
How much k-means can be
improved by using better
initialization and repeats?

Pasi Fränti and Sami Sieranoja
11.4.2019

P. Fränti and S. Sieranoja, ”How much k-means can be improved
by using better initialization and repeats?", Pattern Recognition, 2019.

Introduction

Goal of k-means

Input N points:

X={x1 , x2 , …, xN }

C={c1 , c2 , …, ck }

P={p1 , p2 , …, pk }

N

i
ji cxSSE

1

2

Objective function:

Output partition and k centroids:

SSE = sum-of-squared errors

Goal of k-means

Input N points:

X={x1 , x2 , …, xN }

C={c1 , c2 , …, ck }

P={p1 , p2 , …, pk }

N

i
ji cxSSE

1

2

Objective function:

Output partition and k centroids:

Assumptions:
• SSE is suitable
• k is known

Non-spherical
5 clusters

Different
variance

2 clusters

Different density
8 clusters

Using SSE objective function

K-means algorithm
http://cs.uef.fi/sipu/clustering/animator/

 NicxP ji
kj

i ,1 minarg
2

1

 kjxc
jPjP

ij
ii

,1 1

K-means optimization steps
Assignment step:

Centroid step:

Before Before AfterAfter

Examples

Iterate by k-means
1st iteration

Iterate by k-means
2nd iteration

Iterate by k-means
3rd iteration

Iterate by k-means
16th iteration

Iterate by k-means
17th iteration

Iterate by k-means
18th iteration

Iterate by k-means
19th iteration

Final result
25 iterations

Problems of k-means
Distance of clusters

Cannot move centroids
between clusters
far away

Data and methodology

Clustering basic benchmark

Birch1 Birch2

DIM32

UnbalanceS1 S3 S4S2

2000 2000

2000

100

100

100

100

100

A1 A2 AA33

Fränti and Sieranoja
K-means properties on six clustering benchmark datasets

Applied Intelligence, 2018.

G2-2-30

500,500500,500

600,600600,600

P. Fränti, M. Rezaei and Q. Zhao
"Centroid index: cluster level similarity measure”
Pattern Recognition, 47 (9), 3034-3045, September 2014.

CI = Centroid index:

Centroid index
Requires ground truth

Missing centroids

Too many centroids

CI=4
Centroid index example

Success rate
How often CI=0?

CI=1

CI=0 CI=2 CI=2

CI=1CI=2

17%

Properties of k-means

d1 = distance to nearest centroid
d2 = distance to nearest in other cluster

 21 ,1 ddov
N

overlap

21

21
21 ,0

,1
,

dd
dd

ddov

Cluster overlap
Definition

Dependency on overlap
S datasets

S1 S2 S3 S4

3% 11% 12% 26%

overlap increases

CI=1.8

Success rates and CI-values:

CI=1.4 CI=1.3 CI=0.9

Overlap = 7%
13 iterations

Overlap = 22%
90 iterations

Why overlap helps?

Linear dependency on clusters (k)
Birch2 dataset

0 %

5 %

10 %

15 %

20 %

0 10 20 30 40 50 60 70 80 90 100

Number of clusters (k)

R
el

at
iv

e
C

I-v
al

ue

Birch2
subsets

K-means

Repeated
k-means

16%

Dependency on dimensions
DIM datasets

Dimensions increases

32 25664 512 1024128

3.6

0%Success rate:

CI: 3.5 3.8 3.8 3.9 3.7

Overlap

Success

Lack of overlap is the cause!
G2 datasets

0.91
Correlation:

Dimensions increases

O
verlap increases

K-means tend to put
too many clusters here …

560

2000

1011

500

… and too few here

492

458
490 989

Effect of unbalance
Unbalabce datasets

Success:

0% 3.9
Average CI:

Problem originates from
the random initialization.

Summary of k-means properties

2. Number of clusters 4. Unbalance of cluster sizes

1. Overlap 3. Dimensionality

No direct effectGood!

Linear dependency Bad!

How to improve?

Repeated k-means (RKM)

K-means

Initialize
Repeat

100 times

Must include
randomness

Some obvious heuristics:
• Furthest point
• Sorting
• Density
• Projection

Clear state-of-the-art is missing:
• No single technique outperforms others in all cases.
• Initialization not significantly easier than the clustering itself.
• K-means can be used as fine-tuner with almost anything.

Another desperate effort:
• Repeat it LOTS OF times

How to initialize?

Initialization techniques
Criteria

1. Simple to implement

2. Lower (or equal) time complexity than k-means

3. No additional parameters

4. Include randomness

1. Simple to implement
• Random centroids has 2 functions + 26 lines of code
• Repeated k-means 5 functions + 162 lines of code
• Simpler than k-means itself

2. Faster than k-means
• K-means real-time (<1 s) up to N10,000
• O(IkN)

25N1.5 --- assuming I25 and k=N

• Must be faster than O(N2)

Requirements for initialization

Simplicity of algorithms

A. Parameters
B. Functions
C. Lines of code

Kinnunen, Sidoroff, Tuononen and Fränti,
"Comparison of clustering methods: a case study of text-independent speaker modeling"
Pattern Recognition Letters, 2011.

Alternative:
A better algorithm

Random Swap(X) C, P

C Select random representatives(X);
P Optimal partition(X, C);
REPEAT T times

(Cnew,j) Random swap(X, C);
Pnew Local repartition(X, Cnew, P, j);
Cnew, Pnew Kmeans(X, Cnew, Pnew);
IF f(Cnew, Pnew) < f(C, P) THEN

(C, P) Cnew, Pnew;
RETURN (C, P);

GeneticAlgorithm(X) (C, P)
FOR i1 TO Z DO

Ci RandomCodebook(X);
Pi OptimalPartition(X, Ci);

SortSolutions(C,P);

REPEAT
{C,P} CreateNewSolutions({C,P});
SortSolutions(C,P);

UNTIL no improvement;

CreateNewSolutions({C, P}) {Cnew, Pnew }

Cnew-1, Pnew-1 C1, P1;
FOR i2 TO Z DO

(a,b) SelectNextPair;
Cnew-i, Pnew-I Cross(Ca, Pa, Cb, Pb);
IterateK-Means(Cnew-i, Pnew-i);

Cross(C1, P1, C2, P2) (Cnew, Pnew)
Cnew CombineCentroids(C1, C2);
Pnew CombinePartitions(P1, P2);
Cnew UpdateCentroids(Cnew, Pnew);
RemoveEmptyClusters(Cnew, Pnew);
IS(Cnew, Pnew);

CombineCentroids(C1, C2) Cnew
Cnew C1 C2

CombinePartitions(Cnew, P1, P2) Pnew
FOR i1 TO N DO

IF x c x ci p i pi i
 1 2

2 2
 THEN

p pi
new

i 1
ELSE

p pi
new

i 2
END-FOR

UpdateCentroids(C1, C2) Cnew
FOR j1 TO |Cnew| DO

c j
new CalculateCentroid(Pnew, j);

Genetic Algorithm (GA)

Random Swap (RS)

P. Fränti, "Genetic algorithm with deterministic crossover
for vector quantization", Pattern Recognition Letters, 2000.

CI = 0

CI = 0

P. Fränti, "Efficiency of random swap
clustering", Journal of Big Data, 2018

Initialization techniques

Techniques considered

Random centroids
Rand-C

INIT

Rand-C
FINAL

Random partitions

Initial FinalSteinley

Random partitions

Initial FinalSteinley

Furthest points (maxmin)

1

7

2

6

3

4

8

5

2

6

3

48

5

1

7

Maxmin
INIT

KM++
INIT

jNN

iNN
i d

d
p

Furthest points (maxmin)

Most common projection axis:
• Diagonal
• Principal axis (PCA)
• Principle curves

Initialization:
• Uniform partition along axis

Used in divisive clustering:
• Iterative split

Projection-based initialization

PCA = O(DN)-O(D2N)

Furthest point projection

Initial clustering After k‐means

Furthest point Projection axis

p2

p1

Projected points

Good projection!

Birch2

Projection example (1)

Projection example (2)

Birch1
Bad projection!

Unbalance
Bad projection!

1

Projection
INIT

6

3
4

8

5
2

7

Projection example (3)

More complex projections
I. Cleju, P. Fränti, X. Wu, "Clustering based on principal curve",
Scandinavian Conf. on Image Analysis, LNCS vol. 3540, June 2005.

More complex projections
I. Cleju, P. Fränti, X. Wu, "Clustering based on principal curve",
Scandinavian Conf. on Image Analysis, LNCS vol. 3540, June 2005.

Travelling salesman problem!

11

2233

44

Reference
point

SortingSorting

Sorting heuristic

Density-based heuristics
Luxburg

Luxburg’s technique:
• Selects k log(k)

preliminary clusters
using k-means

• Eliminate the smallest.
• Furthest point heuristic

to select k centroids.

Initial solution

After k-means

Splitting algorithm
Two random points

Split K-means

• Select biggest cluster
• Select two random points
• Re-allocate points
• Tune by k-means locally

Results

Success rates
K-means (without repeats)

No. of datasets
never solved

Average
success rate

Most problems:
a2, a3, unbalance, Birch1, Birch2

0 %

20 %

40 %

60 %

80 %

100 %

Rand
-P

Rand
-C

Max
Min

KMplu
s

Brad
ley

Proj
ec

t
Sort

ing
Proj

RP

Spli
t

High overlap

Cluster overlap
High cluster overlap

After
K-means

Initial

G2

0 %

20 %

40 %

60 %

80 %

100 %

Rand
-P

Rand
-C

Max
Min

KMplu
s

Brad
ley

Proj
ec

t
Sort

ing
Proj

RP

Spli
t

Low overlap

Cluster overlap
Low cluster overlap

After
K-means

Initial

G2

0%

5%

10%

15%

20%

10 20 30 40 50 60 70 80 90 100

Clusters (k)

R
el

at
iv

e
C

I-v
al

ue

Rand-C

Maxmin

Luxburg

KM++

Split

Sorting

Bradley

Projection

Number of clusters
Birch2 subsets

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Bradley

MaxminRand-C

LuxburgInitial

Rand-P

Split
Sorting

G2

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-P Maxmin

Bradley

Luxburg

Final

Split
Sorting

Rand-C

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg
Final

Projection

DIM

0%

20%

40%

60%

80%

100%

32 64 128 256 512 1024
Dimensions

Su
cc

es
s

ra
te

Rand-C, Rand-P

K-means++

Bradley

Sorting

Maxmin, Split

Luxburg

Initial

Projection

Dimensions

Rand-C
INIT

Rand-C
FINAL

1

7

2

6

3

4

8

5

2

6

3

48

5

1

7

Maxmin
INIT

KM++
INIT

1

Projection
INIT

6

3
4

8

5
2

7

Unbalance

Success rates
Repeated k-means

No. of datasets
never solved

Average
success rate

Still problems:
Birch1, Birch2

Furthest point approaches
solve unbalance

How many repeats needed?
A3

How many repeats needed?
Unbalance

Summary of results
CI-values

• K-means: CI=4.5 15%
• Repeated K-means: CI=2.0 6%
• Maxmin initialization: CI=2.1 6%
• Both: CI=0.7 1%

• Most application: Good enough!
• Accuracy vital: Find better method! (random swap)

• Cluster overlap most important factor

Effect of different factors

Conclusions

How effective:
• Repeats + Maxmin reduces error 4.5 0.7

Is it enough:
• For most applications: YES
• If accuracy important: NO

Important factors:
• Cluster overlap critical for k-means
• Dimensions does not matter

Random swap

Random swap (RS)

K-means

Initialize

Repeat
5000 times

Swap

Only 2 iterations

P. Fränti, "Efficiency of random swap
clustering", Journal of Big Data, 2018 CI=0

Birch2

0

2

4

6

8

10

0 1 10 100 1000 10000
Time

M
SE

Random
Swap

Repeated k-means
(2500 repeats)

5

10

20

0

18
K-means

(single)

(845) (2500)

9
(41)

(2067)

(64)

(34)

(1)

How many repeats?

P. Fränti, "Efficiency of random swap clustering", Journal of Big Data, 2018

The end

	Slide Number 1
	Slide Number 2
	Goal of k-means
	Goal of k-means
	Slide Number 5
	K-means algorithm
	Slide Number 7
	Slide Number 8
	Iterate by k-means
	Iterate by k-means
	Iterate by k-means
	Iterate by k-means
	Iterate by k-means
	Iterate by k-means
	Iterate by k-means
	Final result
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72

