

How much k-means can be improved by using better initialization and repeats?

Pasi Fränti and Sami Sieranoja

11.4.2019

P. Fränti and S. Sieranoja, "How much k-means can be improved by using better initialization and repeats?", *Pattern Recognition*, 2019.

Introduction

Goal of k-means

Input N points:

 $X = \{x_1, x_2, \dots, x_N\}$

•••

Output partition and *k* centroids:

 $P = \{ \rho_1, \rho_2, \dots, \rho_k \}$ $C = \{ c_1, c_2, \dots, c_k \}$

Objective function:

$$SSE = \sum_{i=1}^{N} \|x_i - c_j\|^2$$

SSE = sum-of-squared errors

Goal of k-means

Input N points:

 $X = \{x_1, x_2, ..., x_N\}$

Output partition and k centroids:

$$P = \{ p_1, p_2, \dots, p_k \}$$
$$C = \{ c_1, c_2, \dots, c_k \}$$

Objective function:

$$SSE = \sum_{i=1}^{N} \|x_i - c_j\|^2$$

Assumptions:

- SSE is suitable
- k is known

Using SSE objective function

K-means algorithm

http://cs.uef.fi/sipu/clustering/animator/

- X = Data set
- C = Cluster centroids
- P = Partition

```
K-Means(X, C) \rightarrow (C, P)
REPEAT
  C_{prev} \leftarrow C;
   FOR i=1 TO N DO
                                                    Assignment step
        p_i \leftarrow FindNearest(x_i, C);
   FOR j=1 TO k DO
                                                    Centroid step
        c_i \leftarrow Average of x_i \forall p_i = j;
UNTIL C = C_{prev}
```

K-means optimization steps

Assignment step:

$$P_{i} = \arg\min_{1 \le j \le k} \left\| x_{i} - c_{j} \right\|^{2} \qquad \forall i \in [1, N]$$

Centroid step:

Examples

Final result

25 iterations

Problems of k-means

Distance of clusters

Data and methodology

Clustering basic benchmark

Fränti and Sieranoja K-means properties on six clustering benchmark datasets *Applied Intelligence*, 2018.

Dataset	Varying	Size	Dimensions	Clusters	Per cluster
Α	Number of clusters	3000-7500	2	20-50	150
S	Overlap	5000	2	15	333
Dim	Dimensions	1024	32-1024	16	64
G2	Dimensions + overlap	2048	2-1024	2	1024
Birch	Structure	100,000	2	100	1000
Unbalance	Balance	6500	2	8	100-2000

Success rate How often CI=0?

Properties of k-means

Cluster overlap Definition

Dependency on overlap ^s datasets

Success rates and CI-values:

overlap increases

CI=1.8 CI=1.4 CI=1.3 CI=0.9

Why overlap helps?

Linear dependency on clusters (k) Birch2 dataset

Dependency on dimensions DIM datasets

Success rate: 0%

Lack of overlap is the cause! G2 datasets

Effect of unbalance

Unbalabce datasets

Summary of k-means properties

1. Overlap

2. Number of clusters

```
Linear dependency
```

4. Unbalance of cluster sizes Bad!

How to improve?

Repeated k-means (RKM)

How to initialize?

Some obvious heuristics:

- Furthest point
- Sorting
- Density
- Projection

Clear state-of-the-art is missing:

- No single technique outperforms others in all cases.
- Initialization not significantly easier than the clustering itself.
- K-means can be used as fine-tuner with almost anything.

Another desperate effort:

• Repeat it LOTS OF times

Initialization techniques Criteria

- 1. Simple to implement
- 2. Lower (or equal) time complexity than k-means
- 3. No additional parameters
- 4. Include randomness

Requirements for initialization

1. Simple to implement

- Random centroids has 2 functions + 26 lines of code
- Repeated k-means 5 functions + 162 lines of code
- Simpler than k-means itself

2. Faster than k-means

- K-means real-time (<1 s) up to N≈10,000
- O(IkN) $\approx 25 \cdot N^{1.5}$ --- assuming I ≈ 25 and k= \sqrt{N}
- Must be faster than O(N²)

Simplicity of algorithms

	Α	В	С
Random	0	2	26
Rep. K-Means	1	5	162
Random swap	1	7	226
Agglomerative	0	12	317
SPLIT	0	22	947
GA	2	21	573
FCM	2	11	295
GMM	2	44	1111

- A. Parameters
- **B.** Functions
- C. Lines of code

Kinnunen, Sidoroff, Tuononen and Fränti,

"Comparison of clustering methods: a case study of text-independent speaker modeling" *Pattern Recognition Letters*, 2011.

Alternative: A better algorithm

Random Swap (RS)

Random Swap(X) \rightarrow C, P

 $C \leftarrow$ Select random representatives(X); $P \leftarrow$ Optimal partition(X, C);

REPEAT T times

```
(C^{new}, j) \leftarrow \text{Random swap}(X, C);
P^{new} \leftarrow \text{Local repartition}(X, C^{new}, P, j);
C^{new}, P^{new} \leftarrow Kmeans(X, C^{new}, P^{new});
\text{IF } f(C^{new}, P^{new}) < f(C, P) \text{ THEN}
(C, P) \leftarrow C^{new}, P^{new};
\text{RETURN } (C, P);
C = 0
```

P. Fränti, "Efficiency of random swap clustering", *Journal of Big Data*, 2018

Genetic Algorithm (GA)

GeneticAlgorithm(X) \rightarrow (C, P) FOR *i*←1 TO Z DO $C^{i} \leftarrow \text{RandomCodebook}(X);$ $P^{i} \leftarrow \text{OptimalPartition}(X, C^{i});$ SortSolutions(C.P): REPEAT $\{C,P\} \leftarrow CreateNewSolutions(\{C,P\});$ SortSolutions(C,P); UNTIL no improvement; CreateNewSolutions({C, P}) \rightarrow { $C^{\text{new}}, P^{\text{new}}$ } $C^{\text{new-1}}$, $P^{\text{new-1}} \leftarrow C^1$, P^1 ; FOR *i*←2 TO Z DO $(a,b) \leftarrow \text{SelectNextPair};$ $C^{\text{new-i}}, P^{\text{new-l}} \leftarrow \text{Cross}(C^{a}, P^{a}, C^{b}, P^{b});$ IterateK-Means(C^{new-i}, P^{new-i}); $Cross(C^1, P^1, C^2, P^2) \rightarrow (C^{new}, P^{new})$ $C^{\text{new}} \leftarrow \text{CombineCentroids}(C^1, C^2);$ $P^{\text{new}} \leftarrow \text{CombinePartitions}(P^1, P^2);$ $C^{\text{new}} \leftarrow \text{UpdateCentroids}(C^{\text{new}}, P^{\text{new}});$ RemoveEmptyClusters($C^{\text{new}}, P^{\text{new}}$); $IS(C^{new}, P^{new});$

CombineCentroids(C^1, C^2) $\rightarrow C^{\text{new}}$ $C^{\text{new}} \leftarrow C^1 \cup C^2$

```
CombinePartitions(C^{\text{new}}, P^1, P^2) \rightarrow P^{\text{new}}

FOR i\leftarrow1 TO N DO

IF ||x_i - c_{p_i}||^2 \le ||x_i - c_{p_i^2}||^2 THEN

p_i^{new} \leftarrow p_i^1

ELSE

p_i^{new} \leftarrow p_i^2

END-FOR

UpdateCentroids(C^1, C^2) \rightarrow C^{\text{new}}

FOR j\leftarrow1 TO |C^{\text{new}}| DO

c_j^{new} \leftarrow \text{CalculateCentroid}(P^{\text{new}}, j);
```

CI = 0

P. Fränti, "Genetic algorithm with deterministic crossover for vector quantization", *Pattern Recognition Letters*, 2000.

Initialization techniques

Techniques considered

Technique	Complexity	Time	Random- ized	Parameters
Random partitions	O(<i>N</i>)	10 ms	Yes	-
Random centroids	O(<i>N</i>)	13 ms	Yes	-
Maxmin	O(<i>kN</i>)	16 ms	Modified	-
kmeans++	O(<i>kN</i>)	19 ms	Yes	-
Bradley	O(<i>kN</i> + <i>Rk</i> ²)	41 ms	Yes	<i>R</i> =10, <i>s</i> =10%
Sorting heuristic	O(NlogN)	13 ms	Modified	-
Projection-based	O(NlogN)	14 ms	Yes	-
Luxburg	O(<i>kN</i> log <i>k</i>)	29 ms	Yes	-
Split	O(NlogN)	67 ms	Yes	<i>k</i> =2

Random centroids

Random partitions

Random partitions

Furthest points (maxmin)

Furthest points (maxmin)

Projection-based initialization

Furthest point projection

Projection example (1)

Good projection! Birch2

Projection example (2) Bad projection! Birch1

Projection example (3)

Bad projection! Unbalance

More complex projections

I. Cleju, P. Fränti, X. Wu, "Clustering based on principal curve", *Scandinavian Conf. on Image Analysis*, LNCS vol. 3540, June 2005.

More complex projections

I. Cleju, P. Fränti, X. Wu, "Clustering based on principal curve", *Scandinavian Conf. on Image Analysis*, LNCS vol. 3540, June 2005.

Travelling salesman problem!

Sorting heuristic

Density-based heuristics Luxburg

Luxburg's technique:

- Selects k log(k) preliminary clusters using k-means
- Eliminate the smallest.
- Furthest point heuristic to select *k* centroids.

Splitting algorithm

Results

Success rates K-means (without repeats)

Average success rate

Method	s1	s2	s3	s4	a1	a2	a3	unb	b1	b2	dim32	Aver.	Fails
Rand-P	0%	47%	5%	63%	0%	0%	0%	0%	0%	0%	0%	10%	8
Rand-C	3%	11%	12%	26%	1%	0%	0%	0%	0%	0%	0%	5%	6
Maxmin	37%	16%	36%	9%	15%	1%	0%	22%	0%	0%	100%	22%	3
kmeans++	21%	24%	18%	30%	7%	0%	0%	51%	0%	0%	88%	22%	4
Bradley	21%	46%	49%	64%	7%	0%	0%	0%	0%	0%	2%	17%	5
Sorting	12%	20%	22%	36%	10%	0%	0%	0%	0%	12%	15%	12%	4
Projection	16%	29%	30%	42%	18%	0%	0%	0%	0%	92%	34%	24%	4
Luxburg	52%	60%	45%	61%	45%	33%	31%	0%	0%	17%	95%	40%	2
Split	78%	75%	62%	64%	51%	17%	5%	0%	0%	10%	99%	42%	2

Most problems: a2, a3, unbalance, Birch1, Birch2 No. of datasets never solved

Cluster overlap High cluster overlap

Cluster overlap

Number of clusters Birch2 subsets

Dimensions

Unbalance

Success rates Repeated k-means

Furthest point approaches solve unbalance $\$

Average success rate

							\backslash						
Method	s1	s2	s3	s4	a1	a2	a3	unb	b1	b2	dim32	Aver.	Fails
Rand-P	0%	100%	100%	100%	0%	0%	0%	0%	0%	0%	0%	27%	8
Rand-C	96%	100%	100%	100%	56%	2%	0%	0%	0%	0%	2%	41%	4
Maxmin	100%	100%	100%	100%	100%	5 8%	36%	100%	0%	0%	100%	72%	2
kmeans++	100%	100%	100%	100%	98%	20%	0%	100%	0%	0%	100%	65%	3
Bradley	100%	100%	100%	100%	100%	4%	4%	4%	0%	0%	84%	54%	2
Sorting	100%	100%	100%	100%	100%	24%	0%	0%	2%	100%	100%	66%	2
Projection	100%	100%	100%	100%	100%	18%	0%	0%	0%	100%	100%	65%	3
Luxburg	100%	100%	100%	100%	100%	100%	100%	0%	46%	100%	100%	86%	1
Split	100%	100%	100%	100%	100%	100%	100%	0%	36%	100%	100%	85%	1

Still problems: Birch1, Birch2 No. of datasets never solved

How many repeats needed?

Initialization	CI-value											
Infianzation	6	5	4	3	2	1	0					
Rand-P	-	-	-	-	-	-	-					
Rand-C	2	4	11	54	428	11111	-					
Maxmin				1	3	14	216					
Kmeans++		1	2	3	14	138	8696					
Bradley		1	2	8	58	1058	33333					
Sorting	1	2	4	13	73	1143	-					
Projection	1	2	3	9	46	581	18182					
Luxburg						1	3					
Split					1	2	9					

How many repeats needed? Unbalance

Initialization	CI-value											
Infianzation	6	5	4	3	2	1	0					
Rand-P			1	97	8333	-	-					
Rand-C			1	16	69	1695	100k					
Maxmin						1	4					
Kmeans++						1	2					
Bradley			1	3	6	70	1471					
Sorting			1	-	-	-	-					
Projection			1	935	16667	-	-					
Luxburg			1	59	16667	-	-					
Split			1	9524	-	-	-					

Summary of results CI-values

Method	s 1	s2	s3	s4	a1	a2	a3	unb	b1	b2	dim32	KM	RKM
Rand-P	1.4	0.0	0.0	0.0	4.9	8.8	16.7	3.6	8.5	74.0	2.6	12.4	11.0
Rand-C	0.1	0.0	0.0	0.0	0.3	1.8	2.9	2.9	2.8	10.9	1.1	4.5	2.1
Maxmin	0.0	0.0	0.0	0.0	0.0	0.5	0.6	0.0	2.8	3.9	0.0	2.2	0.7
kmeans++	0.0	0.0	0.0	0.0	0.0	0.8	1.6	0.0	1.7	3.4	0.0	2.3	0.7
Bradley	0.0	0.0	0.0	0.0	0.0	0.9	2.1	1.2	2.0	8.5	0.0	3.1	1.3
Sorting	0.0	0.0	0.0	0.0	0.0	0.8	2.2	4.0	2.2	0.0	0.0	2.7	0.8
Projection	0.0	0.0	0.0	0.0	0.0	0.9	2.0	3.9	1.9	0.0	0.0	2.2	0.4
Luxburg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.7	0.6	0.0	0.0	1.2	0.4
Split	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.6	0.0	0.0	1.2	0.4

CI=4.5 15%

CI=2.0 6%

CI=2.1 6%

CI = 0.7

- K-means:
- Repeated K-means:
- Maxmin initialization:
- Both:
- Most application:
- Accuracy vital:

Good enough! Find better method! (random swap)

1%

• Cluster overlap most important factor

Effect of different factors

Method	Overlap	Clusters	Dimension	Unbalance
Rand-P	No effect	Constant	No effect	Very bad
Rand-C	No effect	Constant	No effect	Very bad
Maxmin	Bad	Constant	No effect	A bit worse
kmeans++	A bit worse	Constant	No effect	A bit worse
Bradley	Good	Constant	No effect	Bad
Sorting	A bit worse	Constant	No effect	Very bad
Projection	A bit worse	Constant	No effect	Very bad
Luxburg	A bit worse	Minor effect	No effect	Very bad
Split	A bit worse	Constant	No effect	Very bad
KM iterations	Good	Constant	No effect	No effect

Conclusions

How effective:

• Repeats + Maxmin reduces error $4.5 \rightarrow 0.7$

Is it enough:

- For most applications: **YES**
- If accuracy important: NO

Important factors:

- Cluster overlap critical for k-means
- Dimensions does not matter

Random swap

Random swap (RS)

How many repeats?

P. Fränti, "Efficiency of random swap clustering", Journal of Big Data, 2018

The end