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a b s t r a c t

Traditional approach to clustering is to fit a model (partition or prototypes) for the given data. We
propose a completely opposite approach by fitting the data into a given clustering model that is optimal
for similar pathological data of equal size and dimensions. We then perform inverse transform from this
pathological data back to the original data while refining the optimal clustering structure during the
process. The key idea is that we do not need to find optimal global allocation of the prototypes. Instead,
we only need to perform local fine-tuning of the clustering prototypes during the transformation in
order to preserve the already optimal clustering structure.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Euclidean sum-of-squares clustering is an NP-hard problem [1],
where one assigns n data points to k clusters. The aim is to
minimize the mean squared error (MSE), which is the mean
distance of the data points from the nearest centroids. When the
number of clusters k is constant, Euclidean sum-of-squares clus-
tering can be done in polynomial Oðnkdþ1Þ time [2], where d is the
number of dimensions. This is slow in practice, since the power
kdþ1 is high, and thus, suboptimal algorithms are used. The K-
means algorithm [3] is fast and simple, although its worst-case
running time is high, since the upper bound for the number of
iterations is OðnkdÞ [4].

In k-means, given a set of data points ðx1; x2;…; xnÞ, one tries to
assign the data points into k sets ðkonÞ, S¼ fS1; S2;…; Skg, so that
MSE is minimized:

arg min
S

∑
k

i ¼ 1
∑

xj A Si

‖xj�μi‖
2

where μi is the mean of Si. An initial set of the k means
mð1Þ

1 ;…;mð1Þ
k may be given randomly or by some heuristic [5–7].

The k-means algorithm alternates between the two steps [8]:
Assignment step: Assign the data points to clusters specified by

the nearest centroid:

SðtÞi ¼ xj : Jxj�mðtÞ
i Jr Jxj�mðtÞ

in
J ; 8 in ¼ 1;…; k

n o

Update step: Calculate the mean of each cluster:

mðtþ1Þ
i ¼ 1

jSðtÞi j
∑

xj A SðtÞi

xj

The k-means algorithm converges when the assignments no
longer change. In practice, the k-means algorithm stops when
the criterion of inertia does not vary significantly: it is useful to
avoid non-convergence when the clusters are symmetrical, and in
the other cluster configurations, to avoid too long time of
convergence.

The main advantage of k-means is that it always finds a local
optimum for any given initial centroid locations. The main draw-
back of k-means is that it cannot solve global problems in the
clustering structure (see Fig. 1). By solved global clustering
structure we mean such initial centroid locations from which the
optimum can be reached by k-means. This is why slower agglom-
erative clustering [9–11], or more complex k-means variants
[7,12–14] are sometimes used. K-meansþþ [7] is like k-means,
but there is a more complex initialization of centroids. Gaussian
mixture models can also be used (Expectation-Maximization
algorithm) [15,16] and cut-based methods have been found to
give competitive results [17]. To get a view of the recent research
in clustering, see [18–20], which deal with analytic clustering,
particle swarm optimization and minimum spanning tree based
split-and-merge algorithm.

In this paper, we attack the clustering problem by a completely
different approach than the traditional methods. Instead of trying
to solve the correct global allocation of the clusters by fitting the
clustering model to the data X, we do the opposite and fit the data
to an optimal clustering structure. We first generate an artificial
data Xn of the same size (n) and dimension (d) as the input data, so
that the data vectors are divided into k perfectly separated clusters
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without any variation. We then perform one-to-one bijective
mapping of the input data to the artificial data (X-Xn).

The key point is that we already have a clustering that is
optimal for the artificial data, but not for the real data. In the next
step, we then perform inverse transform of the artificial data back
to the original data by a sequence of gradual changes. While doing
this, the clustering model is updated after each change by k-
means. If the changes are small, the data vectors will gradually
move to their original position without breaking the clustering
structure. The details of the algorithm including the pseudocode
are given in Section 2. An online animator demonstrating the
progress of the algorithm is available at http://cs.uef.fi/sipu/cluster
ing/animator/. The animation starts when “Gradual k-means” is
chosen from the menu.

The main design problems of this approach are to find a
suitable artificial data structure, how to perform the mapping,
and how to control the inverse transformation. We will demon-
strate next that the proposed approach works with simple design
choices, and overcomes the locality problem of k-means. It cannot
be proven to provide optimal result every time, as there are
pathological counter-examples where it fails to find the optimal
solution. Nevertheless, we show by experiments that the method
is significantly better than k-means, significantly better than k-
meansþþ and competes equally with repeated k-means. It also
rarely ends up to a bad solution that is typical to k-means.
Experiments will show that only a few transformation steps are
needed to obtain a good quality clustering.

2. K-meansn algorithm

In the following subsections, we will go through the phases of
the algorithm. For pseudocode, see Algorithm 1. We call this
algorithm k-meansn, because of the repeated use of k-means.
However, instead of applying k-means to the original data points,
we create another artificial dataset which is prearranged into k
clearly separated zero-variance clusters.

2.1. Data initialization

The algorithm starts by choosing the artificial clustering struc-
ture and then dividing the data points among these equally. We do
this by creating a new dataset X2 and by assigning each data point
in the original dataset X1 to a corresponding data point in X2, see
Fig. 2. We consider seven different structures for the initialization:

� line
� diagonal
� random
� random with optimal partition
� initialization used in k-meansþþ
� line with uneven clusters
� point.

In the line structure, the clusters are arranged along a line.
The k locations are set as the middle value of the range in each
dimension, except the last dimension where the k clusters are
distributed uniformly along the line, see Fig. 3 (left) and the
animator http://cs.uef.fi/sipu/clustering/animator/. The range of
10% nearest to the borders is left without clusters. In the diagonal
structure, the k locations are set uniformly to the diagonal of the
range of the dataset. In the random structure, the initial clusters
are selected randomly among the data point locations in the
original dataset, see Fig. 3 (right). In these structuring strategies,
data point locations are initialized randomly to these cluster
locations. Even distribution among the clusters is a natural choice.
To justify it further, lower cardinality clusters can more easily
become empty later, which is an undesirable situation.

The fourth structure is random locations but using optimal parti-
tions for the mapping. This means assigning the data points to the
nearest clusters. The fifth structure corresponds to the initialization
strategy used in k-meansþþ [7]. This initialization is done as follows:
at any given time, let DðXiÞ denote the shortest distance from a data
point Xi to its closest centroid we have already chosen.

Choose first centroid C1 uniformly at random from X.
Repeat: Choose the next centroid as a point Xi, using a weighted

probability distribution where a point is chosen with probability
proportional to DðXiÞ2.

Until we have chosen a total of k centroids.
As a result, new centers are added more likely to the areas lacking

centroids. The sixth structure is the line with uneven clusters, inwhich

Fig. 1. Results of k-means for three random initializations (left) showing that k-means cannot solve global problems in the clustering structure. Circles show clusters that
have too many centroids. Arrows show clusters that have too few centroids. Clustering result obtained by the proposed method (right).

Fig. 2. Original dataset (left), and the corresponding artificial dataset using line init
(right).
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we place twice more points to most centrally located half of the cluster
locations. The seventh structure is the point. It is like line structure but
we put the clusters in a very short line, which looks like a single point
in larger scale. In this way the dataset “explodes” from a single point
during the inverse transform. This structure is useful mainly for the
visualization purpose in the web-animator. The k-meansþþ-style
structure with evenly distributed data points is the recommended
structure because it works best in practice, and therefore we use it in
further experiments. In choosing the structure, good results are
achieved when there is a notable separation between clusters and
evenly distributed data points in clusters.

Once the initial structure is chosen, each data point in the
original dataset is assigned to a corresponding data point in the
initial structure. The data points in this manually-created dataset
are randomly but evenly located in this initial structure.

2.2. Inverse transformation steps

The algorithm proceeds by executing a given number of steps,
which is a user-set integer parameter (steps41). Default value for
steps is 20. At each step, all data points are transformed towards
their original location by amount

1
steps

� ðX1;i�X2;iÞ; ð1Þ

where X1;i is the location of the i:th datapoint in the original data
and X2;i is its location in the artificial structure. After every
transform, k-means is executed given the previous codebook along
with the modified dataset as input. After all the steps have been
completed, the resulting codebook C is output.

It is possible, that two points that belong to the same cluster
in the original dataset will be put to different clusters in the
manually-created dataset. Then they smoothly move to final
locations during the inverse transform.

Algorithm 1. K-meansn.

Input: dataset X1, number of clusters k, steps,
Output: Codebook C.

n’sizeðX1Þ
½X2;C�’InitializeðÞ
for repeats¼1 to steps do
for i¼1 to n do

X3;i’X2;iþðrepeats=stepsÞnðX1;i�X2;iÞ
end for
C’kmeansðX3; k;CÞ

end for
output C

Fig. 3. Original dataset and line init (left) or random init (right) with sample mappings shown by arrows.

Fig. 4. Progress of the algorithm for a subset of 5 clusters of dataset a3. Data spreads towards the original dataset, and centroids follow in optimal locations. The subfigures
correspond to phases 0%, 10%, 20%,…,100% completed.
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2.3. Optimality considerations

The basic idea is that if the codebook was all the time optimal
for all intermediate datasets, the generated final clustering would
also be optimal for the original data. In fact, many times this
optimality is reached; see Fig. 4 for an example how the algorithm
proceeds. However, the optimality cannot be always guaranteed.

There are a couple of counter-examples, which may happen
during the execution of the algorithm. The first is non-optimality of
global allocation, which in some form is present in all practical
clustering algorithms. Consider the setting in Fig. 5. The data points
x1‥6 are traversing away from their centroid C1. Two centroids
would be needed there, one for the data points x1‥3 and another
one for the data points x4‥6. On the other hand, the data points
x13‥15 and x16‥18 are approaching each other and only one of the
centroids C3 or C4 would be needed. This counter-example shows
that this algorithm cannot guarantee optimal result, in general.

2.4. Empty cluster generation

Another undesired situation that may happen during the
clustering is generation of an empty cluster, see Fig. 6. Here the
data points x1‥6 are traversing away from their centroid C2 and
eventually leave the cluster empty. This is undesirable, because
one cannot execute k-means with an empty cluster. However, this
problem is easy to detect and can be fixed in most cases by a
random swap strategy [12]. Here the problematic centroid is
swapped to a new location randomly chosen from the data points.
We move the centroids of empty clusters in the same manner.

2.5. Time complexity

The worst case complexities of the phases are listed in Table 1.
The overall time complexity is not more than for the k-means, see

Table 1. The proposed algorithm is asymptotically faster than
global k-means and even faster than the fast variant of global k-
means, see Table 2.

The derivation of the complexities in Table 1 is straightforward,
and we therefore discuss here only the empty cluster detection
and removal phases. There are n data points, which will be
assigned to k centroids. To detect empty clusters we have to go

Fig. 5. Clustering that leads to non-optimal solution.

Fig. 6. A progress, which leads to an empty cluster.

Table 1
Time complexity of the proposed algorithm.

Algorithm k free k¼OðnÞ k¼Oð ffiffiffi
n

p Þ k¼Oð1Þ

Theoretical
Initialization O(n) O(n) O(n) O(n)
Dataset transform O(n) O(n) O(n) O(n)
Empty clusters removal O(kn) Oðn2Þ Oðn1:5Þ O(n)
k-means Oðknkdþ1Þ OðnOðnÞ�dþ2Þ OðnOð ffiffi

n
p

dþ3=2ÞÞ Oðnkdþ1Þ

Algorithm total Oðknkdþ1Þ OðnOðnÞ�dþ2Þ OðnOð ffiffi
n

p
dþ3=2ÞÞ Oðnkdþ1Þ

Fixed k-means
Initialization O(n) O(n) O(n) O(n)
Dataset transform O(n) O(n) O(n) O(n)
Empty clusters removal O(kn) Oðn2Þ Oðn1:5Þ O(n)
k-means O(kn) Oðn2Þ Oðn1:5Þ O(n)

Algorithm total O(kn) Oðn2Þ Oðn1:5Þ O(n)

Table 2
Time complexity comparison for k-meansn and global k-means.

Algorithm Time complexity for fixed k-means

Global k-means Oðn � k � complexity of k�meansÞ ¼Oðk2 � n2Þ
Fast global k-means Oðk � complexity of k�meansÞ ¼Oðk2 � nÞ
K-meansn Oðsteps � complexity of k�meansÞ ¼Oðsteps � k � nÞ
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through all the n points and find for them the nearest of the k
centroids. So detecting empty clusters takes O(kn) time.

For the empty clusters removal phase, we introduce two
variants. The first is a one, which is more accurate, but slower,
Oðk2nÞ in time complexity. The second is a faster variant with O(kn)
time complexity. We present now first the accurate and then the
fast variant.

Accurate removal: For the removal phase, there are k centroids,
and therefore, at most k�1 empty clusters. Each empty cluster is
replaced by a new location from one of the n datapoints. The new
location is chosen so that it belongs to a cluster with more than
one point. To find such a location takes O(k) time in the worst case.
The number of points in a cluster is calculated in the detection
phase. Also, the new location is chosen so that there is not another
centroid in that location. To check this it takes O(k) time per
location. After changing centroid location we have to detect again

empty clusters. This loop together with the detection we repeat
until all the at most k�1 empty clusters are filled. So the total time
complexity for empty cluster removals is Oðk2nÞ.

Fast removal: In the detection phase, also the number of points
per cluster and the nearest data points from the centroids of the
non-empty clusters are calculated. The subphases of the removal
are as follows:

� Move the centroids of the non-empty clusters to the calculated
nearest data points, T1 ¼ OðkÞ.

� For all the ok centroids, that form the empty clusters:
○ choose the biggest cluster, that has more than one data

point, T2 ¼OðkÞ.
○ choose the first free data point from this cluster, and put the

centroid there, T3 ¼OðnÞ.
○ re-partition this cluster, T4 ¼OðnÞ.

Fig. 7. Datasets s1–s4, and first two dimensions of the other datasets.
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The total time complexity of removals is T1þk � ðT2þT3þT4Þ ¼
OðknÞ. This variant suffers somewhat from the fact that the
centroids are moved to their nearest datapoints to ensure non-
empty clusters.

Theoretically, k-means is the bottleneck of the algorithm. In the
worst case, it takes Oðknkdþ1Þ time, which results in total time
complexity of Oðnkdþ1Þ when k is constant. This over-estimates the
expected time complexity, which in practice, can be significantly
lower. By limiting the number of k-means iterations to a constant,
the time complexity reduces to linear time O(n), when k is
constant. When k equals to

ffiffiffi
n

p
, the time complexity is Oðn1:5Þ.

3. Experimental results

We ran the algorithm with a different number of steps and for
several datasets. For MSE calculation we use the formula

MSE¼
∑k

j ¼ 1∑Xi ACj
‖Xi�Cj‖2

n � d ;

where MSE is normalized per feature. Some of the datasets used in
the experiments are plotted in Fig. 7. All the datasets can be found
in the SIPU web page http://cs.uef.fi/sipu/datasets. Some inter-
mediate datasets and codebooks for a subset of a3 were plotted
already in Fig. 4. The sets s1, s2, s3 and s4 are artificial datasets
consisting of Gaussian clusters with the same variance but
increasing overlap. Given 15 seeds, data points are randomly
generated around them. In a1 and DIM sets the clusters are clearly
separated whereas in s1–s4 they are more overlapping. These sets
are chosen because they are still easy enough for a good algorithm
to find the clusters correctly but hard enough for a bad algorithm
to fail. We performed several runs by varying the number of steps
between 1‥20, 1000, 100,000, and 500,000. Most relevant results
are collected in Table 3, and the results for the number of steps
2‥20 are plotted in Fig. 8.

From the experience we observe that 20 steps are enough for
this algorithm (Fig. 8 and Table 3). Many clustering results of these
datasets stabilize at around 6 steps. More steps give only a
marginal additional benefit, but at the cost of longer execution
time. For some of the datasets, even just 1 step gives the best
result. In these cases, initial positions for centroids just happen to
be good. Phases of clustering show that 1 step gives as good result
as 2 steps for a particular run for a particular dataset (Fig. 9). When
the number of steps is large, the results sometimes get worse,
because the codebook stays too tightly in a local optimum and the
change of dataset is too marginal.

We tested the algorithm against k-means, k-meansþþ [7], global
k-means [14] and repeated k-means. As a comparison, we made also
runs with alternative structures. The results indicate that, on average,
the best structures are the initial structure used in k-meansþþ
and the random, see Table 4. The proposed algorithm with the
k-meansþþ-style initialization structure is better than k-meansþþ
itself in the case of 15 out of 19 datasets. For one dataset the results are
equal and for three datasets it is worse. These results show that the
proposed algorithm is favorable to k-meansþþ . The individual cases
when it fails are due to statistical reasons. A clustering algorithm
cannot be guaranteed to be better than other in every case. In real-
world applications, k-means is often applied by repeating it several
times starting from different random initializations and the best
solution is kept finally. The intrinsic difference between our approach
and the above trick is that we use educated calculation to obtain the
centroids to current step, where the previous steps contribute to the
current step, whereas repeated k-means initializes randomly at every
repeat. From Table 5, we can see that the proposed algorithm is
significantly better than k-means and k-meansþþ . In most cases, it
competes equally with repeated k-means, but in the case of high
dimensionality datasets it works significantly better.

For high-dimensional clustered data, k-meansþþ-style initial
structure works best. We therefore recommend this initialization
for high-dimensional unknown distributions. In most other cases,
the random structure is equally good and can be used as an
alternative, see Table 4.

Overall, different initial artificial structures lead to different
clustering results. Our experiments did not reveal any unsuccessful
cases in this. The worst results were obtained by random structure
with optimal partition, but even for it, the results were at the same
level as that of k-means. We did not observe any systematic
dependency between the result and the size, dimensionality or
type of data.

The method can also be considered as a post-processing algorithm
similarly as k-means. We tested the method with the initial structure
given by (complete) k-means, (complete) k-meansþþ and by Ran-
dom Swap [12] (one of the best methods available). Results for these
have been added in Table 6. We can see that the results for the
proposed method using Random Swap as preprocessing are signifi-
cantly better than running Repeated k-means.

We calculated also Adjusted Rand index [21], Van Dongen
index [22] and Normalized mutual information index [23], to
validate the clustering quality. The results in Table 7 indicate that
the proposed method has a clear advantage over k-means.

Finding optimal codebook with high probability is another impor-
tant goal of clustering. We used dataset s2 to compare the results of

Table 3
MSE for dataset s2 as a function of number of steps. K-meansþþ-style structure. Mean of 200 runs except when steps Z1000. (n) estimated from the best known result in
[11].

Number of steps (k-meansn)
or repeats (repeated k-means)

K-meansn Repeated k-means

MSE (�109) Time MSE (�109) Time

2 1.55 1 s 1.72 0.1 s
3 1.54 1 s 1.65 0.1 s
4 1.57 1 s 1.56 0.1 s
20 1.47 2 s 1.35 1 s
100 1.46 5 s 1.33 3 s
1000 1.45 24 s 1.33 9 s
100,000 1.33 26 min 1.33 58 min
500,000 1.33 128 min 1.33 290 min

K-means 1.94 0.2 s
Global k-means 1.33 6 min
Fast global k-means 1.33 3 s
Optimaln 1.33 N/A
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the proposed algorithm (using 20 steps), and results of the k-means
and k-meansþþ algorithms to the known ground truth codebook of
s2. We calculated how many clusters are mis-located, i.e., how many
swaps of centroids would be needed to correct the global allocation of
a codebook to that of the ground truth. Of the 50 runs, 18 ended up to

the optimal allocation, whereas k-means succeeded only with 7 runs,
see Table 8. Among these 50 test runs the proposed algorithm had
never more than 1 incorrect cluster allocation, whereas k-means had
up to 4 and k-meansþþ had up to 2 in the worst case. Fig. 10
demonstrates typical results.

Fig. 8. Results of the algorithm (average over 200 runs) for datasets s1, s2, s3, s4, thyroid, wine, a1 and DIM32 with a different number of steps. For repeated k-means there
are equal number of repeats than there are steps in the proposed algorithm. For s1 and s4 sets also 75% error bounds are shown. Step size 20 will be selected.

M.I. Malinen et al. / Pattern Recognition 47 (2014) 3376–33863382



Fig. 9. Phases of clustering for 1 step and 2 steps for dataset s2.

Table 4
MSE for different datasets, averages over several (Z10) runs, 10 or 20 steps are used. Most significant digits are shown.

Dataset K-meansn

Diagonal Line Random k-meansþþ style Random þ optimal partition Line with uneven clusters

s1 1.21 1.01 1.22 1.05 1.93 1.04
s2 1.65 1.52 1.41 1.40 2.04 1.46
s3 1.75 1.71 1.74 1.78 1.95 1.73
s4 1.67 1.63 1.60 1.59 1.70 1.64
a1 2.40 2.40 2.35 2.38 3.07 2.25

DIM32 151 136 64 7.10 517 113
DIM64 98 168 65 3.31 466 157
DIM128 153 92 101 2.10 573 132
DIM256 135 159 60 0.92 674 125

Bridge 165 165 165 165 167 168
Missa 5.11 5.15 5.24 5.19 5.32 5.16
House 9.67 9.48 9.55 9.49 9.80 9.88

Thyroid 6.93 6.92 6.96 6.96 6.98 6.92
Iris 2.33 2.33 2.33 2.42 2.42 2.33
Wine 1.89 1.90 1.89 1.93 1.92 1.89
Breast 3.13 3.13 3.13 3.13 3.13 3.13
Yeast 0.044 0.051 0.037 0.041 0.039 0.050
wdbc 2.62 2.62 2.62 2.62 2.62 2.62
Glass 0.22 0.23 0.22 0.22 0.23 0.24

Best 7 8 7 10 2 6

Table 5
MSE for different datasets, averages over several (Z10) runs. Most significant digits are shown. (n) The best known results are obtained from among all the methods or by
2 h run of random swap algorithm [12].

Dataset Dimensionality K-means Repeated k-means K-meansþþ K-meansn (proposed) Fast GKM Best knownn

s1 2 1.85 1.07 1.28 1.05 0.89 0.89
s2 2 1.94 1.38 1.55 1.40 1.33 1.33
s3 2 1.97 1.71 1.95 1.78 1.69 1.69
s4 2 1.69 1.57 1.70 1.59 1.57 1.57
a1 2 3.28 2.32 2.66 2.38 2.02 2.02

DIM32 32 424 159 7.18 7.10 7.10 7.10
DIM64 64 498 181 3.39 3.31 3.39 3.31
DIM128 128 615 276 2.17 2.10 2.17 2.10
DIM256 256 671 296 0.99 0.92 0.99 0.92

Bridge 16 168 166 177 165 164 161
Missa 16 5.33 5.28 5.62 5.19 5.34 5.11
House 3 9.88 9.63 6.38 9.49 5.94 5.86

Thyroid 5 6.97 6.88 6.96 6.96 1.52 1.52
Iris 4 3.70 2.33 2.60 2.42 2.02 2.02
Wine 13 1.92 1.89 0.89 1.93 0.88 0.88
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The reason why the algorithm works well is that starting from
an artificial structure, we have an optimal clustering. Then, when
making the gradual inverse transform, we do not have to optimize
the structure of clustering (it is already optimal). It is enough
that the data points move one by one from clusters to others by
k-means operations. The operation is the same as in k-means, but
the clustering of the starting point is already optimal. If the
structure remains optimal during the transformation, an optimal
result will be obtained. Bare k-means cannot do this except only in
special cases, that is usually is tried to compensate by using
Repeated k-means or k-meansþþ .

Table 5 (continued )

Dataset Dimensionality K-means Repeated k-means K-meansþþ K-meansn (proposed) Fast GKM Best knownn

Breast 9 3.13 3.13 3.20 3.13 3.13 3.13
Yeast 8 0.0041 0.0038 0.061 0.041 0.0039 0.0038
wdbc 31 2.62 2.61 1.28 2.62 2.62 1.28
Glass 9 0.16 0.15 0.28 0.22 0.16 0.15

Best 1 4 1 5 10 19

Table 6
MSE for k-meansn as postprocessing, having different clustering algorithms as preprocessing. Averages over 20 runs, 20 steps are used. Most significant digits are shown.

Dataset Repeated k-means K-meansn

K-means K-meansþþ Random swap, 20 swap trials Random swap, 100 swap trials

s1 1.07 0.99 1.08 0.99 0.89
s2 1.38 1.53 1.51 1.46 1.33
s3 1.71 1.80 1.76 1.77 1.69
s4 1.57 1.58 1.59 1.59 1.57
a1 2.32 2.54 2.37 2.31 2.02

DIM32 159 79.4 11.68 44.8 7.10
DIM64 181 59.4 3.31 48.5 9.35
DIM128 276 44.7 2.10 67.9 2.10
DIM256 296 107.1 0.92 16.2 16.5

Bridge 166 164 164 164 164
Missa 5.28 5.20 5.19 5.19 5.18
House 9.63 9.43 9.42 9.42 9.30

Thyroid 6.88 6.95 6.93 6.89 6.88
Iris 2.33 2.33 2.33 2.38 2.33
Wine 1.89 1.93 1.93 1.90 1.89
Breast 3.13 3.13 3.13 3.13 3.13
Yeast 0.0038 0.042 0.040 0.039 0.0038
wdbc 2.61 2.62 2.62 2.62 2.62
Glass 0.15 0.21 0.21 0.21 0.15

Best 8 3 6 2 16

Table 8
Occurrences of wrong clusters obtained by the k-means, k-meansþþ and
proposed algorithms in 50 runs for s2.

Incorrect clusters K-means
(%)

k-meansþþ
(%)

Proposed
(line structure) (%)

0 14 28 36
1 38 60 64
2 34 12 0
3 10 0 0
4 2 0 0

Total 100 100 100

Table 7
Adjusted Rand, Normalized Van Dongen and NMI indices for s-sets. Line structure
(Rand), K-meansþþ initialization structure (NVD and NMI), 10 steps, mean of 30
runs (Rand) and mean of 10 runs (NVD and NMI). Best value for Rand is 1, for NVD
it is 0 and for NMI it is 1.

Adjusted rand

Dataset k-means Proposed GKM

s1 0.85 0.98 1.00
s2 0.86 0.93 0.99
s3 0.83 0.95 0.96
s4 0.83 0.87 0.94

NMI

Dataset k-means Proposed GKM

s1 0.94 0.98 1.00
s2 0.96 0.97 0.99
s3 0.91 0.93 0.97
s4 0.91 0.93 0.95

Normalized Van Dongen

Dataset k-means GKM Proposed

s1 0.08 0.03 0.001
s2 0.04 0.04 0.004
s3 0.09 0.06 0.02
s4 0.09 0.04 0.03
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4. Conclusions

We have proposed an alternative approach for clustering by
fitting the data to the clustering model and not vice versa. Instead
of solving the clustering problem as such, the problem is to find a
proper inverse transform from the artificial data with optimal
cluster allocation, to the original data. Although it cannot solve all
pathological cases, we have demonstrated that the algorithm, with
a relatively simple design, can solve the problem in many cases.

The method is designed as a clustering algorithm where the
initial structure is not important. We only considered simple
structures, of which the initialization of k-meansþþ is most
complicated (note that entire k-meansþþ is not applied). How-
ever, it could also be considered as a post-processing algorithm
similarly as k-means. But then it is not limited to be post-
processing to k-meansþþ but for any other algorithm.

Future work is how to optimize the number of steps in order to
avoid extensive computation but still retain the quality. Adding
randomness to the process could also be used to avoid the
pathological cases. The optimality of these variants and their
efficiency in comparison to other algorithms have also theoretical
interest.
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