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Abstract
This paper has two contributions. First, we introduce a clustering basic benchmark. Second, we study the performance of k-
means using this benchmark. Specifically, we measure how the performance depends on four factors: (1) overlap of clusters,
(2) number of clusters, (3) dimensionality, and (4) unbalance of cluster sizes. The results show that overlap is critical, and
that k-means starts to work effectively when the overlap reaches 4% level.

Keywords Clustering algorithms · Clustering quality · k-means · Benchmark

1 Introduction

The k-means algorithm [1–3] groups N data points into
k clusters by minimizing the sum of squared distances
between every point and its nearest cluster center (centroid).
This objective function is called sum-of-squared errors
(SSE). In this paper, we do not question the suitability of
this objective function but merely study how well k-means
as an algorithm manages in this task. This approach follows
the recommendation in [4] to establish a clear distinction
between the clustering method (objective function) and the
clustering algorithm (how it is optimized).

Other algorithms are known to provide better clustering
than k-means. However, k-means is very popular for good
reasons. First, it is simple to implement, which is an
important criterion for choosing the algorithm [60, 61].
Second, people often prefer an algorithm whose limitations
are known rather than potentially better algorithms whose
limitations are not well known. Thirdly, the local fine-tuning
capability of k-means is very effective and for this reason
it is also used as a part of better algorithms, such as the
genetic algorithm [5, 6], random swap [7, 58] and spectral
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clustering [42]. Therefore, our results can also be used to
better understand those more complex algorithms that rely
on the use of k-means.

K-means starts by selecting k random data points as the
initial centroids. This initial solution is improved by two
steps: assignment and update. In the assignment step, every
point is put into the cluster whose centroid is closest. In the
update step, the centroids are re-calculated by taking the
mean of all data points assigned in each cluster. Together,
these two steps constitute one iteration of k-means. These
steps fine-tune both the cluster borders and the centroid
locations, see Fig. 1. The steps are iterated a fixed number
of times (called iterations), or continued until no further
improvement is obtained (convergence).

The time complexity of the assignment step is O(kN)
because we need to calculate distance between every input
point and centroid. The time complexity of the update step is
O(N) to calculate the cumulative sums. Note that we assume
the number of dimensions (D) as a constant. In practice, the
time complexities should be multiplied by D. The total time
complexity is O(gkN), where g is the number of iterations –
in our data g =36, on average.

It is well known that the quality of the k-means result
depends on the initialization. Bad initialization can cause
the iterations of k-means to get stuck in an inferior
local minimum. To overcome this problem, numerous
initialization strategies have been proposed [33, 35, 37,
39, 55–57]. However, they cannot remove the fundamental
limitations of the k-means. Instead of finding better
initialization heuristics, much less attention has been paid
in the literature under which kind of circumstances k-means
fails and when it works.
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Fig. 1 Example of centroid
locations before (left) and after
(right) one k-means iteration.
K-means moves the centroids
towards the actual cluster centers

Before Before AfterAfter

In this paper, we do no try to fix the problems of k-
means. Our goal is to find out how k-means perform under
different types of variations in the data. For this purpose,
we introduce a clustering basic benchmark. The datasets
are chosen so that the SSE objective function can be used
for clustering. The sets are challenging enough that most
typical heuristics will fail, but easy enough that a good
clustering algorithm can solve the correct locations of the
cluster centroids.

The benchmark includes the following datasets:

• A: varying number of clusters (3 sets)
• S: varying overlap (4 sets)
• G2: varying overlap and dimensionality (100 sets)
• DIM: varying dimensionality with well separated

clusters (6 sets)
• Birch: varying structure (2 sets)
• Unbalance: both dense and sparse clusters (1 set)

Using these datasets, we study the performance of k-
means when gradually increasing (1) cluster overlap, (2) the
number of clusters, (3) dimensionality, and (4) unbalance
in cluster sizes. The overlap is an (inverse) estimation
of the cluster separation (see (1)); the more separated
the clusters are from each other, the lower the overlap.
Steinley [8] studied the same four factors along with density,
but merely focused on comparing different initialization
strategies whereas we study k-means itself.

Users of k-means rarely question its assumed limitations.
The first assumption is that the clustering algorithms
perform better when the clusters become more separated
(less overlap) [8, 46]. This has been proved for the average
linkage agglomerative clustering algorithm [47] and for the
ratio-cut spectral clustering [48]. The assumption is indeed
correct for most clustering algorithms. However, we will
show that for k-means, it is the opposite: the greater the
separation, the worse k-means performs.

The second assumption is that the number of clusters
is k-means’ major weakness because it must be given as
input [49, 50]. However, the same weakness applies to all
algorithms that optimize the same SSE objective function.

To solve this problem, one should change the objective
function. The k-means algorithm itself can be easily applied
to multiple values of k; it is just a matter of computation.
However, we will show that the success of k-means has an
inverse linear dependency on k.

The third assumption is that, dimensionality decreases
the performance of k-means [51] or the clustering methods
in general [52]. The cause for this is credited to the
“dimensionality curse”, referring either to the sparseness
of the data space [53], or that the distances become
uniform as dimensions increase [22]. However, concrete
studies on the effect of dimensionality on k-means are
hard to find. Some good discussions worth reading are
found in [9, 35, 54]. We will show that if clusters are
well separated (DIM), increasing the dimensions has very
little effect. However, if the increasing dimensionality (G2)
also decreases the overlap, then the k-means performance
degrades. Thus, the mediating factor is the overlap rather
than the dimensionality itself.

The fourth assumption is that, k-means produces clusters
of relatively uniform size and does not work well with
unbalanced cluster sizes [43, 44]. Unbalance is said to be
wrongly split and smaller clusters wrongly merged [10, 11].
These papers correctly observe that k-means works poorly
with unbalanced data, but they overlook the root cause. The
datasets presented in these papers are unsuitable for use
with the SSE objective function; even a better algorithm
cannot solve these datasets with this function. Therefore,
the observation relates to the SSE objective function but has
nothing to do with the k-means algorithm itself.

Instead, we show that the k-means algorithm indeed
works poorly in the case of unbalanced cluster sizes, but
for a different reason: the random initialization fails to
pick enough centroids from the smaller clusters. Even then,
the cause is not the k-means iterations, but the random
initialization.

These observations emphasize the need for our proposed
benchmark; otherwise researchers will continue using UCI
datasets like Wine and Iris, or data that are not suitable
for the objective function used. Their results have little
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relevance to study clustering algorithms. A controlled
benchmark is needed to keep separate the roles of the
algorithm and the choice of the objective function.

To sum up, the main research goals of this paper are the
following:

• Present basic benchmark clustering datasets.
• Present methodology for measuring success of the

clustering.
• Study the behavior of k-means with that methodology.

We focus on the standard k-means. To initialize, we select k
random data points as the initial centroids, which is the de
facto standard. We briefly consider three other initialization
techniques, and explore how much the result can be impro-
ved by repeating (re-starting) k-means multiple times from
scratch. The purpose is merely to put the k-means perfor-
mance into context.

The rest of the paper is organized as follows. First,
datasets and their properties are presented in Section 2.
Methodology on how to evaluate k-means is provided in
Section 3. Results are presented and discussed in Section 4.
Improvements and alternatives for k-means are briefly
considered in Section 5. Conclusions are drawn in Section 6.

2 Data sets and their properties

Luxburg et al. [12] discuss the pros and cons of how to
choose benchmarking data. They consider using real world
data, classification datasets, and artificial data.

Using real world data makes sense if the clustering is
intended to be used in exploratory data analysis, but makes
less sense otherwise. Classification datasets can also be
misleading because the attributes used in clustering might
reveal a completely different clustering structure than that
indicated by the class labels. For example, a set of images
labeled according to whether an image contains a car or not
will provide a completely different result if clustered based
on pixel colors or on other low-level features.

The authors in [12] also criticize the use of artificial
data for evaluating usefulness of the clustering result.
However, we are interested merely in the statistical
performance because evaluating usefulness would require
some knowledge about the application. Artificial data with
known ground truth best serves our purpose because we can
then control the parameters we want to study and eliminate
the effect of others.

Some of the existing data repositories worth to consider
include:

• UCI Machine Learning repository1

1https://archive.ics.uci.edu/ml/datasets.html?format=&task=clu

• Fundamental clustering problem suite [62]2

• IFCS Cluster Benchmark Data Repository3

• Tomas Barton’s clustering benchmark4

• Marek Gagolewski’s clustering benchmark5

• Data.World6

The UCI machine learning repository contains 76 (May
2018) real world clustering datasets. Most of these
are intended for classification and not specifically for
clustering. This is problematic because often different
structures are revealed by clustering than what the class
labels would imply.

The benchmark suite proposed by Ultsch is useful if one
wants to demonstrate the problems of the SSE cost function.
However, since we have specifically chosen to use SSE,
these are not very useful to us. This is because any algorithm
minimizing SSE usually fails because the boundary between
two clusters is curved whereas the SSE objective function
models cluster boundaries as hyperplane.

The other repositories are either application-specific, or
collections that merely reproduce the datasets obtained from
other sources. However, the main problem is that none of
the benchmarks are controlled. Steinley [8] created properly
controlled datasets but he did not publish the data.

For this purpose, we present the clustering basic
benchmark. These datasets have been widely used in
studying clustering, but they have not been previously
documented in detail. We consider only numerical data and
exclude very large datasets to make their use easy. We also
do not include any complex datasets because, as the name
indicates, it is a basic benchmark. All datasets are suitable
for the SSE objective function.

We advise the use of this benchmark to test any
algorithm claiming to find spherical or Gaussian clusters,
to determine whether it can solve these datasets first; the
genetic algorithm (GA) [6] and random swap (RS) [7, 58]
can solve them all. The test can also be extended to study
how well a certain index can recommend the number of
clusters. Although this is already more challenging, the
following two simple methods can accomplish it for most
of these datasets: WB-index [13] and silhouette coefficient
[14].

2.1 Basic benchmark sets

The benchmark datasets are visualized in Fig. 2, and their
basic properties summarized in Table 1. All datasets and

2 https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data
3 https://ifcs.boku.ac.at/repository/
4 https://github.com/deric/clustering-benchmark
5 http://www.gagolewski.com/resources/data/clustering/
6 https://data.world/datasets/clustering

https://archive.ics.uci.edu/ml/datasets.html?format=&task=clu
https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik/data
https://ifcs.boku.ac.at/repository/
https://github.com/deric/clustering-benchmark
http://www.gagolewski.com/resources/data/clustering/
https://data.world/datasets/clustering
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Fig. 2 Illustration of the
datasets. All data values are
scaled to integers between 0 and
a particular maximum value.
The plots are symmetric in
respect to the scales
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Unbalance DIM32

A1 A2 AA3
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their ground truth (GT) centroids are publicly available. In
the case of G2 sets, the original class labels are also given.
For the other sets, the GT partition is obtained by mapping
every data point to its nearest ground truth centroid.

We consider ground truth clustering as the one that cor-
rectly represents the original parameters used in generating
the dataset, i.e. the number of Gaussian distributions and
their center points. The datasets were selected so that this

Table 1 Basic clustering
benchmark Dataset Varying Size Clusters Per cluster Source

A Number of clusters 3000–7500 20,30,50 150 [17]

S Overlap 5000 15 333 [18]

Dim Dimensions 1024 16 64 [15]

G2 Dimensions + overlap 2048 2 1024 [19]

Birch Structure 100,000 100 1000 [16]

Unbalance Balance 6500 8 100–2000 [20]

The data is publicly available here: http://cs.uef.fi/sipu/datasets/

http://cs.uef.fi/sipu/datasets/
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ground truth also matches both the SSE optimal cluster-
ing for the dataset and human intuition of the authors. For
real world applications there usually is no single correct
clustering of data.

A sets: These sets contain spherical clusters with the
number of clusters k=20, 35 and 50, so that cluster size
(150), deviation (1402), overlap (20%), and dimension-
ality remain constant. The sets are subsets of each other:
A1 ⊂ A2 ⊂ A3.

S sets: These sets contain Gaussian clusters with varying
overlap (separation of clusters) from 9% to 44%. Most
clusters are spherical, but a few have been truncated to
resemble non-spherical Gaussian clusters. The last set
(S4) has strong overlap but the clusters are still visible,
and solvable by a good algorithm.

G2: These sets contain two Gaussian clusters at fixed
locations, each with 1024 points. Overlap was created
by increasing the standard deviation of the Gaussian
distribution from 10 to 100. The naming practice and the
parameters are summarized as follows:

Dataset name:G2-dim-sd
Centroid 1: [500,500, ...]
Centroid 2: [600,600, ...]
Dimensions: dim = 2,4,8,16, ... 1024
St.Dev: sd = 10,20,30, ... 100

DIM: These sets contain well-separated clusters in a high-
dimensional space with dimensions varying from 32 to
1024. Points within each cluster are random, and sampled
from Gaussian distribution. We mainly use DIM032, and
the others only when needed. The datasets were first used
in [15].

Birch: Three datasets were introduced in [16]. We use the
first two, which contain spherical clusters. The third one
is more suitable for density-based clustering and has been
omitted from our benchmark. The ground truths were not
published so we had to estimate them as follows:

Birch1: The clusters form a regular 10x10 grid with the
same deviation (21545). Centroids were first optimized
using a genetic algorithm [6]. The average distance to the
neighbor centroids was calculated as 92247. A grid using
this parameter was then manually fit for the data, and the
resulting locations recorded as the ground truth centroids.
Ground truth partition labels were obtained by mapping
every point to its nearest centroid.

Birch2: Centroid locations were first optimized by genetic
algorithm, and their average distance in the x-axis was
calculated as 9512. The centroids form a sine curve
function:

y(x)=amplitude·sin(2·π ·f requency·x+phaseshif t)+off set

It was manually fit using the following parameters:

off set = 43659

amplitude = −37819

phaseshif t = 20.8388

f requency = 0.000004205

Ground truth centroids were then plotted in this curve
and the corresponding x and y(x) were recorded as
the ground truth centroids. Ground truth partitions were
obtained by mapping each point to its nearest centroid.

We also created two series of subsets from Birch2.
First, we eliminated 1000 random points at a time,
resulting in subsets (b2-random) with N =1.000 to
100.000. Second, we eliminated one cluster at a time,
resulting in subsets (b2-sub) with k =1 to 100. These
subsets are useful to study the effect of N and k.

Unbalance: The dataset has eight clusters in two well-
separated groups. The first three clusters are dense with
2000 points each (st.dev=2043). The five other clusters
are sparse with 100 points each (st.dev=6637). The
groups are well-separated so that the use of the SSE
function results in correct clusters if properly optimized.

2.2 Properties of the datasets

We also calculated the following additional measures to
characterize the datasets:

• Overlap
• Contrast
• Intrinsic dimensionality
• H-index
• Distance profiles

Overlap It is possible to count the number of points that are
closer to another centroid than its own GT label indicates.
This approach is calledmisclassification probability in [21].
This calculation can be done for the G2 datasets (Fig. 3).
However, the misclassification rate can be a misleading
measure for clustering performance. Often, the data do not
have class label. For our data we only have ground truth
centroids which result in a 0% misclassification rate. A
better solution is therefore needed.

To measure the overlap, we calculated the distance from
every point to its centroid (d1) and to its nearest point in
another cluster (d2). If this nearest point is closer than its
own centroid (d1 > d2), the point is evidence of overlap.
Overlap of the dataset is then defined as the number of
evidences relative to the total number of points:

Overlap = 1

N

∑
ov(d1, d2) (1)
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Fig. 3 Overlap for G2-2-30
dataset measured by
misclassification probability
(left) and by the overlap value
(right), resulting in two different
values. It is noted that the two
values have different orders of
magnitude and should not be
compared to each other

Points = 2048
Incorrect = 20
Overlap = 20 / 2048

0.9 %

Points from blue cluster that 
are closer to red centroid.

Points from red cluster that 
are closer to blue centroid.

Points in blue cluster whose 
red neigbor is closer than 
its centroid.
Points in red cluster whose 
blue neighbor is closer than 
its centroid.

Points = 2048
Evidence = 332
Overlap = 332 / 2048

16 %

where ov(d1, d2) =
{
1, d1 > d2
0, otherwise

The overlap values for the benchmark datasets are
summarized in Tables 2 and 3.

Contrast This property measures the variation in distances.
The contrast of a point is defined as the relative difference
in the distances to its nearest (dmin) and furthest neighbor
(dmax). The contrast of the dataset is the average over the
entire dataset:

Contrast = median

(
(dmax − dmin)

dmin

)
(2)

According to [22], the contrast approaches 0 when the
dimension increases. Their empirical results suggest that
the nearest neighbor can become unstable with as few
as 10-20 dimensions. Our observations are quite similar
with G2 datasets, see Fig. 4. For all other datasets, the
values are reasonably high. Even for the DIM datasets, the
minimum (for DIM1024) is 54. These results suggest that
the phenomenon does not happen when the clusters are well
separated.

Table 2 Properties of the datasets

Dataset Overlap Contrast Intrinsic dim. H-index

A1 20% 227 1.5 2

A2 20% 261 2.0 3

A3 20% 294 2.5 3

S1 9% 320 2.2 2

S2 22% 257 2.2 3

S3 41% 210 2.0 3

S4 44% 205 2.2 2

Dim32-1024 0% 54 – 167 6.6 – 7.5 7–11

G2 0–66% 0.37 – 494 0.7 – 43.4 2–17

Birch1 52% 799 8.3 3

Birch2 4% 8308 2.6 3

Unbalance 0% 2983 0.4 3

Intrinsic dimensionality Sometimes the true dimensionality
of the data is not the same as the number of attributes. For
instance, the points in Birch2 are in a two-dimensional space
but form a one-dimensional shape along the sine curve.
To estimate this true dimensionality, Chavez and Navarro
[23] defined the intrinsic dimensionality measure as the
(squared) average distance between all points divided by the
variance of the distances:

ID = d̂2

2σ 2
where d̂ is the mean and σ 2 the variance. (3)

The values for Birch2 (2.6) are indeed significantly
smaller than that of Birch1 (8.3). The exact value may not
match our intuition, but they do characterize the complexity
of the data. With the A datasets, the value increases (1.5,
2.0, 2.5) with the number of clusters while remaining almost
constant for the S (2.2) and DIM (6.6-7.5) datasets. To
summarize, the measure seems to react to the number of
clusters and to the complexity of the structure, but not
directly to the increase in dimensions.

H-index The hubness score of point x has been defined
as its indegree (k-occurences) in a k-nearest neighbor (k-
NN) graph, i.e. the number of points that consider x as its
k-nearest neighbor [24]. Contrary to outliers, major hubs
usually appear in the central areas. Hubness correlates well
with density in low dimensions but not in high dimensions
[24]. Distribution of the hubness becomes highly skewed
with the increase in dimension [25]. We used 1-NN in our
experiments.

Based on the hubness score, we define the h-index of
the data set similarly as it has been used to measure the
scientific impact of scholars and publications [45]. We rank
the data points according to their individual hubness score,
and choose the h-index as the highest rank for which the
score is greater than or equal to its rank. For example, if the
hubness scores are 21, 18, 15, 9, 7, 3, 2, 2. . . the first value
smaller than its rank is four, so the h-index is rank 5.

For our data, the h-index reveals a small difference bet-
ween high and low dimensional data. The two-dimensional
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Table 3 Overlap, contrast, and
intrinsic dimensionality values
for the G2-datasets (G-dim-sd)

σ\dim 2 4 8 16 32 64 128 256 512 1024

Misclassification rate:

10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

20 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

30 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

40 4% 1% 0% 0% % 0% 0% 0% 0% 0%

50 8% 2% 0% 0% 0% 0% 0% 0% 0% 0%

60 12% 4% 1% 0% 0% 0% 0% 0% 0% 0%

70 15% 8% 2% 0% 0% 0% 0% 0% 0% 0%

80 19% 9% 4% 1% 0% 0% 0% 0% 0% 0%

90 22% 12% 6% 2% 0% 0% 0% 0% 0% 0%

100 25% 15% 7% 2% 0.1% 0% 0% 0% 0% 0%

Overlap:

10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

20 3% 0% 0% 0% 0% 0% 0% 0% 0% 0%

30 16% 5% 0% 0% 0% 0% 0% 0% 0% 0%

40 26% 19% 3% 0% 0% 0% 0% 0% 0% 0%

50 32% 31% 13% 1% 0% 0% 0% 0% 0% 0%

60 39% 43% 27% 4% 0% 0% 0% 0% 0% 0%

70 43% 50% 40% 11% 0.1 % 0% 0% 0% 0% 0%

80 46% 58% 50% 20% 0.8 % 0% 0% 0% 0% 0%

90 47% 61% 60% 31% 2.0 % 0% 0% 0% 0% 0%

100 47% 66% 64% 39% 4.4 % 0% 0% 0% 0% 0%

Contrast:

10 172 53.8 22.3 14.0 10.7 8.9 7.9 7.3 6.9 6.7

20 161 31.6 12.4 7.4 5.2 4.3 3.7 3.4 3.1 3.0

30 131 22.8 9.1 5.2 3.5 2.7 2.3 2.1 1.9 1.8

40 123 20.0 7.5 4.0 2.7 2.1 1.7 1.5 1.3 1.2

50 115 18.0 6.3 3.4 2.2 1.7 1.3 1.1 1.0 0.9

60 108 16.2 5.5 3.0 1.9 1.4 1.1 0.9 0.8 0.7

70 123 16.4 5.2 2.7 1.8 1.2 1.0 0.8 0.7 0.6

80 122 16.0 5.2 2.6 1.6 1.1 0.9 0.7 0.6 0.5

90 116 15.0 4.9 2.5 1.5 1.0 0.8 0.6 0.5 0.4

100 110 15.3 4.8 2.4 1.4 1.0 0.7 0.6 0.4 0.4

Intrinsic dimensionality:

10 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9

20 1.1 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5

30 1.4 1.9 2.2 2.4 2.5 2.5 2.6 2.6 2.6 2.6

40 1.6 2.4 3.1 3.6 3.9 4.1 4.2 4.2 4.2 4.3

50 1.7 2.8 4.1 5.0 5.9 6.3 6.6 6.7 6.9 6.8

60 1.8 3.1 5.0 6.6 8.1 9.2 10.0 10.3 10.5 10.5

70 1.8 3.3 5.6 8.5 11.0 13.1 14.4 15.1 15.7 15.9

80 1.8 3.5 6.1 9.9 13.9 17.3 19.6 21.4 22.1 22.3

90 1.8 3.6 6.4 11.2 16.6 22.3 26.9 29.1 30.5 31.5

100 1.8 3.6 6.7 12.2 19.1 26.9 34.0 39.1 41.2 43.4
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Table 3 (continued)
σ\dim 2 4 8 16 32 64 128 256 512 1024

H-index:

10 4 3 4 5 9 11 14 16 15 14

20 3 3 4 6 9 12 14 15 15 16

30 2 3 3 6 10 11 14 15 14 15

40 3 3 4 6 10 11 15 13 17 16

50 2 3 4 7 9 12 13 14 15 17

60 2 3 4 6 9 13 14 14 16 16

70 2 3 4 6 10 11 12 13 14 16

80 2 3 4 6 9 12 15 14 16 17

90 2 3 4 6 9 12 15 14 18 14

100 2 3 4 5 9 11 15 15 15 15

The first parameter (rows) represents the standard deviation (σ) of the Gaussian distribution and the second
parameter the number of attributes (dimensions)

data simply do not have hubs. The DIM datasets have
slightly higher values and shows an increasing trend with
the dimensionality (7, 9, 9, 10, 10, 11). The G2 datasets also
have this logarithmic increase with the dimensions.

Distance profiles Steinbach et al. [9] used histograms
of the distances to estimate whether the data have
clusters. Data that contain clusters tend to have two
peaks: one representing the distances inside the clusters
(local distances), and another representing distances across
different clusters (global distances).

Histograms of the A datasets indeed have a tiny peak
for the local distances, but it is hardly noticeable as it is
overwhelmed by the global distances, see Fig. 5. The same
peak is also noticeable in S1 and S2 but not in S3 and S4 due
to the overlap. The unbalance dataset has three peaks: local
distances in the dense clusters, local distances in the sparse
clusters, and the flat area for the global distances.

With high dimensional datasets, the peaks are clearly vi-
sible. With G2 and D=128, the peaks remain separable even
with the maximum overlap (sd=100). Due to the strong over-
lap, a single attribute has a high probability of being closer to
the neighbor cluster, but for the entire point to become mis-
classified, roughly > 50% of its attributes should be closer
to the wrong cluster. Assume that the probability for a single
attribute to be on the wrong side is p =25%. The probability
for the same to happen for more than half of the attributes is
already less than 10% already when D=8. Table 3 displays
this phenomenon clearly with the G2 datasets.

In general, clusters with varying densities and distances
from each other will produce multiple peaks, and overlap
causes the peaks to merge. Therefore, the distance profiles
can be useful in revealing when the data has well-separated
clusters.

Summary Tables 2 and 3 collect the statistics on the
datasets. Increasing the number of clusters also increases
the intrinsic dimensionality and contrast (A sets). Increasing
the overlap reduces contrast but does not have a clear
effect on the other measures. Dimensionality significantly
reduces contrast when the clusters overlap, but reduction is
decreased if the clusters are separated. Dimensionality also
reduces overlap, but does not seem to have a direct influence
on the intrinsic dimensionality.

3 Evaluation of clustering results

Clustering results are usually evaluated by the SSE objective
function, or, if ground truth partition is known, by an
external validity measure like the adjusted Rand index
(ARI). However, these indexes do not necessarily reveal
how significant the error is. Minimizing SSE is an NP hard
problem both in D-dimensions [26] and also in the two-
dimensional special case [27]. However, finding the exact
optimum is usually not needed.

A recent invention, the centroid index (CI), is better
suited for this purpose [28]. It has a clear binary output for
every centroid, indicating whether the centroid is correctly
located in respect to the ground truth. Based on CI, we
define the success rate (%) as the relative number of times
the algorithm reaches CI=0. In literature, it is common to
use 2-d visual examples but leave the analysis to the reader.
The success rate formalizes this analysis and extends it
naturally to higher dimensions.

We use the following notations:

xi = ith data point
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Fig. 4 Contrast values of G2
datasets decreases rapidly with
dimensions (right). The values
of the DIM datasets do not have
a similar behavior (left). The
more the overlap, the stronger
the effect
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We use the following measures:
Internal measures:

• Sum of squared distances (SSE)
• Normalized mean square error (nMSE)
• Approximation ratio (ε)

External measures:

• Success rate (%)

Fig. 5 Distance profiles of the datasets
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• Centroid index (CI)
• Adjusted Rand index (ARI)

3.1 Internal measures

Internal measures depend only on the data points. These
measures are all variants of the same basic objective
function that the clustering aims to minimize:

SSE =
N∑

i=1

||xi − cj ||2 (4)

where xi is the data point and cj is its nearest centroid.
In several of our previous works [6, 7, 15, 17, 18], the
results have been reported using the normalized version of
the mean squared error (nMSE):

nMSE = SSE

N · D
(5)

In our previous papers, the nMSE has been referred to
by the name MSE, because the methods were originally
developed for image vector quantization where it was
natural to normalize the error per pixel (N vectors in image,
D pixels in vector). Presenting nMSE allows for direct
comparison to the results in those papers, especially in [18].

Using the objective function values as such might not
tell much about the result. For instance, if one algorithm
gives SSE=3.39 and another SSE=2.40, then we can say the
latter works better. But how much better? Is the difference
significant? To answer these questions, we also measure the
SSE relative to the optimal clustering (SSEopt):

ε- ratio = (SSE − SSEopt )

SSEopt

(6)

The motivation is to compare the results with the
theoretical results obtained for approximation algorithms.
For instance, Kanungo et al. [30] proposed a local search
based algorithm which achieves a factor of (9+ε), which
was claimed to be the best-known approximation algorithm
for SSE. For clustering three-dimensional sequences, even
better polynomial were presented both 4-approximation and
(1+ε)-approximations in [31]. Awasthi [32] showed that
there exists a constant ε > 0 such that it is NP-hard to
approximate the objective function within a factor of (1+ε).
Log(k)-approximation was given in [33]. Even with two
clusters (k =2) it already gives ε =1.0, and with S datasets
ε =3.9.

Although in our work the ε-ratio is not a proven upper
bound, it gives the results in scale that better demonstrate
how high the error is. To calculate SSEopt, we could use
the ground truth centroids. However, their locations may be
different than the optimal locations that minimize SSE. For
this reason, we use the result of genetic algorithm (GA) [6]
to estimate the SSEopt.

3.2 External measures

We use the centroid index (CI) as our primary measure of
success. It counts how many real clusters are missing a
centroid, or alternatively, how many clusters have too many
centroids. The CI-value is the higher of these two numbers
[28], see Fig. 6. This provides a much clearer intuition about
the result. Specifically, if CI=0, we conclude that the result
is correct clustering. We say that the algorithm then solves
the problem. Sometimes we normalize CI by the number of
clusters, and report relative CI = CI/k.

The success rate is then defined as the relative number
of times (%) an algorithm reaches the correct clustering
(CI=0). It measures how often the best possible clustering
result is found. Since perfect results are always not
necessary, we use CI as the primary measure, but success
rates can be useful when comparing performance of
different algorithms.

Since CI measures only cluster level differences, we also
use the adjusted Rand index (ARI) to give more detailed
point level differences. Matlab implementation of ARI can
be found in [29].

4 K-means properties

We next study empirically how much the performance of
k-means depend on the following factors:

• Overlap of clusters
• Number of clusters
• Dimensionality
• Unbalance of cluster sizes

Missing centroids
Too many centroids

CI=4

Fig. 6 Example of a typical k-means result for the A2 dataset. The
corresponding measures for this are: CI= 4, SSE= 3.08, nMSE=2.93,
ε = 0.52
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Table 4 Summary of the
k-means results (averaged over
5000 runs)

Dataset Success Clustering quality Objective function

CI rel-CI ARI SSE nMSE ε

A1 1% 2.5 12% 0.82 1.98 3.31 0.64

A2 0% 4.6 13% 0.82 3.39 3.23 0.67

A3 0% 6.6 13% 0.82 4.90 3.27 0.69

S1 3% 1.9 13% 0.85 18.84 18.84 1.11

S2 11% 1.4 9% 0.86 19.79 19.79 0.48

S3 12% 1.3 9% 0.84 19.51 19.51 0.14

S4 26% 0.9 6% 0.84 17.00 17.00 0.07

Unbalance 0% 3.9 49% 0.64 2.10 1.61 8.81

Birch1 0% 6.7 7% 0.85 10.95 5.47 0.18

Birch2 0% 16.6 17% 0.81 15.75 7.87 2.45

Dim32 0% 3.6 22% 0.76 16.5 504 68.34

Average: 5% 4.5 15% 0.81 — — 7.60

The overall results are summarized in Table 4. We see that
k-means rarely solves the problem. The best case is S4,
where k-means manages to solve the problem 26% of the
times. Sets A2, A3, Unbalance, Birch1, Birch2 and DIM32
were not solved even once. On average, 4.5 centroids are
incorrectly located. We next study the results in more detail.

4.1 Overlap

On average, the k-means algorithm finds the correct solution
(CI=0) about 5% of times. The easiest are the S sets. The
more overlap, the more often it finds the solution (26% of
times with S4). The datasets with high separation (Dim32,
Unbalance, Birch2) are problematic: k-means never finds
the correct clustering and the CI-values (3.6, 3.9, 16.6) are
quite high. The reason why overlap is good is demonstrated
in Fig. 7.

Further tests with G2 datasets show a clear dependency
between overlap and success. Since these datasets have only
two clusters, there is no sense in applying clustering with
k =2 (too trivial to solve). Instead, we allocated k =4
centroids with a 3:1 balance so that the first group had
three centroids and the second group had one. We then

ran k-means and checked whether it found the better (in
minimizing SSE) 2:2 balance by moving one of the three
centroids to the second group. The results in Fig. 10 show
that a higher overlap implies better performance.

Too much overlap would eventually make the clusters
merge and any clustering algorithm (not only k-means)
would fail. With G2 data, this merging has not yet happened
(highest observed overlap is 66%). In some cases, however,
the clusters are barely recognizable when std=100, and
other, better algorithms than k-means, also start to lose their
accuracy.

We further plot all results of the G2 datasets with D =2
to 32 dimensions and sd=10-100 in Fig. 8 according to the
measured overlap of the data (x-axis) and the success rate
(y-axis). There is strong correlation (0.91) between overlap
and success. The success of k-means reaches 1% at the
point where the overlap exceeds 4%. This appears to be
approximately the critical point for the success of k-means
with this data.

In brief, overlap is very important factor to predict the
performance of k-means. However, it is not the only factor
affecting the performance. Even with relatively high overlap
(20%), k-means still failed with the A sets.

Fig. 7 Illustration of the effect
of overlap for k-means. The
gray trajectories show the
movement of the centroids
during the iterations. In both
cases, only one initial centroid is
on the rightmost cluster and
only when there is sufficient
overlap, one additional centroid
can move across the clusters
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Fig. 8 Dependency of overlap and success rate on G2 datasets. The
location (4%) where the success rate reaches 1% is marked

4.2 Number of clusters

K-means can occasionally solve the S sets but almost never
solve the A sets even if their overlap level is not significantly
different. The reason is the higher number of clusters. The
results of SSE and ARI reveal little. However, the CI-
values and the success rate reveal that there is a clear linear
dependency on the number of clusters. This can be seen with
A1-A3 datasets: the CI-values 2.5, 4.5, 6.6 all correspond to
the relative CI-value of 13% in all three cases.

Figure 9 demonstrates how the CI-value depends on the
size of the data (left), and on the number of clusters (right).
The value has almost no dependency on the size of the data,
but it increases linearly with the number of clusters. The
increase is steady and the relative CI-value (CI/k) is roughly
16.6%. This means that one cluster out of six is missed
by k-means, on average. The same trend happens also with
repeated k-means, for which the relative CI-value converges
to 10.9%.

4.3 Dimensions

The DIM sets confirm the same observation that overlap is
necessary for k-means. However, the dimensionality does
not affect the results, and the CI-value is almost constant;
when dimensionality increases from D =32 to 1024 the

Fig. 10 Success rates for all G2 datasets (bottom chart). Rows are
the standard deviation (σ) of the Gaussian distribution and columns
the dimensionality. The overlap values (in %) are also shown to
demonstrate the strong influence of overlap on success. The blue
circles refer to the datasets shown in Fig. 2

success rate remains at 0% and the CI-value has only minor
variations: 3.6, 3.5, 3.8, 3.8, 3.9, 3.7. It seems that the
overlap matters more than the dimensionality itself.

For all G2 sets, k-means is successful with low dimen-
sional datasets when the clusters overlap, see Fig. 10. For
instance, G2-4-50 is solved 8% of the time whereas G2-16-
50 is never solved. However, the explaining factor is again
the overlap (see Table 3), which is reduced from 31% to 1%,
below the critical point. Similar observation was made in
[22] by concluding that the lack of contrast is a major prob-
lem with high dimensional data for many applications, and
it start to happen already for 10-15 dimensional data.

To sum up, a higher dimensionality weakens k-means but
the reason is the lack of overlap. For example, DIM sets
have no overlap so the k-means never succeeded.

Fig. 9 Dependency of CI-values
on the size of data (B2-random),
and on the number of clusters
(B2-sub)
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4.4 Unbalance

The unbalance dataset demonstrates another weakness of
k-means. The problem is not the density itself but the
unbalance of frequencies, together with the separation of the
clusters. If no centroids are selected from the small clusters,
k-means can move only one centroid into this area – the four
others that are needed would get stuck in the dense area, see
Fig. 11.

This behavior can be explained by the probabilities and
the problem is rooted in the random initialization. The
probability that a randomly selected point comes from the
low frequency area is only 500/6500 = 7%. The probability
to select all five is diminishingly low. Even if this selection
occurred, the centroids might still be incorrectly located. In
our experiments, k-means solves the unbalance dataset only
six times out of 100,000 trials (0.006%).

5 Improving k-means

There are three obvious ways to improve k-means:

• Better initialization
• Repeated k-means (RKM)
• Replace k-means by another better algorithm

Although studying different initialization strategies is out
of the scope of this work, we briefly consider alternative
initialization strategies, and to show to what extent the
problems of k-means could be fixed by the above-mentioned
options.

In our view, initialization should be trivial, or at least
very easy to implement, and free from any parameters
(besides k). For instance, there are algorithms that start
from the center of the data as the first centroids [34], and
then consider other points in a certain order for the next
candidate. A new centroid is created if the point is farther
than a given distance to previous centroids. Other similar
sorting heuristics also exist, but we did not consider them
because of the need to set a distance threshold.

K-means tend to put 
too many clusters here …

560

2000

1011

500

… and too few here

492
458

490 989

Fig. 11 Unbalanced cluster sizes are a problem for k-means

It is also possible to repeat k-means multiple times. The
idea is simply to run k-means several times, each time
with a different initial solution, and then keep the best
result. This approach requires the initialization technique
to include randomness to obtain different solutions. Many
researchers consider the repeats as an obvious and necessary
improvement to the k-means, where better clustering is
obtained at the cost of increased processing time. The
approach is often credited to [35], although it has likely
been used by many others earlier including [59]. We call
this variant repeated k-means (RKM). In all of our tests
conducted here, we applied 100 repeats.

5.1 Initialization techniques

We consider the following initialization techniques:

• Random centroids (Ran) [1, 2]
• Steinley’s algorithm (Ste) [36]
• Further point heuristic (Max) [37]

Random centroids [1, 2] is the standard initialization
technique that we have used in the earlier part of this
paper. An alternative variant is random partitions [3], which
puts every point into a randomly chosen cluster, and then
calculates the centroids of these partitions. Steinley’s variant
[36] repeats this process 5000 times and selects the result
with smallest SSE. In our implementation, we use the
random number generator in [38].

A third popular technique is the furthest point heuristic.
It selects the mean of all points as the first centroid. Then,
at each step, the next centroid is selected as the furthest
point (max) from its nearest (min) centroid. This is known
as Maxmin [39]. We use a variant in which the first point
is chosen randomly. This adds randomness to the process,
which is useful if we want to repeat k-means multiple times.

5.2 Results

The results of different initializations are summarized in
Table 5. In general, Steinley’s method works poorly. It has a
much better success rate on the S2 and S4 sets but when the
number of clusters increases, it creates many empty clusters,
which results in high CI-values. The worst case is Birch2,
for which 76% of all centroids are incorrectly located.

Maxmin is the only heuristic that solves one set with
100% certainty (DIM32). It works significantly better than
the random heuristic but still makes 2.2 errors in centroid
allocations, on average. It also works poorly when the
number of clusters increases (A2, A3, B1, B2). It works
significantly better with Birch2 (4% overlap) than with
Birch1 (52% overlap) due to the structure. This compensates
the deficiency of k-means, which improve more on datasets
with higher overlap (Birch1) than with lower overlap
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Table 5 CI and relative
CI-values for k-means with
different initializations, their
repeated k-means variants (100
repeats), RS (5000 iterations)
and GA

Dataset K-means Repeated KM RS GA

Ste Ran Max Ste Ran Max

CI-values

A1 6.0 2.5 1.0 4.8 0.4 0.0 0.0 0.0
A2 10.7 4.6 2.6 8.8 1.7 0.4 0.0 0.0
A3 17.9 6.6 2.9 16.4 3.0 0.6 0.0 0.0
S1 3.2 1.9 0.7 1.3 0.1 0.0 0.0 0.0
S2 0.6 1.4 1.0 0.0 0.0 0.0 0.0 0.0
S3 1.2 1.3 0.7 0.0 0.0 0.0 0.0 0.0
S4 0.4 0.9 1.0 0.0 0.0 0.0 0.0 0.0

Unbalance 4.0 3.9 0.9 3.5 2.4 0.0 0.0 0.0

Birch1 11.3 6.7 5.5 8.6 2.7 2.7 0.0 0.0

Birch2 75.5 16.6 7.3 74.0 10.8 3.8 0.0 0.0

Dim32 5.5 3.6 0.0 2.7 1.1 0.0 0.0 0.0

Average: 12.4 4.5 2.2 10.9 2.0 0.7 0.0 0.0

Relative CI-values

A1 30% 12% 6% 24% 2% 0% 0% 0%

A2 31% 13% 7% 25% 5% 1% 0% 0%

A3 36% 13% 6% 33% 6% 1% 0% 0%

S1 22% 13% 5% 9% 1% 0% 0% 0%

S2 4% 9% 7% 0% 0% 0% 0% 0%

S3 8% 9% 5% 0% 0% 0% 0% 0%

S4 3% 6% 7% 0% 0% 0% 0% 0%

Unbalance 50% 49% 11% 44% 31% 0% 0% 0%

Birch1 11% 7% 6% 9% 3% 3% 0% 0%

Birch2 76% 17% 7% 74% 11% 4% 0% 0%

Dim32 34% 22% 0% 17% 7% 0% 0% 0%

Average: 28% 15% 6% 21% 6% 1% 0% 0%

Cases when the correct clustering is always found, are presented in bold

(Birch2); see the results below reported before and after
k-means iterations:

Random initialization Maxmin initialization

Birch1 Birch2 Birch1 Birch2

Initial: 36.6 36.5 21.4 9.6
After 6.7 16.6 5.5 7.3
k-means:

Repeated k-means improves all initializations. With the
S sets, it almost always determines the correct solution
in 100 repeats. However, as the results in Fig. 9 have
already demonstrated, RKM cannot solve the problem when
there are many clusters. With Birch2, it makes 11% errors
with random, and 4% with maxmin initialization. Reference
results for the random swap (RS) and the genetic algorithm
(GA) provide 0% errors, which indicate that it is possible to

find the correct clustering for all these datasets with a single
algorithm.

Finally, we made a brief test to determine whether
the main observations also hold with two real datasets
from the UCI repository. The Leaves dataset [40] contains
visual shape features of 100 species of plants, 16 images
per species. The Letter dataset [41] contains 26 classes
representing letters from A to Z. Each class contains
randomly distorted visual features with 20 different fonts.

We further divided the data into 4-5 subsets by clustering
so that the clusters with least overlap [21] are in the
first subset, clusters with the next least overlap are in the
next subset, and so on. Each subset is clustered separately
using k-means and compared to the random swap to see
how well it succeeds at the clustering task. The results in
Table 6 demonstrate that the more overlap, the better k-
means performs; the average correlation is 0.78 (Leaves)
and 0.88 (Letters).
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Table 6 CI-results for the
subsets of two real life datasets
(Leaves N =71-685 k =20,
Letters N =2404-6760 k =6)
compared with the
corresponding clustering result
of the RS algorithm

Dataset Overlap K-means Repeated KM

Ste Ran Max Ste Ran Max

Leaves 0 % 4.7 4.3 1.6 2.7 2.1 1.0

0 % 6.3 5.2 2.9 4.6 2.5 2.0

6 % 6.3 4.0 4.3 4.6 1.5 2.8

11 % 5.0 3.8 3.2 3.1 1.4 1.9

38 % 3.3 3.4 3.9 2.1 1.4 2.3

Letters 9 % 0.5 1.0 0.8 0.0 0.0 0.0

37 % 0.3 0.5 0.2 0.0 0.0 0.0

55 % 0.8 0.7 0.9 0.0 0.0 0.0

79 % 0.1 0.2 0.5 0.0 0.0 0.0

6 Conclusions

We have introduced a basic clustering benchmark and
proposed using centroid index and success rate to evaluate
the results. These two contributions provide a systematic
approach to test the performance of the algorithms, and
provide a result that is easy to interpret. As a case study, we
studied the performance of k-means iterations and reached
the following conclusions:

• K-means works better when the clusters overlap. This
is the most important factor to predict the success of
k-means.

• The more clusters there are, the worse k-means works.
The success rate has a linear dependency on the number
of clusters: the more clusters there are, the more likely
that k-means will fail to solve all clusters correctly.

• Increasing dimensionality does not affect the perfor-
mance of k-means if the clusters are well separated.
With G2 datasets, increasing dimensionality worsens k-
means’ performance. However, the mediating factor is
the overlap, not the dimensionality.

• The performance of k-means is worse when cluster
sizes have a strong unbalance. However, the reason has
nothing to do with the k-means algorithm itself but it
originates from two independent facts: deficiency of the
random initialiation and lack of cluster overlap.

Better initialization or repeating k-means can significantly
improve it, but they do not completely solve the problems
of k-means. If the quality of the clustering is not critical,
simply repeating k-means several times is often enough.
However, if high clustering accuracy is important, a better
algorithm than k-means is recommended.

Finally, we remind that the choice of the algorithm is just
one part of the clustering process. The choice of the distance
and objective function is much more important in real-
life applications. For example, the quality of the clustering

was shown not to be critical for the performance of
speaker recognition in [60] when any reasonable clustering
algorithm was used; including repeated k-means. Random
sub-sampling still performed poorly though.

To sum up, clustering results depends primarily on the
choice of objective function, and only secondarily on the
choice of algorithm.Wrong choice of the function can easily
cancel the benefit of a good algorithm and vice versa, a
proper objective function can provide better clustering even
with worse algorithm. Nevertheless, we have demonstrated
conditions when the k-means algorithm is expected to work,
and when it can become a bottleneck.
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of clustering methods: a case study of text-independent speaker
modeling. Pattern Recogn Lett 32(13):1604–1617

61. Huang X, Zhang L, Wang B, Li F, Zhang Z (2018) Feature
clustering based support vector machine recursive feature
elimination for gene selection. Appl Intell 48:594–607

62. Ultsch A (2005) Clustering with SOM: U*C, workshop on self-
organizing maps. Paris, pp 75–82
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