How much k-means can be improved by using better initialization and repeats?

Pasi Fränti and Sami Sieranoja

11.4.2019
P. Fränti and S. Sieranoja, "How much k-means can be improved by using better initialization and repeats?", Pattern Recognition, 2019.

Introduction

Goal of k-means

Input N points:

$$
\mathrm{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

Output partition and k centroids:

$$
\begin{aligned}
& \mathrm{P}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \\
& \mathrm{C}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}
\end{aligned}
$$

Objective function:

$$
S S E=\sum_{i=1}^{N}\left\|x_{i}-c_{j}\right\|^{2}
$$

Goal of k-means

Input N points:

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

Output partition and k centroids:

$$
\begin{aligned}
& \mathrm{P}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \\
& \mathrm{C}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}
\end{aligned}
$$

Objective function:

$$
S S E=\sum_{i=1}^{N}\left\|x_{i}-c_{j}\right\|^{2}
$$

Assumptions:

- SSE is suitable
- k is known

Using SSE objective function

K-means algorithm

http://cs.uef.fi/sipu/clustering/animator/
X = Data set
C = Cluster centroids
$P=$ Partition
K-Means $(X, C) \rightarrow(C, P)$
REPEAT

$$
\mathrm{C}_{\text {prev }} \leftarrow \mathrm{C} ;
$$

FOR $\mathrm{i}=1$ TO N DO
$\mathrm{p}_{\mathrm{i}} \leftarrow$ FindNearest $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{C}\right)$;
Assignment step
FOR $\mathrm{j}=1$ TO k DO
$\mathrm{c}_{\mathrm{j}} \leftarrow$ Average of $\mathrm{x}_{\mathrm{i}} \forall \mathrm{p}_{\mathrm{i}}=\mathrm{j}$;
Centroid step
UNTIL C $=\mathrm{C}_{\text {prev }}$

K-means optimization steps

Assignment step:

$$
P_{i}=\underset{1 \leq j \leq k}{\arg \min }\left\|x_{i}-c_{j}\right\|^{2} \quad \forall i \in[1, N]
$$

Centroid step:

$$
c_{j}=\sum_{P_{i}=j} x_{i} / \sum_{P_{i}=j} 1 \quad \forall j \in[1, k]
$$

Examples

Iterate by k-means

$1^{\text {st }}$ iteration

Iterate by k-means

$2^{\text {nd }}$ iteration

Iterate by k-means

$3^{\text {rd }}$ iteration

Iterate by k-means

$16^{\text {th }}$ iteration

Iterate by k-means

$17^{\text {th }}$ iteration

Iterate by k-means

$18^{\text {th }}$ iteration

Iterate by k-means

$19^{\text {th }}$ iteration

Final result

25 iterations

Problems of k-means

Distance of clusters

Cannot move centroids between clusters far away

Data and methodology

Clustering basic benchmark

Fränti and Sieranoja
K-means properties on six clustering benchmark datasets Applied Intelligence, 2018.

Dataset	Varying	Size	Dimensions	Clusters	Per cluster
A	Number of clusters	$3000-7500$	2	$20-50$	150
S	Overlap	5000	2	15	333
Dim	Dimensions	1024	$32-1024$	16	64
G2	Dimensions + overlap	2048	$2-1024$	2	1024
Birch	Structure	100,000	2	100	1000
Unbalance	Balance	6500	2	8	$100-2000$

Birch 2

Centroid index

Requires ground truth

Centroid index example

$\mathrm{Cl}=4$

Too many centroids

Success rate

How often $\mathrm{Cl}=0$?
17\%

Properties of k-means

Cluster overlap
 Definition

overlap $=\frac{1}{N} \cdot \sum o v\left(d_{1}, d_{2}\right)$
$o v\left(d_{1}, d_{2}\right)= \begin{cases}1, & d_{1}>d_{2} \\ 0, & d_{1} \leq d_{2}\end{cases}$
$\mathrm{d}_{1}=$ distance to nearest centroid
$d_{2}=$ distance to nearest in other cluster

Dependency on overlap

S datasets

Success rates and Cl -values:
overlap increases

$\mathrm{Cl}=1.8$

$\mathrm{Cl}=1.4$

$\mathbf{C l}=1.3$

$\mathbf{C l}=0.9$

Why overlap helps?

Linear dependency on clusters (k)

Birch2 dataset

Dependency on dimensions
 DIM datasets

Dimensions increases

Success rate: 0\%

Lack of overlap is the cause!

G2 datasets
Dimensions increases

Correlation: 0.91

Effect of unbalance

Unbalabce datasets

 too many clusters here ...
... and too few here

Average Cl:
3.9

Problem originates from
the random initialization.

Summary of k-means properties

1. Overlap

Good!
3. Dimensionality

2. Number of clusters

Linear dependency
4. Unbalance of cluster sizes

Bad!

How to improve?

Repeated k-means (RKM)

How to initialize?

Some obvious heuristics:

- Furthest point
- Sorting
- Density
- Projection

Clear state-of-the-art is missing:

- No single technique outperforms others in all cases.
- Initialization not significantly easier than the clustering itself.
- K-means can be used as fine-tuner with almost anything.

Another desperate effort:

- Repeat it LOTS OF times

I nitialization techniques Criteria

1. Simple to implement
2. Lower (or equal) time complexity than k-means
3. No additional parameters
4. Include randomness

Requirements for initialization

1. Simple to implement

- Random centroids has 2 functions +26 lines of code
- Repeated k-means 5 functions $\mathbf{+} \mathbf{1 6 2}$ lines of code
- Simpler than k -means itself

2. Faster than k-means

- K-means real-time ($<\mathbf{1} \mathbf{s}$) up to $\mathrm{N} \approx 10,000$
- $\mathrm{O}(\mathrm{IkN}) \approx 25 \cdot \mathrm{~N}^{1.5}$--- assuming $\mathrm{I} \approx 25$ and $\mathrm{k}=\sqrt{ } \mathrm{N}$
- Must be faster than $\mathbf{O}\left(\mathbf{N}^{2}\right)$

Simplicity of algorithms

	A	B	C
Random	0	2	26
Rep. K-Means	1	5	162
Random swap	1	7	226
Agglomerative	0	12	317
SPLIT	0	22	947
GA	2	21	573
FCM	2	11	295
GMM	2	44	1111

A. Parameters
 B. Functions
 C. Lines of code

Alternative: A better algorithm

Random Swap (RS)

Random Swap $(X) \rightarrow C, P$
$C \leftarrow$ Select random representatives (X);
$P \leftarrow$ Optimal partition (X, C);
REPEAT T times
$\left(C^{\text {new }}, j\right) \leftarrow$ Random $\operatorname{swap}(X, C)$;
$P^{\text {new }} \leftarrow$ Local repartition $\left(X, C^{\text {new }}, P, j\right)$;
$C^{\text {new }}, P^{\text {new }} \leftarrow K$ means $\left(X, C^{\text {new }}, P^{\text {new }}\right)$;
IF $f\left(C^{\text {new }}, P^{\text {new }}\right)<f(C, P)$ THEN $(C, P) \leftarrow C^{\text {new }}, P^{\text {new }} ;$
RETURN (C,P); $\quad \mathbf{C l}=\mathbf{0}$
P. Fränti, "Efficiency of random swap clustering", Journal of Big Data, 2018

Genetic Algorithm (GA)

```
GeneticAlgorithm(X) }->(C,P
    FOR i\leftarrow1 TO Z DO
        C'i}\leftarrow\mathrm{ RandomCodebook(X);
        P
    SortSolutions(C,P);
    REPEAT
        {C,P}}\leftarrow\mathrm{ CreateNewSolutions({C,P} );
        SortSolutions(C,P);
    UNTIL no improvement;
CreateNewSolutions({C,P})}->{\mp@subsup{C}{}{\mathrm{ new }},\mp@subsup{P}{}{\mathrm{ new }}
C
    FOR }i\leftarrow2\mathrm{ TO Z DO
        (a,b)}\leftarrow~\mathrm{ SelectNextPair;
        C
    IterateK-Means(C ( }\mp@subsup{}{}{\mathrm{ new-1}},\mp@subsup{P}{}{\mathrm{ new-1}})
Cross(C}\mp@subsup{C}{}{1},\mp@subsup{P}{}{1},\mp@subsup{C}{}{2},\mp@subsup{P}{}{2})->(\mp@subsup{C}{}{\mathrm{ new }},\mp@subsup{P}{}{\mathrm{ new }}
    C new }\leftarrow\mathrm{ CombineCentroids(C}\mp@subsup{C}{}{1},\mp@subsup{C}{}{2})
    P new }\leftarrow\mathrm{ CombinePartitions( ( }\mp@subsup{P}{}{1},\mp@subsup{P}{}{2})
    RemoveEmptyClusters(C (}\mp@subsup{}{}{\mathrm{ new }},\mp@subsup{P}{}{\mathrm{ new }}\mathrm{ );
    IS(C}\mp@subsup{C}{}{\mathrm{ new }},\mp@subsup{P}{}{\mathrm{ new }})
```

P. Fränti, "Genetic algorithm with deterministic crossover for vector quantization", Pattern Recognition Letters, 2000.

I nitialization techniques

Techniques considered

Technique	Complexity	Time	Random- ized	Parameters
Random partitions	$\mathrm{O}(N)$	10 ms	Yes	-
Random centroids	$\mathrm{O}(N)$	13 ms	Yes	-
Maxmin	$\mathrm{O}(k N)$	16 ms	Modified	-
kmeans++	$\mathrm{O}(k N)$	19 ms	Yes	-
Bradley	$\mathrm{O}\left(k N+R k^{2}\right)$	41 ms	Yes	$R=10, \mathrm{~s}=10 \%$
Sorting heuristic	$\mathrm{O}(N \log N)$	13 ms	Modified	-
Projection-based	$\mathrm{O}(N \log N)$	14 ms	Yes	-
Luxburg	$\mathrm{O}(k N \log k)$	29 ms	Yes	-
Split	$\mathrm{O}(N \log N)$	67 ms	Yes	$k=2$

Random centroids

Rand-C
FI NAL
"

Random partitions

Steinley

Final

Random partitions

Furthest points (maxmin)

Furthest points (maxmin)

Projection-based initialization

Most common projection axis:

- Diagonal
- Principal axis (PCA)
- Principle curves

I nitialization:

- Uniform partition along axis

Used in divisive clustering:

- Iterative split

Furthest point projection

Furthest point

Projection axis

Projected points

Initial clustering

After k-means

Projection example (1)

Good projection! Birch2

Projection example (2)

Bad projection! Birch1

Projection example (3)

Bad projection! Unbalance

More complex projections

I. Cleju, P. Fränti, X. Wu, "Clustering based on principal curve", Scandinavian Conf. on Image Analysis, LNCS vol. 3540, J une 2005.

More complex projections

I. Cleju, P. Fränti, X. Wu, "Clustering based on principal curve", Scandinavian Conf. on Image Analysis, LNCS vol. 3540, J une 2005.

Sorting heuristic

Density-based heuristics

Luxburg

Luxburg's technique:

- Selects $k \log (k)$ preliminary clusters using k-means
- Eliminate the smallest.
- Furthest point heuristic to select k centroids.

After k-means

Splitting algorithm

Results

Success rates
 K-means (without repeats)

Average success rate

Method	s1	s2	s3	s4	a1	a2	a3	unb	b1	b2	dim32	Aver.	Fails
Rand-P	0\%	47\%	5\%	63\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	10\%	8
Rand-C	3\%	11\%	12\%	26\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	5\%	6
Maxmin	37\%	16\%	36\%	9\%	15\%	1\%	0\%	22\%	0\%	0\%	100\%	22\%	3
kmeans++	2	24	18\%	30\%	7\%	0\%	0\%	51\%	0\%	0\%	88\%	22\%	4
Bradley	21\%	46\%	49\%	64\%	7\%	0\%	0\%	0\%	0\%	0\%	2\%	17\%	5
Sorting	12\%	20\%	22\%	36\%	10\%	0\%	0\%	0\%	0\%	12\%	15\%	12\%	4
Projection	16\%	29\%	30\%	42\%	18\%	0\%	0\%	0\%	0\%	92\%	34\%	24\%	4
Luxburg	52\%	60\%	45\%	61\%	45\%	33\%	31\%	0\%	0\%	17\%	95\%	40\%	2
Split	78\%	75\%	62\%	64\%	51\%	17\%	5\%	0\%	0\%	10\%	99\%	42\%	2

Most problems:
a2, a3, unbalance, Birch1, Birch2

No. of datasets never solved

Cluster overlap

High cluster overlap

Cluster overlap

Low cluster overlap

Number of clusters

Birch2 subsets

Dimensions

Unbalance

Success rates
 Repeated k-means

Furthest point approaches solve unbalance

Average success rate \downarrow

Method	s1	s2	s3	s4		a2	a	unb	b1	b2	dim32	Aver.	Fails
Rand-P	0\%	100\%	00\%	00\%		\%	0\%	0\%	0\%	0\%	0\%	27\%	8
Rand-C	96	100\%	100\%	0\%	56\%	2\%	0\%	,	0\%	0\%	2\%	41\%	4
Maxmin	100	100\%	100\%	0\%	100	58\%	36\%		0\%	0\%	100\%	72\%	2
kmeans++	100	00	00\%	00\%	98\%	20\%	0\%		0\%	0\%	100\%	65\%	3
Bradley	100	100\%	00	100\%	100	4\%	4\%	4\% ${ }^{\circ}$	0\%	0\%	84\%	54\%	2
Sorting	100	00	100%	100\%	100\%	24\%	0\%	0\%	2\%	100\%	100\%	66\%	2
Projection	100	00%	100\%	100\%	100\%	18\%	0\%	0\%	0\%	100\%	100\%	65	3
Luxburg	100	00\%	100\%	100\%	100\%	00	100\%	0\%	46\%	100\%	100\%	86\%	1
Split	100	100	100\%	100\%	100\%	100\%	100\%	0\%	36\%	100\%	100\%	85\%	1

Still problems:
Birch1, Birch2

No. of datasets never solved

How many repeats needed? A3

Initialization	CI-value						
	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Rand-P	-	-	-	-	-	-	-
Rand-C	2	4	11	54	428	1111	-
Maxmin				1	3	14	216
Kmeans++		1	2	3	14	138	8696
Bradley		1	2	8	58	1058	33333
Sorting	1	2	4	13	73	1143	-
Projection	1	2	3	9	46	581	18182
Luxburg						1	3
Split					1	2	9

How many repeats needed? Unbalance

Initialization	CI-value						
	6	5	4	3	2	1	0
Rand-P			1	97	8333	-	-
Rand-C			1	16	69	1695	100k
Maxmin						1	4
Kmeans++						1	2
Bradley			1	3	6	70	1471
Sorting			1	-	-	-	-
Projection			1	935	16667	-	-
Luxburg			1	59	16667	-	-
Split			1	9524	-	-	-

Summary of results

Cl -values

Method	s1	s2	s3	s4	a1	a2	a3	unb	b1	b2	dim32	KM	RKM
Rand-P	1.4	0.0	0.0	0.0	4.9	8.8	16.7	3.6	8.5	74.0	2.6	12.4	11.0
Rand-C	0.1	0.0	0.0	0.0	0.3	1.8	2.9	2.9	2.8	10.9	1.1	4.5	2.1
Maxmin	0.0	0.0	0.0	0.0	0.0	0.5	0.6	0.0	2.8	3.9	0.0	2.2	0.7
kmeans++	0.0	0.0	0.0	0.0	0.0	0.8	1.6	0.0	1.7	3.4	0.0	2.3	0.7
Bradley	0.0	0.0	0.0	0.0	0.0	0.9	2.1	1.2	2.0	8.5	0.0	3.1	1.2
Sorting	0.0	0.0	0.0	0.0	0.0	0.8	2.2	4.0	2.2	0.0	0.0	2.7	0.8
Projection	0.0	0.0	0.0	0.0	0.0	0.9	2.0	3.9	1.9	0.0	0.0	2	0.4
Luxburg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.7	0.6	0.0	0.0	1.2	0.4
Split	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.6	0.0	0.0	1.2	0.4

- K-means:
- Repeated K-means:
- Maxmin initialization:
- Both:
- Most application:
- Accuracy vital:

$$
\begin{array}{lr}
\mathrm{Cl}=4.5 & 15 \% \\
\mathrm{Cl}=2.0 & 6 \% \\
\mathrm{Cl}=2.1 & 6 \% \\
\mathrm{Cl}=\mathbf{0 . 7} & 1 \%
\end{array}
$$

Good enough!
Find better method! (random swap)

- Cluster overlap most important factor

Effect of different factors

Method	Overlap	Clusters	Dimension	Unbalance
Rand-P	No effect	Constant	No effect	Very bad
Rand-C	No effect	Constant	No effect	Very bad
Maxmin	Bad	Constant	No effect	A bit worse
kmeans++	A bit worse	Constant	No effect	A bit worse
--1	Good	Constant	No effect	Bad
Bradley	A bit worse	Constant	No effect	Very bad
Sorting	A bit worse	Constant	No effect	Very bad
Projection	A bit worse	Minor effect	No effect	Very bad
- Luxburg	A bit worse	Constant	No effect	Very bad
Split	Good	Constant	No effect	No effect
KM iterations				

Conclusions

How effective:

- Repeats + Maxmin reduces error $\mathbf{4 . 5} \boldsymbol{\mathbf { 0 . 7 }}$

Is it enough:

- For most applications: YES
- If accuracy important: NO

I mportant factors:

- Cluster overlap critical for k-means
- Dimensions does not matter

Random swap

Random swap (RS)

How many repeats?

P. Fränti, "Efficiency of random swap clustering", Journal of Big Data, 2018

The end

