
How much k-means can be 
improved by using better 
initialization and repeats?

Pasi Fränti and Sami Sieranoja
11.4.2019

P. Fränti and S. Sieranoja, ”How much k-means can be improved 
by using better initialization and repeats?", Pattern Recognition, 2019.



Introduction



Goal of k-means

Input N points:

X={x1 , x2 , …, xN }

C={c1 , c2 , …, ck }

P={p1 , p2 , …, pk }
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Objective function:

Output partition and k centroids:

SSE = sum-of-squared errors
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Input N points:
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Objective function:

Output partition and k centroids:

Assumptions:
• SSE is suitable
• k is known



Non-spherical
5 clusters

Different 
variance

2 clusters

Different density
8 clusters

Using SSE objective function



K-means algorithm
http://cs.uef.fi/sipu/clustering/animator/
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K-means optimization steps
Assignment step:

Centroid step:

Before Before AfterAfter



Examples



Iterate by k-means
1st iteration



Iterate by k-means
2nd iteration



Iterate by k-means
3rd iteration



Iterate by k-means
16th iteration



Iterate by k-means
17th iteration



Iterate by k-means
18th iteration



Iterate by k-means
19th iteration



Final result
25 iterations



Problems of k-means 
Distance of clusters

Cannot move centroids 
between clusters 
far away



Data and methodology



Clustering basic benchmark
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Fränti and Sieranoja 
K-means properties on six clustering benchmark datasets 

Applied Intelligence, 2018.
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P. Fränti, M. Rezaei and Q. Zhao
"Centroid index: cluster level similarity measure”
Pattern Recognition, 47 (9), 3034-3045, September 2014. 

CI = Centroid index:

Centroid index 
Requires ground truth



Missing centroids

Too many centroids

CI=4
Centroid index example



Success rate 
How often CI=0?

CI=1

CI=0 CI=2 CI=2

CI=1CI=2

17%



Properties of k-means



d1 = distance to nearest centroid
d2 = distance to nearest in other cluster
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Cluster overlap 
Definition



Dependency on overlap 
S datasets

S1 S2 S3 S4

3% 11% 12% 26%

overlap increases

CI=1.8

Success rates and CI-values:

CI=1.4 CI=1.3 CI=0.9



Overlap = 7%
13 iterations

Overlap = 22%
90 iterations

Why overlap helps?



Linear dependency on clusters (k) 
Birch2 dataset
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Dependency on dimensions 
DIM datasets

Dimensions increases

32 25664 512 1024128

3.6

0%Success rate:

CI: 3.5 3.8 3.8 3.9 3.7



Overlap

Success

Lack of overlap is the cause! 
G2 datasets

0.91
Correlation:

Dimensions increases

O
verlap increases



K-means tend to put 
too many clusters here …

560

2000

1011

500

… and too few here

492

458
490 989

Effect of unbalance 
Unbalabce datasets

Success:

0% 3.9
Average CI:

Problem originates from
the random initialization.



Summary of k-means properties

2. Number of clusters 4. Unbalance of cluster sizes

1. Overlap 3. Dimensionality

No direct effectGood!

Linear dependency Bad!



How to improve?



Repeated k-means (RKM)

K-means

Initialize
Repeat

100 times

Must include
randomness



Some obvious heuristics:
• Furthest point
• Sorting
• Density
• Projection

Clear state-of-the-art is missing:
• No single technique outperforms others in all cases. 
• Initialization not significantly easier than the clustering itself.
• K-means can be used as fine-tuner with almost anything.

Another desperate effort:
• Repeat it LOTS OF times

How to initialize?



Initialization techniques 
Criteria

1. Simple to implement

2. Lower (or equal) time complexity than k-means

3. No additional parameters

4. Include randomness



1. Simple to implement
• Random centroids has 2 functions + 26 lines of code
• Repeated k-means 5 functions + 162 lines of code
• Simpler than k-means itself

2. Faster than k-means
• K-means real-time (<1 s) up to N10,000
• O(IkN) 

 
25N1.5 --- assuming I25 and k=N

• Must be faster than O(N2)

Requirements for initialization



Simplicity of algorithms

A. Parameters
B. Functions
C. Lines of code 

Kinnunen, Sidoroff, Tuononen and Fränti, 
"Comparison of clustering methods: a case study of text-independent speaker modeling" 
Pattern Recognition Letters, 2011. 



Alternative: 
A better algorithm

Random Swap(X)  C, P 

C  Select random representatives(X); 
P  Optimal partition(X, C); 
REPEAT T times 

(Cnew,j)  Random swap(X, C); 
Pnew  Local repartition(X, Cnew, P, j); 
Cnew, Pnew  Kmeans(X, Cnew, Pnew); 
IF f(Cnew, Pnew) < f(C, P) THEN 

(C, P)  Cnew, Pnew; 
RETURN (C, P); 
 

GeneticAlgorithm(X)  (C, P) 
FOR i1 TO Z DO 

Ci  RandomCodebook(X); 
Pi  OptimalPartition(X, Ci); 

SortSolutions(C,P); 

REPEAT 
{C,P}  CreateNewSolutions( {C,P} ); 
SortSolutions(C,P); 

UNTIL no improvement; 

CreateNewSolutions({C, P})  {Cnew, Pnew } 

Cnew-1, Pnew-1  C1, P1; 
FOR i2 TO Z DO 

(a,b)  SelectNextPair; 
Cnew-i, Pnew-I   Cross(Ca, Pa, Cb, Pb); 
IterateK-Means(Cnew-i, Pnew-i); 

Cross(C1, P1, C2, P2)  (Cnew, Pnew) 
Cnew  CombineCentroids(C1, C2); 
Pnew  CombinePartitions(P1, P2); 
Cnew  UpdateCentroids(Cnew, Pnew); 
RemoveEmptyClusters(Cnew, Pnew); 
IS(Cnew, Pnew); 

CombineCentroids(C1, C2)  Cnew 
Cnew  C1  C2 

CombinePartitions(Cnew, P1, P2)  Pnew 
FOR i1 TO N DO 

IF x c x ci p i pi i
  1 2

2 2
 THEN  

p pi
new

i 1  
ELSE 

p pi
new

i 2  
END-FOR 

UpdateCentroids(C1, C2)  Cnew 
FOR j1 TO |Cnew| DO 

c j
new   CalculateCentroid(Pnew, j ); 

 

Genetic Algorithm (GA)

Random Swap (RS)

P. Fränti, "Genetic algorithm with deterministic crossover 
for vector quantization", Pattern Recognition Letters, 2000. 

CI = 0

CI = 0

P. Fränti, "Efficiency of random swap 
clustering", Journal of Big Data, 2018 



Initialization techniques



Techniques considered



Random centroids
Rand-C

INIT

Rand-C 
FINAL



Random partitions

Initial FinalSteinley



Random partitions

Initial FinalSteinley



Furthest points (maxmin)
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Furthest points (maxmin)



Most common projection axis:
• Diagonal
• Principal axis (PCA)
• Principle curves

Initialization:
• Uniform partition along axis

Used in divisive clustering:
• Iterative split

Projection-based initialization

PCA = O(DN)-O(D2N)



Furthest point projection

Initial clustering After k‐means

Furthest point Projection axis

p2

p1

Projected points



Good projection!

Birch2

Projection example (1)



Projection example (2)

Birch1
Bad projection!



Unbalance
Bad projection!
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More complex projections
I. Cleju, P. Fränti, X. Wu, "Clustering based on principal curve", 
Scandinavian Conf. on Image Analysis, LNCS vol. 3540, June 2005. 



More complex projections
I. Cleju, P. Fränti, X. Wu, "Clustering based on principal curve", 
Scandinavian Conf. on Image Analysis, LNCS vol. 3540, June 2005. 

Travelling salesman problem!
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Sorting heuristic



Density-based heuristics 
Luxburg

Luxburg’s technique:
• Selects k log(k) 

preliminary clusters 
using k-means 

• Eliminate the smallest.
• Furthest point heuristic 

to select k centroids.

Initial solution

After k-means



Splitting algorithm
Two random points

Split K-means

• Select biggest cluster
• Select two random points
• Re-allocate points
• Tune by k-means locally



Results



Success rates 
K-means (without repeats)

No. of datasets 
never solved

Average
success rate

Most problems:
a2, a3, unbalance, Birch1, Birch2
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Rand-C
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Success rates 
Repeated k-means

No. of datasets 
never solved

Average
success rate

Still problems:
Birch1, Birch2

Furthest point approaches 
solve unbalance



How many repeats needed?
A3



How many repeats needed?
Unbalance



Summary of results 
CI-values

• K-means: CI=4.5     15%
• Repeated K-means: CI=2.0       6%
• Maxmin initialization: CI=2.1       6%
• Both: CI=0.7 1%

• Most application: Good enough!
• Accuracy vital: Find better method! (random swap)

• Cluster overlap most important factor



Effect of different factors



Conclusions

How effective: 
• Repeats + Maxmin reduces error 4.5  0.7

Is it enough:
• For most applications: YES
• If accuracy important: NO

Important factors:
• Cluster overlap critical for k-means
• Dimensions does not matter



Random swap



Random swap (RS)

K-means

Initialize

Repeat
5000 times

Swap

Only 2 iterations

P. Fränti, "Efficiency of random swap 
clustering", Journal of Big Data, 2018 CI=0
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0

2

4

6

8

10

0 1 10 100 1000 10000
Time

M
SE

Random 
Swap

Repeated k-means
(2500 repeats)

5

10

20

0

18
K-means

(single)

(845) (2500)

9
(41)

(2067)

(64)

(34)

(1)

How many repeats?

P. Fränti, "Efficiency of random swap clustering", Journal of Big Data, 2018 



The end
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