How much k-means can be improved by using better initialization and repeats?

Pasi Fränti and Sami Sieranoja

11.4.2019

P. Fränti and S. Sieranoja, "How much k-means can be improved by using better initialization and repeats?, Pattern Recognition, 2019.
Introduction
Goal of k-means

Input N points:

$$X = \{x_1, x_2, \ldots, x_N\}$$

Output partition and k centroids:

$$P = \{p_1, p_2, \ldots, p_k\}$$

$$C = \{c_1, c_2, \ldots, c_k\}$$

Objective function:

$$SSE = \sum_{i=1}^{N} \left\| x_i - c_j \right\|^2$$

$SSE = \text{sum-of-squared errors}$
Goal of k-means

Input N points:

$X = \{ x_1, x_2, \ldots, x_N \}$

Output partition and k centroids:

$P = \{ \rho_1, \rho_2, \ldots, \rho_k \}$

$C = \{ c_1, c_2, \ldots, c_k \}$

Objective function:

$$SSE = \sum_{i=1}^{N} \left\| x_i - c_j \right\|^2$$

Assumptions:

- SSE is suitable
- k is known
Using SSE objective function

Non-spherical
5 clusters

Different variance
2 clusters

Different density
8 clusters
K-means algorithm

http://cs.uef.fi/sipu/clustering/animator/

X = Data set
C = Cluster centroids
P = Partition

K-Means(X, C) → (C, P)

REPEAT

\[C_{\text{prev}} \leftarrow C; \]

FOR \(i = 1 \) TO \(N \) DO

\[p_i \leftarrow \text{FindNearest}(x_i, C); \]

FOR \(j = 1 \) TO \(k \) DO

\[c_j \leftarrow \text{Average of } x_i \quad \forall \quad p_i = j; \]

UNTIL \(C = C_{\text{prev}} \)
K-means optimization steps

Assignment step:

\[P_i = \arg \min_{1 \leq j \leq k} \| x_i - c_j \| ^2 \quad \forall i \in [1, N] \]

Centroid step:

\[c_j = \frac{\sum_{P_i = j} x_i}{\sum_{P_i = j} 1} \quad \forall j \in [1, k] \]
Examples
Iterate by k-means

1st iteration
Iterate by k-means

2nd iteration
Iterate by k-means

3rd iteration
Iterate by k-means

16th iteration
Iterate by k-means

17th iteration
Iterate by k-means

18th iteration
Iterate by k-means

19th iteration
Final result

25 iterations
Problems of k-means

Distance of clusters

Cannot move centroids between clusters far away
Data and methodology
Clustering basic benchmark

Fränti and Sieranoja
K-means properties on six clustering benchmark datasets
Applied Intelligence, 2018.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Varying</th>
<th>Size</th>
<th>Dimensions</th>
<th>Clusters</th>
<th>Per cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Number of clusters</td>
<td>3000-7500</td>
<td>2</td>
<td>20-50</td>
<td>150</td>
</tr>
<tr>
<td>S</td>
<td>Overlap</td>
<td>5000</td>
<td>2</td>
<td>15</td>
<td>333</td>
</tr>
<tr>
<td>Dim</td>
<td>Dimensions</td>
<td>1024</td>
<td>32-1024</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>G2</td>
<td>Dimensions + overlap</td>
<td>2048</td>
<td>2-1024</td>
<td>2</td>
<td>1024</td>
</tr>
<tr>
<td>Birch</td>
<td>Structure</td>
<td>100,000</td>
<td>2</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Unbalance</td>
<td>Balance</td>
<td>6500</td>
<td>2</td>
<td>8</td>
<td>100-2000</td>
</tr>
</tbody>
</table>

G2-2-30

600,500

500,500
Centroid index
Requires ground truth

\[\text{CI} = 4 \]

- 15 prototypes (pigeons)
- 15 real clusters (pigeon holes)

\textbf{CI = Centroid index:}

P. Fränti, M. Rezaei and Q. Zhao
“Centroid index: cluster level similarity measure”
Pattern Recognition, 47 (9), 3034-3045, September 2014.
Centroid index example

CI = 4

Missing centroids

Too many centroids
Success rate
How often CI = 0?

17%
Properties of k-means
Cluster overlap

Definition

\[
\text{overlap} = \frac{1}{N} \cdot \sum \text{ov}(d_1, d_2)
\]

\[
\text{ov}(d_1, d_2) = \begin{cases}
1, & d_1 > d_2 \\
0, & d_1 \leq d_2
\end{cases}
\]

d_1 = \text{distance to nearest centroid}

d_2 = \text{distance to nearest in other cluster}

Points = 2048
Evidence = 332
Overlap = 332 / 2048

16 %
Dependency on overlap

Success rates and CI-values:

- \(S_1 \): 3% (CI = 1.8)
- \(S_2 \): 11% (CI = 1.4)
- \(S_3 \): 12% (CI = 1.3)
- \(S_4 \): 26% (CI = 0.9)
Why overlap helps?

Overlap = 7%
13 iterations

Overlap = 22%
90 iterations
Linear dependency on clusters \((k)\)

Birch2 dataset

![Graph showing relative CI-value vs. number of clusters (k)]

- **K-means**
- **Repeated k-means**
- **Birch2 subsets**

16%
Dependency on dimensions

DIM datasets

Dimensions increase:

- 32
- 64
- 128
- 256
- 512
- 1024

CI:

- 3.6
- 3.5
- 3.8
- 3.8
- 3.9
- 3.7

Success rate: 0%
Lack of overlap is the cause!

G2 datasets

<table>
<thead>
<tr>
<th>σ \ dim</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>26%</td>
<td>19%</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>32%</td>
<td>31%</td>
<td>13%</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>39%</td>
<td>43%</td>
<td>27%</td>
<td>4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>43%</td>
<td>50%</td>
<td>40%</td>
<td>11%</td>
<td>0.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>46%</td>
<td>58%</td>
<td>50%</td>
<td>20%</td>
<td>0.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>47%</td>
<td>61%</td>
<td>60%</td>
<td>31%</td>
<td>2.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>47%</td>
<td>66%</td>
<td>64%</td>
<td>39%</td>
<td>4.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>47%</td>
<td>67%</td>
<td>58%</td>
<td>41%</td>
<td>4.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimensions increases

- **Overlap**
- **Success**

Correlation: **0.91**
Effect of unbalance

Unbalance datasets

K-means tend to put too many clusters here ...

... and too few here

Success: 0%

Average CI: 3.9

Problem originates from the random initialization.
Summary of k-means properties

1. Overlap
 - Good!

2. Number of clusters
 - Linear dependency

3. Dimensionality
 - No direct effect

4. Unbalance of cluster sizes
 - Bad!
How to improve?
Repeated k-means (RKM)

Repeat 100 times

Initialize

K-means

Must include randomness
How to initialize?

Some obvious heuristics:
• Furthest point
• Sorting
• Density
• Projection

Clear state-of-the-art is missing:
• No single technique outperforms others in all cases.
• Initialization not significantly easier than the clustering itself.
• K-means can be used as fine-tuner with almost anything.

Another desperate effort:
• Repeat it **LOTS OF** times
Initialization techniques

Criteria

1. Simple to implement
2. Lower (or equal) time complexity than k-means
3. No additional parameters
4. Include randomness
Requirements for initialization

1. **Simple** to implement
 - Random centroids has 2 functions + **26 lines** of code
 - Repeated k-means 5 functions + **162 lines** of code
 - Simpler than k-means itself

2. **Faster** than k-means
 - K-means real-time (<**1 s**) up to \(N \approx 10,000 \)
 - \(O(IkN) \approx 25 \cdot N^{1.5} \) --- assuming \(I \approx 25 \) and \(k = \sqrt{N} \)
 - Must be faster than \(O(N^2) \)
Simplicity of algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>Rep. K-Means</td>
<td>1</td>
<td>5</td>
<td>162</td>
</tr>
<tr>
<td>Random swap</td>
<td>1</td>
<td>7</td>
<td>226</td>
</tr>
<tr>
<td>Agglomerative</td>
<td>0</td>
<td>12</td>
<td>317</td>
</tr>
<tr>
<td>SPLIT</td>
<td>0</td>
<td>22</td>
<td>947</td>
</tr>
<tr>
<td>GA</td>
<td>2</td>
<td>21</td>
<td>573</td>
</tr>
<tr>
<td>FCM</td>
<td>2</td>
<td>11</td>
<td>295</td>
</tr>
<tr>
<td>GMM</td>
<td>2</td>
<td>44</td>
<td>1111</td>
</tr>
</tbody>
</table>

Alternative: A better algorithm

Random Swap (RS)

Random Swap(X) $\rightarrow C, P$

$C \leftarrow$ Select random representatives(X);
$P \leftarrow$ Optimal partition(X, C);
REPEAT T times

(C^new, j) \leftarrow Random swap(X, C);
$P^\text{new} \leftarrow$ Local repartition(X, C^new, P, j);
$C^\text{new}, P^\text{new} \leftarrow$ Kmeans($X, C^\text{new}, P^\text{new}$);
IF $f(C^\text{new}, P^\text{new}) < f(C, P)$ THEN
$(C, P) \leftarrow C^\text{new}, P^\text{new}$,
RETURN (C, P);

P. Fränti, "Efficiency of random swap clustering", Journal of Big Data, 2018

Genetic Algorithm (GA)

GeneticAlgorithm(X) $\rightarrow (C, P)$
FOR $i \leftarrow 1$ TO Z
$C_i \leftarrow$ RandomCodebook(X);
$P_i \leftarrow$ OptimalPartition(X, C_i);
SortSolutions(C, P);
REPEAT
$\{C, P\} \leftarrow$ CreateNewSolutions($\{C, P\}$);
SortSolutions(C, P);
UNTIL no improvement;

CreateNewSolutions($\{C, P\}$) $\rightarrow \{C^\text{new}, P^\text{new}\}$

$C^\text{new}^{-1}, P^\text{new}^{-1} \leftarrow C^1, P^1$;
FOR $i \leftarrow 2$ TO Z
$(a, b) \leftarrow$ SelectNextPair;
$C^\text{new}^{-i}, P^\text{new}^{-i} \leftarrow$ Cross(C^a, P^a, C^b, P^b);
IterateK-Means($C^\text{new}^{-i}, P^\text{new}^{-i}$);
END-FOR

Cross(C^1, P^1, C^2, P^2) $\rightarrow \{C^\text{new}, P^\text{new}\}$

$C^\text{new} \leftarrow$ CombineCentroids(C^1, C^2);
$P^\text{new} \leftarrow$ CombinePartitions(P^1, P^2);
$C^\text{new} \leftarrow$ UpdateCentroids($C^\text{new}, P^\text{new}$);
RemoveEmptyClusters($C^\text{new}, P^\text{new}$);

Cl = 0

Initialization techniques
<table>
<thead>
<tr>
<th>Technique</th>
<th>Complexity</th>
<th>Time</th>
<th>Randomized</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random partitions</td>
<td>O(N)</td>
<td>10 ms</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Random centroids</td>
<td>O(N)</td>
<td>13 ms</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Maxmin</td>
<td>O(kN)</td>
<td>16 ms</td>
<td>Modified</td>
<td></td>
</tr>
<tr>
<td>kmeans++</td>
<td>O(kN)</td>
<td>19 ms</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bradley</td>
<td>O(kN+Rk^2)</td>
<td>41 ms</td>
<td>Yes</td>
<td>R=10, s=10%</td>
</tr>
<tr>
<td>Sorting heuristic</td>
<td>O(N log N)</td>
<td>13 ms</td>
<td>Modified</td>
<td></td>
</tr>
<tr>
<td>Projection-based</td>
<td>O(N log N)</td>
<td>14 ms</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Luxburg</td>
<td>O(kN log k)</td>
<td>29 ms</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Split</td>
<td>O(N log N)</td>
<td>67 ms</td>
<td>Yes</td>
<td>k=2</td>
</tr>
</tbody>
</table>
Random centroids

Rand-C
INIT

Rand-C
FINAL
Random partitions

Initial Steinley Final
Furthest points (maxmin)

Maxmin
INIT

KM++
INIT

\[p_i = \frac{d_{NN(i)}}{\sum d_{NN(j)}} \]
Furthest points (maxmin)
Projection-based initialization

Most common projection axis:
- Diagonal
- Principal axis (PCA)
- Principle curves

Initialization:
- Uniform partition along axis

Used in divisive clustering:
- Iterative split

\[\text{PCA} = O(DN) - O(D^2N) \]
Furthest point projection

Furthest point

Projection axis

Projected points

Initial clustering

After k-means
Projection example (1)

Good projection!

Birch2
Projection example (2)

Bad projection!

Birch1
Projection example (3)

Bad projection!

Unbalance

Projection

INIT
More complex projections

More complex projections

Travelling salesman problem!
Sorting heuristic
Density-based heuristics
Luxburg

Luxburg’s technique:

• Selects $k \log(k)$ preliminary clusters using k-means
• Eliminate the smallest.
• Furthest point heuristic to select k centroids.

Initial solution

After k-means
Splitting algorithm

- Select biggest cluster
- Select two random points
- Re-allocate points
- Tune by k-means locally
Results
Success rates
K-means (without repeats)

<table>
<thead>
<tr>
<th>Method</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>unb</th>
<th>b1</th>
<th>b2</th>
<th>dim32</th>
<th>Aver.</th>
<th>Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand-P</td>
<td>0%</td>
<td>47%</td>
<td>5%</td>
<td>63%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>8</td>
</tr>
<tr>
<td>Rand-C</td>
<td>3%</td>
<td>11%</td>
<td>12%</td>
<td>26%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>6</td>
</tr>
<tr>
<td>Maxmin</td>
<td>37%</td>
<td>16%</td>
<td>36%</td>
<td>9%</td>
<td>15%</td>
<td>1%</td>
<td>0%</td>
<td>22%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>22%</td>
<td>3</td>
</tr>
<tr>
<td>kmeans++</td>
<td>21%</td>
<td>24%</td>
<td>18%</td>
<td>30%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
<td>51%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>22%</td>
<td>4</td>
</tr>
<tr>
<td>Bradley</td>
<td>21%</td>
<td>46%</td>
<td>49%</td>
<td>64%</td>
<td>7%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>17%</td>
</tr>
<tr>
<td>Sorting</td>
<td>12%</td>
<td>20%</td>
<td>22%</td>
<td>36%</td>
<td>10%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>12%</td>
<td>15%</td>
<td>4</td>
</tr>
<tr>
<td>Projection</td>
<td>16%</td>
<td>29%</td>
<td>30%</td>
<td>42%</td>
<td>18%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>92%</td>
<td>34%</td>
<td>4</td>
</tr>
<tr>
<td>Luxburg</td>
<td>52%</td>
<td>60%</td>
<td>45%</td>
<td>61%</td>
<td>45%</td>
<td>33%</td>
<td>31%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>17%</td>
<td>40%</td>
<td>2</td>
</tr>
<tr>
<td>Split</td>
<td>78%</td>
<td>75%</td>
<td>62%</td>
<td>64%</td>
<td>51%</td>
<td>17%</td>
<td>5%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>42%</td>
<td>2</td>
</tr>
</tbody>
</table>

Most problems: a2, a3, unbalance, Birch1, Birch2

Average success rate

No. of datasets never solved
Cluster overlap
High cluster overlap

High overlap

- Rand-P
- Rand-C
- MaxMin
- KMplus
- Bradley
- Project
- Sorting
- ProjRP
- Split

After K-means

Initial
Cluster overlap

Low cluster overlap

Low overlap

After K-means

Initial

Rand-P Rand-C MaxMin KPlus Bradley Project Sorting ProjRP Split

G2
Number of clusters

Birch2 subsets

![Graph showing relative Cl-value against clusters (k)]
Unbalance

Rand-C
INIT

Maximin
INIT

Rand-C
FINAL

KM++
INIT

Projection
INIT

Unbalance
Success rates

Repeated k-means

<table>
<thead>
<tr>
<th>Method</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>s4</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>unb</th>
<th>b1</th>
<th>b2</th>
<th>dim32</th>
<th>Aver.</th>
<th>Fails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand-P</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>27%</td>
<td>8</td>
</tr>
<tr>
<td>Rand-C</td>
<td>96%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>56%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>41%</td>
<td>4</td>
</tr>
<tr>
<td>Maxmin</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>58%</td>
<td>36%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>72%</td>
<td>2</td>
</tr>
<tr>
<td>kmeans++</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>98%</td>
<td>20%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>65%</td>
<td>3</td>
</tr>
<tr>
<td>Bradley</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>0%</td>
<td>0%</td>
<td>84%</td>
<td>54%</td>
<td>2</td>
</tr>
<tr>
<td>Sorting</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>24%</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
<td>100%</td>
<td>100%</td>
<td>66%</td>
<td>2</td>
</tr>
<tr>
<td>Projection</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>18%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td>65%</td>
<td>3</td>
</tr>
<tr>
<td>Luxburg</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>46%</td>
<td>100%</td>
<td>100%</td>
<td>86%</td>
<td>1</td>
</tr>
<tr>
<td>Split</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>36%</td>
<td>100%</td>
<td>100%</td>
<td>85%</td>
<td>1</td>
</tr>
</tbody>
</table>

Furthest point approaches solve unbalance

Still problems: Birch1, Birch2

Average success rate

No. of datasets never solved
How many repeats needed?

A3

<table>
<thead>
<tr>
<th>Initialization</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand-P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rand-C</td>
<td>2</td>
<td>4</td>
<td>11</td>
<td>54</td>
<td>428</td>
<td>11111</td>
<td>-</td>
</tr>
<tr>
<td>Maxmin</td>
<td>1</td>
<td>3</td>
<td>14</td>
<td>216</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kmeans++</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>138</td>
<td>8696</td>
<td>-</td>
</tr>
<tr>
<td>Bradley</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>58</td>
<td>1058</td>
<td>33333</td>
<td>-</td>
</tr>
<tr>
<td>Sorting</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>13</td>
<td>73</td>
<td>1143</td>
<td>-</td>
</tr>
<tr>
<td>Projection</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>46</td>
<td>581</td>
<td>18182</td>
</tr>
<tr>
<td>Luxburg</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Split</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
How many repeats needed?

Unbalance

<table>
<thead>
<tr>
<th>Initialization</th>
<th>CI-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Rand-P</td>
<td>1</td>
</tr>
<tr>
<td>Rand-C</td>
<td>1</td>
</tr>
<tr>
<td>Maxmin</td>
<td>1</td>
</tr>
<tr>
<td>Kmeans++</td>
<td>1</td>
</tr>
<tr>
<td>Bradley</td>
<td>1</td>
</tr>
<tr>
<td>Sorting</td>
<td>1</td>
</tr>
<tr>
<td>Projection</td>
<td>1</td>
</tr>
<tr>
<td>Luxburg</td>
<td>1</td>
</tr>
<tr>
<td>Split</td>
<td>1</td>
</tr>
</tbody>
</table>
Summary of results

CI-values

- K-means: $\text{CI} = 4.5$ 15%
- Repeated K-means: $\text{CI} = 2.0$ 6%
- Maxmin initialization: $\text{CI} = 2.1$ 6%
- Both: $\text{CI} = 0.7$ 1%

- Most application: Good enough!
- Accuracy vital: Find better method! (random swap)

- Cluster overlap most important factor
Effect of different factors

<table>
<thead>
<tr>
<th>Method</th>
<th>Overlap</th>
<th>Clusters</th>
<th>Dimension</th>
<th>Unbalance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand-P</td>
<td>No effect</td>
<td>Constant</td>
<td>No effect</td>
<td>Very bad</td>
</tr>
<tr>
<td>Rand-C</td>
<td>No effect</td>
<td>Constant</td>
<td>No effect</td>
<td>Very bad</td>
</tr>
<tr>
<td>Maxmin</td>
<td>Bad</td>
<td>Constant</td>
<td>No effect</td>
<td>A bit worse</td>
</tr>
<tr>
<td>kmeans++</td>
<td>A bit worse</td>
<td>Constant</td>
<td>No effect</td>
<td>A bit worse</td>
</tr>
<tr>
<td>Bradley</td>
<td>Good</td>
<td>Constant</td>
<td>No effect</td>
<td>Bad</td>
</tr>
<tr>
<td>Sorting</td>
<td>A bit worse</td>
<td>Constant</td>
<td>No effect</td>
<td>Very bad</td>
</tr>
<tr>
<td>Projection</td>
<td>A bit worse</td>
<td>Constant</td>
<td>No effect</td>
<td>Very bad</td>
</tr>
<tr>
<td>Luxburg</td>
<td>A bit worse</td>
<td>Minor effect</td>
<td>No effect</td>
<td>Very bad</td>
</tr>
<tr>
<td>Split</td>
<td>A bit worse</td>
<td>Constant</td>
<td>No effect</td>
<td>Very bad</td>
</tr>
<tr>
<td>KM iterations</td>
<td>Good</td>
<td>Constant</td>
<td>No effect</td>
<td>No effect</td>
</tr>
</tbody>
</table>
Conclusions

How effective:
• Repeats + Maxmin reduces error $4.5 \rightarrow 0.7$

Is it enough:
• For most applications: YES
• If accuracy important: NO

Important factors:
• Cluster overlap critical for k-means
• Dimensions does not matter
Random swap
Random swap (RS)

Initialize

Swap

K-means

Repeat 5000 times

Only 2 iterations

CI = 0

P. Fränti, "Efficiency of random swap clustering", *Journal of Big Data*, 2018
How many repeats?

P. Fränti, "Efficiency of random swap clustering", Journal of Big Data, 2018
The end