique on the Unbalance dataset.
The only techniques that do not badly fail are the maxmin heuristics.
The numbers indicate the order in which the centroids are selected.

4.6 Repeats

We next investigate to what extent the k-means performance can be improved by
repeating the algorithm several times. Table 5 summarizes the results. We can see that
significant improvement is achieved with all initialization techniques. When the success
rate of a single run of k-means is 2% or higher, CI=0 can always be reached thanks to

 29

the repeats. However, none of the variants can solve all datasets. Overall performance of
the different initialization techniques can be summarized as follows:

 Random partition is almost hopeless and the repeats do not help much. It only
works when the clusters have strong overlap. But even then, k-means works
relatively well anyway regardless of the initialization.

 Random centroids is improved from CI=4.5 to 2.1, on average, but still it can solve
only three datasets (S2, S3, S4). Two other datasets (S1, A1) could be solved with
significantly more repeats, but not the rest.

 Maxmin variants are the best among the simple initialization techniques providing
CI=0.7, on average, compared to 2.1 of Rand-C. They still fail with four datasets.
K-means++ is not significantly better than the simpler Maxmin.

 The standalone algorithms (Luxburg and Split) are the best. They provide average
value of CI=1.2 without the repeats, and CI=0.4 with 100 repeats. They fail only
with the Unbalance datasets.

The improvement from the repeats is achieved at the cost of increased processing time.
We used the fast k-means variant [89] that utilizes the activity of the centroids. For the
smaller data sets the results are close to real-time, but with the largest dataset (Birch1,
N=100,000), the 100 repeats can take from 10-30 minutes.

 30

Table 5: Performance of the repeated k-means (100 repeats). The last two columns
show the average results of all datasets without repeats (KM) and with repeats (RKM).

CI-values
Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 KM RKM

Rand‐P 1.4 0.0 0.0 0.0 4.9 8.8 16.7 3.6 8.5 74.0 2.6 12.4 11.0

Rand‐C 0.1 0.0 0.0 0.0 0.3 1.8 2.9 2.9 2.8 10.9 1.1 4.5 2.1

Maxmin 0.0 0.0 0.0 0.0 0.0 0.5 0.6 0.0 2.8 3.9 0.0 2.2 0.7

kmeans++ 0.0 0.0 0.0 0.0 0.0 0.8 1.6 0.0 1.7 3.4 0.0 2.3 0.7

Bradley 0.0 0.0 0.0 0.0 0.0 0.9 2.1 1.2 2.0 8.5 0.0 3.1 1.3

Sorting 0.0 0.0 0.0 0.0 0.0 0.8 2.2 4.0 2.2 0.0 0.0 2.7 0.8

Projection 0.0 0.0 0.0 0.0 0.0 0.9 2.0 3.9 1.9 0.0 0.0 2.2 0.4

Luxburg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.6 0.0 0.0 1.2 0.4

Split 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.6 0.0 0.0 1.2 0.4

Success rate (%)
Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32 Aver. Fails

Rand‐P 0% 100% 100% 100% 0% 0% 0% 0% 0% 0% 0% 27% 10

Rand‐C 96% 100% 100% 100% 56% 2% 0% 0% 0% 0% 2% 41% 10

Maxmin 100% 100% 100% 100% 100% 58% 36% 100% 0% 0% 100% 72% 4

kmeans++ 100% 100% 100% 100% 98% 20% 0% 100% 0% 0% 100% 65% 4

Bradley 100% 100% 100% 100% 100% 4% 4% 4% 0% 0% 84% 54% 6

Sorting 100% 100% 100% 100% 100% 24% 0% 0% 2% 100% 100% 66% 4

Projection 100% 100% 100% 100% 100% 18% 0% 0% 0% 100% 100% 65% 4

Luxburg 100% 100% 100% 100% 100% 100% 100% 0% 46% 100% 100% 86% 2

Split 100% 100% 100% 100% 100% 100% 100% 0% 36% 100% 100% 85% 2

Running time (s)
Method s1 s2 s3 s4 a1 a2 a3 unb b1 b2 dim32

Rand‐P 3.2 4.4 4.7 6.6 3.1 8.9 15 5.0 1657 1037 0.3

Rand‐C 2.6 3.2 4.1 8.2 2.0 4.4 7.5 4.8 882 172 0.4

Maxmin 1.9 2.4 3.7 5.6 1.8 3.2 5.6 2.5 596 146 0.3

kmeans++ 1.9 2.8 3.7 6.6 1.9 3.7 6.4 4.1 604 143 0.4

Bradley 2.5 2.7 3.5 5.6 1.9 4.5 7.8 4.7 605 195 1.0

Sorting 2.3 3.1 3.8 7.6 1.9 4.4 6.8 4.9 815 148 0.3

Projection 2.1 3.0 3.7 7.1 1.7 4.1 6.6 5.0 768 84 0.3

Luxburg 1.9 2.4 3.2 6.1 1.7 3.5 5.5 4.9 431 126 0.4

Split 3.5 3.9 5.3 6.9 2.3 5.8 10 11 1072 988 1.2

We extended the tests and ran 200,000 repeats for A3 and Unbalance datasets. The
results in Table 6 show that Maxmin would need 216 repeats to reach CI=0 with A3, on
average, whereas k-means++ would require 8,696 repeats even though it finds CI=1
already after 138 repeats. The results also show that Unbalance dataset is difficult for
almost all initialization techniques but the maxmin heuristics are most suitable for this
type of data.

 31

Table 6: Number of repeats in RKM to reach certain CI-level. Missing values (-)
indicate that this CI-level was never reached during the 200,000 repeats.

A3
CI‐value

Initialization
6 5 4 3 2 1 0

Rand‐P ‐ ‐ ‐ ‐ ‐ ‐ ‐

Rand‐C 2 4 11 54 428 11111 ‐

Maxmin 1 3 14 216

Kmeans++ 1 2 3 14 138 8696

Bradley 1 2 8 58 1058 33333

Sorting 1 2 4 13 73 1143 ‐

Projection 1 2 3 9 46 581 18182

Luxburg 1 3

Split 1 2 9

Unbalance
CI‐value

Initialization
6 5 4 3 2 1 0

Rand‐P 1 97 8333 ‐ ‐

Rand‐C 1 16 69 1695 100k

Maxmin 1 4

Kmeans++ 1 2

Bradley 1 3 6 70 1471

Sorting 1 ‐ ‐ ‐ ‐

Projection 1 935 16667 ‐ ‐

Luxburg 1 59 16667 ‐ ‐

Split 1 9524 ‐ ‐ ‐

4.7 Summary

We make the following observations:

 Random partition provides an initial solution of similar quality regardless of
overlap, but the errors in initial solution can be better fixed by k-means iterations
when clusters have high overlap. In this case it can even outperform random
centroids. However, repeats do not improve the results much, especially with sets
having many clusters (A3, Birch2).

 Cluster overlap is the biggest factor. If there is high overlap, k-means iterations
work well regardless of the initialization. If there is no overlap, then the success
depends completely on the initialization technique: if it fails, k-means will also fail.

 Practically all initialization techniques perform worse when the number of clusters
increases. Success of the k-means depends linearly on the number of clusters. The
more clusters, the more errors there are, before and after the iterations.

 Dimensionality does not have a direct effect. It has a slight effect on some
initialization techniques but k-means iterations are basically independent on the
dimensions.

 32

 Unbalance of cluster sizes can be problematic especially for the random
initializations but also for the other techniques. Only the maxmin variants with 100
repeats can overcome this problem.

Table 7 summarizes how the four factors affect the different initialization techniques
and the k-means iterations.

Table 7: How the four factors have effect on the performance of the initialization and
on the k-means iterations.

Method Overlap Clusters Dimension Unbalance

Rand‐P No effect Constant No effect Very bad

Rand‐C No effect Constant No effect Very bad

Maxmin Bad Constant No effect A bit worse

kmeans++ A bit worse Constant No effect A bit worse

Bradley Good Constant No effect Bad

Sorting A bit worse Constant No effect Very bad
Projection A bit worse Constant No effect Very bad
Luxburg A bit worse Minor effect No effect Very bad
Split A bit worse Constant No effect Very bad
KM iterations Good Constant No effect No effect

5. Conclusions

On average, k-means caused errors with about 15% of the clusters (CI=4.5). By
repeating k-means 100 times this errors was reduced to 6% (CI=2.0). Using a better
initialization technique (Maxmin), the corresponding numbers were 6% (CI=2.1) with
k-means as such, and 1% (CI=0.7) with 100 repeats. For most pattern recognition
applications this accuracy is more than enough when clustering is just one component
within a complex system.

The most important factor is the cluster overlap. In general, well separated clusters
make the clustering problem easier but for k-means it is just the opposite. When the
clusters overlap, k-means iterations work reasonably well regardless of the initialization.
This is the expected situation in most pattern recognition applications.

The number of errors have a linear dependency on the number of clusters (k): the more
clusters, the more errors k-means makes, but the percentage remains constant.
Unbalance of cluster sizes is more problematic. Most initialization techniques fail, and
only the maxmin heuristics worked in this case. The clustering result then depends
merely on the goodness of the initialization technique.

Dimensionality itself is not a factor. It merely matters how the dimensions affect the
cluster overlap. With our data, the clusters became more separated when the dimensions
were increased, which in turn worsened the k-means performance. Besides this indirect
effect, the dimensions did not matter much.

With real data the effect might be just the opposite. If the features (attributes) are added
in the order of their clustering capability, it is expected that the clusters would become
more overlapping when adding more features. As a result, k-means would start to work
better but the data itself would become more difficult to cluster, possibly losing the

 33

clustering structure. And vice versa, if good feature selection is applied, the clusters can
be more separated, which has the danger that k-means would start to perform worse.

Based on these observations, choosing an initialization technique like Maxmin can
compensate for the weaknesses of k-means. With unbalanced cluster sizes it might work
best overall. However, it is preferable to repeat the k-means 10-100 times; each time
taking a random point as the first centroids and selecting the rest using the Maxmin
heuristic. This will keep the number of errors relatively small.

However, the fundamental problem of k-means still remains when the clusters are well
separated. From all the tested combinations, none was able to solve all the benchmark
datasets despite them being seemingly simple. With 100 repeats, Maxmin and
k-means++ solved 7 datasets (out of the 11), thus being the best initialization
techniques. The better standalone algorithms (Luxburg and Split) managed to solve 9.

To sum up, if the clusters overlap, the choice of initialization technique does not matter
much, and repeated k-means is usually good enough for the application. However, if the
data has well-separated clusters, the result of k-means depends merely on the
initialization algorithm.

In general, the problem of initialization is not any easier than solving the clustering
problem itself. Therefore, if the accuracy of clustering is important, then a better
algorithm should be used. Using the same computing time spent for repeating k-means,
a simple alternative called random swap (RS) [12] solves all the benchmark datasets.
Other standalone algorithms that we have found able to solve all the benchmark sets
include genetic algorithm (GA) [10], the split algorithm [46], split k-means [46], and
density peaks [78]. Agglomerative clustering [30] solves 10 out of 11.

References

1. E. Forgy, Cluster analysis of multivariate data: efficiency vs. interpretability of
classification. Biometrics, 21, 768-780, 1965.

2. J. MacQueen, Some methods for classification and analysis of multivariate observations,
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp.
281-297, University of California Press, Berkeley, Calif., 1967.

3. S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. on Information Theory, 28
(2), 129–137, 1982.

4. L. Wang and C. Pan, Robust level set image segmentation via a local correntropy-based
k-means clustering, Pattern Recognition, 47, 1917-1925, 2014.

5. C. Boutsidis, A. Zouzias, M. W. Mahoney and P. Drineas, Randomized dimensionality
reduction for k-means clustering, IEEE Transactions on Information Theory, 61 (2), 1045-
1062, Feb. 2015.

6. M. Capo, A, Perez and J.A. Lozano, An efficient approximation to the k-means clustering
for massive data, Knowledge-Based Systems, 117, 56-69, 2017.

7. Z. Huang, N. Li, K. Rao, C. Liu, Y. Huang, M. Ma, and Z. Wang, Development of a data-
processing method based on Bayesian k-means clustering to discriminate aneugens and
clastogens in a high-content micronucleus assay. Human & Experimental Toxicology, 37
(3), 285–294, 2018.

8. A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognition Letters, 31,
651-666, 2010.

9. K. Krishna, and M.N, Murty. Genetic k-means algorithm, IEEE Trans. on Systems, Man,
and Cybernetics, Part B, 29 (3), 433-439, 1999.

 34

10. P. Fränti, Genetic algorithm with deterministic crossover for vector quantization, Pattern
Recognition Letters, 21 (1), 61-68, 2000

11. P. Fränti and J. Kivijärvi, Randomized local search algorithm for the clustering problem,
Pattern Analysis and Applications, 3 (4), 358-369, 2000.

12. P. Fränti, Efficiency of random swap clustering, Journal of Big Data, 5:13, 1-29, 2018.

13. S. Kalyani, K.S. Swarup, Particle swarm optimization based K-means clustering approach
for security assessment in power systems, Expert Systems with Applications, 32 (9),
10839-10846, 2011.

14. D. Yan, L. Huang, and M.I. Jordan, Fast approximate spectral clustering, ACM SIGKDD
Int. Conf. on Knowledge discovery and data mining, 907-916, 2009.

15. L. Bai, X. Cheng, J. Liang, H. Shen, Y. Guo, Fast density clustering strategies based on
the k-means algorithm, Pattern Recognition, 71, 375-386, 2017.

16. T. Kinnunen, I. Sidoroff, M. Tuononen and P. Fränti, Comparison of clustering methods:
a case study of text-independent speaker modeling, Pattern Recognition Letters, 32 (13),
1604-1617. October 2011.

17. Q. Zhao and P. Fränti, WB-index: a sum-of-squares based index for cluster validity, Data
& Knowledge Engineering, 92, 77-89, July 2014.

18. M. Rezaei and P. Fränti Can the number of clusters be solved by external index?
manuscript. (submitted)

19. J.M Peña, J.A. Lozano, P. Larrañaga, An empirical comparison of four initialization
methods for the k-means algorithm, Pattern Recognition Letters, 20 (10): 1027-1040,
October 1999.

20. J. He, M. Lan, C-L Tan, S-Y Sung, H-B Low, Initialization of Cluster Refinement
Algorithms: A review and comparative study, IEEE Int. Joint Conf. on Neural Networks,
2004.

21. D. Steinley and M.J. Brusco, Initializing k-means batch clustering: a critical evaluation of
several techniques, Journal of Classification 24: 99-121, 2007.

22. M.E. Celebi, H.A. Kingravi, P.A. Vela, A comparative study of efficient initialization
methods for the k-means clustering algorithm. Expert Syst. Appl. 40, 200-210, 2013.

23. L. Kaufman, and P. Rousseeuw, Finding groups in data: An introduction to cluster
analysis. Wiley Interscience, 1990.

24. B. Thiesson, C. Meek, D. M. Chickering, and D. Heckerman, Learning mixtures of
Bayesian networks, Technical Report MSR-TR-97-30 Cooper & Moral, 1997.

25. J.T. Tou and R.C. Gonzales, Pattern Recognition Principles. Addison-Wesley, 1974.

26. T.F. Gonzalez, Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38 (2–3), 293–306, 1985.

27. J.H. Ward, Hierarchical grouping to optimize an objective function, Journal of American
Statistical Association, 58(301): 236-244, 1963.

28. A. Likas, A., N. Vlassis, and J. Verbeek, The global k-means clustering algorithm, Pattern
Recognition, 36, 451–461, 2003.

29. D. Steinley, Local optima in k-means clustering: what you don’t know may hurt you,
Psychological Methods, 8, 294–304, 2003.

30. P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang, Fast and memory efficient
implementation of the exact PNN, IEEE Trans. on Image Processing, 9 (5), 773-777, May
2000.

31. P. Bradley and U. Fayyad, Refining initial points for k-means clustering, Int. Conf. on
Machine Learning, 91-99, San Francisco, 1998.

32. Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene Analysis. John Wiley and
Sons, New York.

 35

33. M. Bicego, M.A.T. Figueiredo, Clustering via binary embedding, Pattern Recognition, 83,
52-63, 2018.

34. N. Karmitsa, A.M.Bagirov, S. Taheri, Clustering in large data sets with the limited
memory bundle method, Pattern Recognition, 83, 245–259, 2018.

35. Y. Zhu, K.M. Ting, M.J. Carman, Grouping points by shared subspaces for effective
subspace clustering, Pattern Recognition, 83 230–244, 2018.

36. P.B. Frandsen, B. Calcott, C. Mayer, R. Lanfear, Automatic selection of partitioning
schemes for phylogenetic analyses using iterative k-means clustering of site rates, BMC
Evolutionary Biology, 15 (13), 2015.

37. D.G. Márquez, A. Otero, P. Félix, C.A. García, A novel and simple strategy for evolving
prototype based clustering, Pattern Recognition, 82, 16–30, 2018.

38. L. Huang, H.-Y. Chao, C.-D. Wang, Multi-view intact space clustering, Pattern
Recognition, 86, 344–353, 2019.

39. P. Fränti and S. Sieranoja, K-means properties on six clustering benchmark datasets,
Applied Intelligence, 2018.

40. L. Morissette and S. Chartier, “The k-means clustering technique: general considerations
and implementation in Mathematica, Tutorials in Quantitative Methods for Psychology, 9
(1), 15-24, 2013.

41. J. Liang, L. Bai, C. Dang F. Cao, The k-means-type algorithms versus imbalanced data
distributions, IEEE Trans. on Fuzzy Systems, 20 (4), 728-745, August 2012.

42. I. Melnykov, V. Melnykov, On k-means algorithm with the use of Mahalanobis distances,
Statistics & Probability Letters, 84, 88-95, January 2014.

43. V. Melnykov, S. Michael, and I. Melnykov, Recent developments in model-based
clustering with applications. In: Celebi M. (eds) Partitional Clustering Algorithms.
Springer, Cham, 2015.

44. M. Rezaei and P. Fränti, Set-matching methods for external cluster validity, IEEE Trans.
on Knowledge and Data Engineering, 28 (8), 2173-2186, August 2016.

45. P. Fränti, M. Rezaei and Q. Zhao, Centroid index: Cluster level similarity measure,
Pattern Recognition, 47 (9), 3034-3045, 2014.

46. P. Fränti, T. Kaukoranta and O. Nevalainen: On the splitting method for VQ codebook
generation, Optical Engineering, 36 (11), 3043-3051, November 1997.

47. P. Fränti, O. Virmajoki and V. Hautamäki, Fast agglomerative clustering using a k-nearest
neighbor graph, IEEE Trans. on Pattern Analysis and Machine Intelligence, 28 (11), 1875-
1881, November 2006

48. G.H. Ball and D.J. Hall, A clustering technique for summarizing multivariate data,
Systems Research & Behavioral Science, 12 (2), 153-155, March 1967.

49. O. Lemke and B. Keller, Common nearest neighbor clustering: a benchmark, Algorithms,
11 (2), 19, 2018.

50. U. V. Luxburg, Clustering stability: An overview, Foundations and Trends in Machine
Learning, 2(3), pp. 235-274, 2010.

51. S.J. Redmond and C. Heneghan, A method for initialising the K-means clustering
algorithm using kd-trees, Pattern Recognition Letters, 28 (8), 965-973, 2007.

52. S. Tezuka and P.L Equyer, Efficient portable combined Tausworthe random number
generators, ACM Transactions on Modelling and Computer Simulation, 1 99-112, 1991.

53. M.J. Norušis, IBM SPSS statistics 19 guide to data analysis. Upper Saddle River, New
Jersey: Prentice Hall, 2011.

54. T. Gonzalez, Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38 (2–3), 293–306, 1985.

 36

55. M.M.-T. Chiang, B. Mirkin, Intelligent choice of the number of clusters in k-means
clustering: an experimental study with different cluster spreads, Journal of Classification,
27, 3-40, 2010.

56. J. Hämäläinen, T. Kärkkäinen, Initialization of big data clustering using distributionally
balanced folding, Proceedings of the European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning-ESANN, 2016.

57. I. Katsavounidis, C.C.J. Kuo, Z. Zhang, A new initialization technique for generalized
Lloyd iteration, IEEE Signal Processing Letters, 1 (10), 144-146, 1994.

58. F. Cao, J. Liang, L. Bai, A new initialization method for categorical data clustering, Expert
Systems with Applications, 36 (7), 10223-10228, 2009.

59. D. Arthur and S. Vassilvitskii, K-means++: the advantages of careful seeding, ACM-SIAM
Symp. on Discrete Algorithms (SODA’07), New Orleans, LA, 1027-1035, January, 2007.

60. M. Erisoglu, N. Calis, S. Sakallioglu, A new algorithm for initial cluster centers in k-
means algorithm, Pattern Recognition Letters, 32 (14), 1701-1705, 2011.

61. C. Gingles, M. Celebi, Histogram-based method for effective initialization of the k-means
clustering algorithm. Florida Artificial Intelligence Research Society Conference, May
2014.

62. J.A. Hartigan and M.A. Wong, Algorithm AS 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society C, 28 (1), 100–108, 1979.

63. M.M. Astrahan, Speech Analysis by Clustering, Or the Hyperphome Method, Stanford
Artificial Intelligence Project Memorandum AIM-124, Stanford, CA: Stanford University,
1970.

64. F. Cao, J. Liang, G. Jiang, An initialization method for the k-means algorithm using
neighborhood model, Computers and Mathematics with Applications, 58, 474–483, 2009.

65. M. Al-Daoud, A new algorithm for cluster initialization, World Enformatika conf, 74–76,
2005.

66. M. Yedla, S.R. Pathakota, T.M. Srinivasa, Enhancing k-means clustering algorithm with
improved initial center, Int. Journal of Computer Science and Information Technologies,
1 (2), 121-125, 2010.

67. T. Su, J.G. Dy, In search of deterministic methods for initializing k-means and gaussian
mixture clustering, Intelligent Data Analysis, 11 (4), 319-338, 2007.

68. X. Wu and K. Zhang, A better tree-structured vector quantizer, IEEE Data Compression
Conference, Snowbird, UT, 392-401, 1991.

69. C.-M. Huang and R. W. Harris. A comparison of several vector quantization codebook
generation approaches, IEEE Trans. on Image Processing, 2 (1), 108-112, 1993.

70. D. Boley, Principal direction divisive partitioning, Data Mining and Knowledge
Discovery, 2(4):325–344, 1998.

71. M.E. Celebi and H. A. Kingravi. Deterministic initialization of the k-means algorithm
using hierarchical clustering. International Journal of Pattern Recognition and Artificial
Intelligence, 26 (07): 1250018, 2012.

72. S. Sieranoja and P. Fränti, Random projection for k-means clustering, Int. Conf. Artificial
Intelligence and Soft Computing (ICAISC), Zakopane, Poland, 680-689, June 2018.

73. S.-W. Ra and J.-K. Kim, A fast mean-distance-ordered partial codebook search algorithm
for image vector quantization, IEEE Trans. Circuits and Systems, 40, 576–579, Sept. 1993.

74. I. Cleju, P. Fränti, X. Wu, Clustering based on principal curve. Scandinavian Conf. on
Image Analysis, LNCS, vol. 3540, pp. 872–881. Springer, Heidelberg, 2005.

75. X. Wu, Optimal quantization by matrix searching, Journal of algorithms, 12 (4), 663-673,
1991.

76. M.B. Al-Daoud, and S.A. Roberts. New methods for the initialisation of clusters, Pattern
Recognition Letters, 17 (5), 451-455, 1996.

 37

https://scholar.google.com/citations?view_op=view_citation&hl=ja&user=XgljlGUAAAAJ&citation_for_view=XgljlGUAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=ja&user=XgljlGUAAAAJ&citation_for_view=XgljlGUAAAAJ:u5HHmVD_uO8C
http://www.sciencedirect.com/science/article/pii/S0957417409001043
http://www.sciencedirect.com/science/article/pii/S0167865511002248
http://www.sciencedirect.com/science/article/pii/S0167865511002248

 38

77. P. Gourgaris, C. Makris, A density based k-means initialization scheme, EANN workshops,
Rhodes Island, Greece, 2015.

78. A. Rodriquez and A. Laio, Clustering by fast search and find of density peaks, Science,
344 (6191), 1492-1496, 2014.

79. P. Mitra, C. Murthy, and S. K. Pal, Density-based multiscale data condensation, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 24 (6), 734-747, 2002.

80. S. Sieranoja and P. Fränti, Constructing a high-dimensional kNN-graph using a Z-order
curve, ACM Journal of Experimental Algorithmics, 23 (1), 1.9:1-21, October 2018.

81. W. Dong, C. Moses, K. Li, Efficient k-nearest neighbor graph construction for generic
similarity measures. In Proceedings of the ACM International Conference on World wide
web. ACM, 577–586, 2011.

82. P. Fränti and S. Sieranoja, Dimensionally distributed density estimation, Int. Conf.
Artificial Intelligence and Soft Computing (ICAISC), Zakopane, Poland, 343-353, June
2018.

83. H.J. Curti, R.S. Wainschenker, FAUM: Fast Autonomous Unsupervised Multidimensional
classification, Information Sciences, 462, 182–203, 2018.

84. J. Xie, Z.Y. Xiong, Y.F. Zhang, Y. Feng, J. Ma, Density core-based clustering algorithm
with dynamic scanning radius, Knowledge-Based Systems, 142, 68-70, 2018.

85. Y. Linde, A. Buzo, and R.M. Gray, An algorithm for vector quantizer design, IEEE Trans.
Commun., 28 (1), 84-95, January 1980.

86. M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering techniques, in
KDD workshop on text mining, vol. 400, pp. 525-526, Boston, 2000.

87. S-S. Yu, S-W. Chu, C-M. Wang, Y-K. Chan, T-C. Chang, Two improved k-means
algorithms, Applied Soft Computing 68, 747–755, 2018.

88. B. Bahmani, B. Mosley, A. Vattani, R. Kumar, S. Vassilvitski, Scalable k-means++,
Proceedings of the VLDB Endowment 5 (7), 622-633, 2012.

89. T. Kaukoranta, P. Fränti and O. Nevalainen, A fast exact GLA based on code vector
activity detection, IEEE Trans. on Image Processing, 9 (8), 1337-1342, August 2000.

	1. Introduction
	2. Performance of k-means
	3. K-means initialization techniques
	4. Experimental results
	5. Conclusions
	References

