Knowledge and Information Systems
https://doi.org/10.1007/510115-021-01623-y

REGULAR PAPER

®

Check for
updates

Adapting k-means for graph clustering

Sami Sieranoja’ ® - Pasi Franti’

Received: 13 January 2021 / Revised: 1 November 2021 / Accepted: 7 November 2021
© The Author(s) 2021

Abstract

We propose two new algorithms for clustering graphs and networks. The first, called
K-algorithm, is derived directly from the k-means algorithm. It applies similar iterative
local optimization but without the need to calculate the means. It inherits the properties of
k-means clustering in terms of both good local optimization capability and the tendency
to get stuck at a local optimum. The second algorithm, called the M-algorithm, gradually
improves on the results of the K-algorithm to find new and potentially better local optima.
It repeatedly merges and splits random clusters and tunes the results with the K-algorithm.
Both algorithms are general in the sense that they can be used with different cost functions.
‘We consider the conductance cost function and also introduce two new cost functions, called
inverse internal weight and mean internal weight. According to our experiments, the M-
algorithm outperforms eight other state-of-the-art methods. We also perform a case study
by analyzing clustering results of a disease co-occurrence network, which demonstrate the
usefulness of the algorithms in an important real-life application.

Keywords Graph mining - Graph clustering - Community detection - Cluster analysis -
k-means

1 Introduction

Graph clustering is an important problem in several fields, including physics [1, 2], engi-
neering [3], image processing [4], and the medical [5] and social sciences [6]. A cluster in a
graph is a set of nodes that has more connections within the set than outside the set [7].

Clustering can be useful for understanding large networks where the numbers of nodes
and edges are too large for a human analyst to examine individually. Dividing the network
into separate clusters and examining the content of those clusters and their relations can be
more useful for the practitioners than examining the whole network.

B Sami Sieranoja
sami.sieranoja@uef.fi

Pasi Frinti
pasi.franti@uef.fi

Machine Learning Group, School of Computing, University of Eastern Finland, P.O. Box 111,
80101 Joensuu, Finland

Published online: 04 December 2021 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01623-y&domain=pdf
http://orcid.org/0000-0001-9110-2421

S. Sieranoja, P. Franti

The term “graph clustering” is somewhat ambiguous and can refer to very different types of
clustering problems, including network community detection [7-13], graph clustering [14],
graph partitioning [4, 15, 16], graph set clustering [17] or graph based clustering. These
terms are somewhat ambiguous and often used interchangeably, which can cause confusion.
They can refer to any one of the following cases:

e clustering any kind of data by first converting the whole dataset into a graph [14];

e grouping the nodes of a single graph into distinct clusters when the number of clusters is
controlled by the user [4];

o finding clusters in the graph without any control on the number of clusters [7-13];

e clustering a set of graphs where each data object is a graph of its own [18, 19]; and

e separating the graph into clusters while constraining the size of the clusters [15].

In this work, we focus on producing a disjoint clustering of the nodes of a weighted
undirected graph. The number of clusters is controlled by the user.

Algorithms use different strategies for the clustering. Divisive or cut-based methods [4,
20, 21] split a graph recursively into sub-networks until some stopping condition is met.
Agglomerative methods [9, 22, 23] start by placing each node in its own cluster and then
merging the clusters. Iterative algorithms start from some initial clustering, which is then
improved via small changes, such as switching an individual node from one cluster to another.
Graph growing or seed expansion [11, 24] selects a seed node and then gradually grows a
cluster using (for example) best-first-search.

Many algorithms also use a cost function to guide the clustering process. For example, a
cost function can be used to select the optimal split operation [4] or best partition for a given
node [3]. An algorithm can include several different strategies. The Louvain algorithm [9],
for instance, applies both an agglomerative approach and iterative optimization.

Two of the most popular cost functions are modularity [1, 2, 23, 25] and conductance [4,
16]. Modularity has the deficiency that it cannot be directly optimized for a specific number
of clusters. It also has a tendency to produce very large clusters, which is known as resolution
limit [26]. While conductance can be optimized for a specific number of clusters, it is sensitive
to outliers and can produce unbalanced clustering with tiny clusters.

To overcome these problems, we propose two new cost functions called inverse internal
weight (ITW) and mean internal weight (MIW). IIW provides more balanced clustering than
the alternatives, while MIW can detect dense clusters and is good at disregarding noise and
outliers.

In this paper, we also introduce two algorithms to optimize these cost functions. The first,
called the K-algorithm, is a direct derivation of the classical k-means algorithm. It applies
similar iterative local optimization but without the need to calculate the means. It inherits
the properties of k-means clustering in terms of both good local optimization ability and the
tendency to get stuck at a local optimum. The second algorithm, called the M-algorithm,
gradually improves on the results of the K-algorithm. It finds new local optima, which often
provide a better solution. It works by repeatedly merging and splitting random clusters and
tuning the results using the K-algorithm. Both algorithms work on all of the discussed cost
functions. They can also be applied for any other cost function that satisfies certain criteria
(for further discussion of this point, see Sect. 4.1).

We also introduce new graph benchmark datasets that make it easy to visualize our results.
We compare the proposed methods against existing state-of-the-art algorithms and cost func-
tions on these datasets.

As a case study, we analyze connections between diseases in a disease co-occurrence
network [27], that is, a graph where correlating diseases are connected. We constructed this

@ Springer

Adapting k-means for graph clustering

type of graph based on electronic health care records in the North Karelia region of Finland.
We built two separate graphs, one for ICD10 blocks (with 188 nodes) and one for individual
ICD10 disease codes (with 644 nodes). These are too large for manual investigation, but the
clustering results are suitable for expert analysis. Here, we used clustering to find the most
relevant connections from the network. This provides a good overview of the contents and
structure of the disease network.

This type of clustering-based analysis tool is currently lacking in both the scientific lit-
erature and healthcare practices. Most community detection methods lack a proper way to
control the size of the clusters, which often tend to become too large for manual investigation.
This is a serious deficiency of the current algorithms and cost functions. Many algorithms
are also missing a mechanism to control the number of clusters. In addition, the cost func-
tion used in the optimization may lead to very unbalanced clustering containing overly large
clusters that are impossible to investigate manually.

Many papers consider it a drawback if the number of clusters needs to be specified by the
user [8, 13, 28]. This is undoubtedly true in many scenarios. However, the hidden assumption
of this view is that the data have some specific number of clusters and the task of the algorithm
is to detect it. This scenario is often not true in real-world datasets. It may be possible to
cluster one dataset in several meaningful ways, and the proper number of clusters may depend
on the specific needs of the user.

In the disease co-occurrence network analysis, it is desirable to have clusters of roughly
the same size, and one way of controlling this is to specify the number of clusters. If the
clustering algorithm and cost function produces somewhat balanced clusters, and the goal is
to split N nodes into clusters of roughly size n, then the number of clusters can be chosen
simply as k = N/n. For example, if a network of 188 diseases is split into 10 parts, then each
part will contain roughly 19 diseases—small enough that the contents of the cluster can be
investigated manually (e.g., in the form of a similarity or correlation matrix).

The proposed clustering algorithms are able to work in this scenario. The clustering results
reveal many interesting properties of the network. For example, we can see that mental health
diagnoses are so connected to diagnoses related to alcohol and drug use that they form one
cluster.

In summary, our work has the following contributions:

e We propose two new graph clustering algorithms. The algorithms work with several dif-
ferent cost functions and allow running time to be adjusted in a flexible manner to ensure
an acceptable compromise between speed and quality.

e We propose two new cost functions: IIW, which provides more balanced clustering, and
MIW, which detects dense parts as clusters and disregards noise and outliers.

e We demonstrate the usefulness of the proposed algorithms via a case study of disease
co-occurrence analysis.

2 Clustering cost functions

Many methods have been proposed for estimating clustering quality in the absence of ground
truth knowledge (e.g., correct partition labels). Clustering quality functions typically favor
good separation of clusters (low Ej) and high internal weight (high W;), but there are differ-
ences in how these factors are emphasized and scaled.

In this section, we review the three cost functions implemented in the proposed algorithm.
We introduce two new cost functions: MIW and IIW. One of the cost functions (conductance)

@ Springer

S. Sieranoja, P. Franti

Table 1 Clustering cost functions

Name Type Formula Range Studied in
Conductance (CND) Minimize (|) 1 k E; [0, 1] [4,8,12,31]
k2T
i=1
Mean internal weight (MIW) Maximize (1) . ko w [0, o0] Proposed
PN
i=1
Inverse internal weight (ITW) Minimize (|) M i I [1, o0] Proposed
K2 = W

Il
-

W, = 2(7+6+8)=42 T, =E, + W,=62

MIw = 2= 22— 1400
n; 3

w =-—=21=0.024
Wi 42

cND =2i=2 - .32
T; 62

Fig. 1 Single cluster’s contribution to the cost function. Most cost functions are based on internal (W;), external
(Ej), and total (T';) weights of the clusters. The studied cost functions are additive, which means that the quality
of clustering is given by summing up the contributions of individual clusters (and possibly scaling the result
with some constant)

has previously been studied. All of these cost functions are additive, which means that the
quality of clustering is given by the sum of qualities for individual clusters [7]. The studied
cost functions are summarized in Table 1 and an example is shown in Fig. 1.

Notations

N Number of nodes

k Number of clusters

ni Size of cluster i

wi; Weight between node j and i

Wi Sum of internal weights in cluster i

Wij Sum of weights from node j to nodes within cluster i

M; Total weight (mass) of node i

M Total weight (mass) of whole graph

E; Sum of external weights from cluster i

E;j = M; — Wj;, external weights from node j to clusters other than i
T; =E;+ W;, total weight of edges connecting to nodes in cluster

@ Springer

Adapting k-means for graph clustering

2.1 Conductance

The term conductance has been used in slightly different ways in several studies [7, 12, 29,
30]. In this work, we use a formulation of conductance based on a definition by Leskovec et al.
[30]. We define the conductance (in Table 1) of a cluster as the weight of all external edges
divided by the total weight of the nodes in the cluster. The sum of the values of individual
clusters is normalized by dividing it by the number of clusters.

Minimizing conductance leads to clusters with good separation from the rest of the network
(low Ej;) and high internal weight (high W;). Conductance also avoids creating overly small
clusters. This can be understood by considering a case wherein a cluster consists of just a
single node. Then, E; = T; and conductance is 1.0 (worst) for that cluster. In the case of an
empty cluster, it would be undefined (0/0), which we interpret in this case as 1.0.

2.2 Mean internal weight

The MIW cost function (Table 1) scales the internal weights W; by dividing by the cluster
size n;. Larger values are considered better. While the unweighted version of the cost function
has previously been considered by Yang and Leskovec [31], to the best of our knowledge, it
has not yet been used as a target function for optimization.

The cost function favors small dense clusters because cluster size is the denominator.
However, if the graph contains large and strongly connected subgraphs (i.e., almost complete
graphs), it may favor large clusters instead. As an example of the second case, consider a
complete graph of four nodes where all six edge weights have value 1. Splitting this graph
into two clusters of sizes 2 and 2 would yield a cost function value of 2(1)/2 + 2(1)/2 = 2,
whereas keeping it as one cluster would yield the value of 2(1 + 1+ 1+ 1+ 1+ 1)/4 = 3.
In other words, having one large cluster and one empty cluster has almost the same value
as equally splitting into two clusters. As a result, the cost function may sometimes produce
empty clusters.

2.3 Inverse internal weight

The ITW cost function (Table 1) calculates the sum of inverse weights inside each cluster.
Smaller values are considered better. The inverse weights are scaled to the range [1,00] by
multiplying them by the mean weight of a perfectly balanced cluster (M/k). In the case of
optimal clustering of k completely separated and balanced clusters, all W; would equal M/k
and clustering would take the value 1.0.

There are two reasons for using the inverse weight 1/W; rather than the mean weight
Wi/n;. First, doing so ensures that all nodes will be assigned to a cluster to which they are
connected. As an example, consider a case wherein a node is assigned to a small cluster A
to which it has no connection, but there exists another large cluster B to which it does have
a connection. If the node changes from cluster A to cluster B, W will remain unchanged,
but Wp will increase, which will provide a smaller (better) cost value as expected. Mean
weight, on the other hand, may do the opposite by moving the node from B to A, even if it
has no connection there. This happens when the node has only a weak link to cluster B, but
the penalty of the increased cluster size outweighs the effect of the node weight.

Second, inverse weighting favors more balanced clustering. If a node has an equally strong
connection c to two clusters A and B, which have weights Wg and W so that W > Wy,

@ Springer

S. Sieranoja, P. Franti

M=T+T, =48

Wi=2(2+2+2) = 2 . 47 =2(4+3+2+2+4) =30
E;=[+1+]] =3 |5 \Qﬁfq' \QEz =1 =3

Tl =W1+E1 =15 ‘ 2 .2 Tz —W2+E2 =33
O [} *5
|
Z 12 30 1vE 1(B B
i —
MIW—k (+ 4) = 5.750 CND _k E T- (15 33)—0.145

1
kZZW 22<12+%> =it

Fig. 2 Example of cost calculation of three different cost functions: mean internal weight (MIW), inverse
internal weight (ITW), and conductance (CND). Every edge is counted twice, once for each node it connects

then assigning the node to cluster A would provide a more optimized result. This is because
the derivative of f = 1/x is f’ = —1/x? and thus f'(W) < f'(Wg).

The cost function is also guaranteed to provide exactly k clusters for the optimal cost.
This can be understood by considering a case wherein one cluster is empty. Since the weight
of an empty cluster is W; = 0, its inverse weight would be infinite. Thus, as long as there
exist sufficient data for all k clusters and there exists a clustering with finite cost, an optimal
algorithm would lead to a clustering containing k non-empty clusters.

Examples of CND, MIW and IIW are provided in Fig. 2. While CND is based on the
external links (E;), the two proposed cost functions rely merely on the within-cluster statistics.
This more closely follows the standard k-means cost function (sum of squared errors), which
completely ignores between-cluster relations.

3 Existing algorithms

In this section, we briefly review the most relevant of the existing algorithms. For more
extensive reviews, see [7, 8, 32-34].

3.1 Hierarchical algorithms

Hierarchical algorithms work in either a bottom up or top-down manner. Top-down algorithms
are often referred to as cut-based methods [4, 20, 21]. They recursively split the graph into
sub-networks until some stopping condition is met. Bottom-up methods, also known as
agglomerative clustering, [9, 22, 23] start by placing each node in its own cluster and then
merging the clusters until a similar condition is met.

The Walktrap [22] is an agglomerative method based on the observation that random walks
in graphs often become trapped within a single cluster. The probability that two nodes will
appear in the same random walk is higher if they are in the same cluster. Walktrap is based
on Ward’s method, which minimizes squared distances inside the cluster.

@ Springer

Adapting k-means for graph clustering

The Louvain algorithm [9] is also an agglomerative method but its goal is to minimize
modularity. It starts with each node in its own cluster and then sequentially assigns nodes to
the cluster that minimizes the total modularity. This process is iterated until a local optimum
is reached (i.e., there is no single move of a node to another cluster that would improve the
cost value). After local optimization, it reduces clusters to single nodes and starts iterating
the optimization again.

The Vieclus method [35] optimizes the modularity cost function using a combination
of genetic algorithm and local search. It uses clusterings from the Louvain algorithm to
initialize the population. It is the current state-of-the-art for optimizing modularity. However,
the Louvain algorithm has the benefit of being able to control the number of clusters.

The NCut method [4] minimizes conductance by formulating graph clustering as an eigen-
value problem on the similarity matrix of the graph nodes. Tabatabaei et al. [16] proposed a
faster O(N log>N) algorithm called GANC to optimize the same cost function.

The Sbm_dI method [36] fits the graph into a stochastic block model that aims to find the
most likely model parameters that generates the observed network. It uses greedy agglomer-
ative heuristic which also tries to detect the correct number of clusters. The implementation
also enables the minimum and maximum bounds to be given for the number of clusters it
returns.

3.2 Iterative algorithms

Iterative algorithms start with an initial clustering that is improved by small changes. The
changes are typically made on the cluster partitions by moving nodes (individual or small
groups of nodes) from one partition to another, aiming to optimize some criterion for clus-
tering fitness. The process stops when no change improves the solution.

An early example of this approach is the Kernighan—Lin algorithm [3], which aims to find
an optimal way to cut a graph into two sub-graphs. The two arbitrary initial cluster partitions
are improved by finding the two nodes to swap between partitions that lead to the largest
improvement in the minimum cut criterion. This is continued until no further improvement
is possible.

The Gemsec method embeds graphs into vector space and performs centroid based clus-
tering in the vector space [37]. It combines node embedding cost and sum of squared error
clustering cost into the same cost function and then uses gradient based iterative optimization
for this cost function.

3.3 Balanced clustering

Several methods [38—40] aim to achieve a balanced clustering by minimizing the total cut
on the graph (E;) while constraining the maximum cluster size to (1 + ¢) times the average
cluster size. The constraint parameter is typically a small number (< 0.05). Complete balance
(¢ = 0) has also been considered [40]. KaffpaE is an evolutionary algorithm that optimizes
this cost function. It uses a novel combine operator that guarantees that the fitness of the new
offspring will be at least as good as that of the best of the parents.

The FluidC algorithm [41] is based on the idea of fluids (communities) interacting by
expanding and pushing each other in an environment (graph) until a stable state is reached.
It utilizes an update rule that maximizes the number of connections within a cluster scaled
by the inverse of the number of vertices composing a cluster. This guarantees k non-empty
clusters.

@ Springer

S. Sieranoja, P. Franti

3.4 Graph growing and seed expansion

Clusters can also be formed by gradually growing them from a seed node, typically by using
breadth-first search. Karypis and Kumar [24] aimed to achieve an equally sized split of the
graph by starting from a random node and then expanding the cluster until half of the vertices
are included. This is repeated 10 times. The result with the smallest edge cut is selected as
an intermediate result which is improved using the Kernighan—Lin algorithm.

Whang et al. [11] aimed to find overlapping clusters using a process which they called seed
expansion. They used several heuristics to select good seeds. One of these heuristics selects
nodes in the order of node degree, while disregarding the neighbors of the node in subsequent
selections. Clusters are then grown from the seeds by greedily optimizing conductance in
each step.

4 K-algorithm and M-algorithm

Although many iterative and hierarchical algorithms for graph clustering exist, a k-means
based solution is still missing. The main reason for this is that k-means requires calculating
the mean of a cluster, which is seemingly not possible for graphs. However, we implement
a sequential variant of k-means which assigns the nodes to the closest cluster without cal-
culating distance to the mean. This is done by using a delta approach, which calculates the
change in the cost function value before and after the assignment. The proposed algorithm
is called the K-algorithm; as it resembles the k-means algorithm but without using means.
In Sect. 4.4, we also introduce a merge-and-split based M-algorithm which improves on the
results of the K-algorithm.

4.1 K-algorithm: greedy local optimization

The K-algorithm (Algorithm 1) starts from an initial solution and then iteratively tunes it
toward a better solution. It can be used to improve any initial clustering. Nonetheless, the
quality of the results depends heavily on the initial clustering. We, therefore, introduce a
density-based initialization method (Sect. 4.3) that is more effective than a simple random
partitioning. The effect of the initialization is studied in Sect. 6.3.

The K-algorithm iteratively improves the initial solution by processing the nodes sequen-
tially, in random order (line 5). For each node, the method considers all clusters (line 14). It
changes the cluster of the node if this improves the cost function (line 18). The delta calcu-
lation (line 15) for the selected cost functions requires recalculating Wy;, the sum of weights
from node i to all possible clusters x. This is done by looping through all edges adjacent to
node i (line 10) and adding to the weight sum of their cluster.

After all nodes have been processed, the algorithm starts another iteration. The iterations
continue until no changes occur and the cost function can no longer be improved by changing
the partition of a single node (line 22).

@ Springer

Adapting k-means for graph clustering

Algorithm 1: K-algorithm (graph,k,cluster)

INPUT:
graph (with N nodes)
k = number of clusters
cluster = initial clustering (optional)
1 IF cluster == NULL
2 cluster = InitialPartition (graph, k)
3 DO
4 changed = 0
5 FOR i=SHUFFLE(1:N) // Process values 1..N in random order
6 old = cluster[i]
7 newpart =1
8 bestdelta = INF
9 Wxi = 0 for all x
10 FOR j=1:SIZE(graph[i]) // Loop all connections of i
11 (nodelId,weight) = graph[i][]j]
12 x = cluster [nodeId]
13 Wixi += 2*weight
14 FOR y=1:k
15 d = Af(i,cluster[i],j) // Depends on Wi (see Section 4.2)
16 IF d < bestdelta
17 bestdelta = d
18 newpart = j
19 IF newpart != old
20 changed += 1
21 cluster[i] = new

22 WHILE changed > O
23 RETURN cluster

In theory, the K-algorithm can work with any cost function. In practice, there are a few
constraints. First, the delta of a given node should be calculated quickly without looping
through the entire dataset. Second, the optimal value for a cost function should produce k
non-empty clusters when k is a parameter of the algorithm.

4.2 Cost function delta calculation

A key part of the K-algorithm is finding the partition with the best cost function for a given
node (lines 14—18). Finding this partition requires calculating the delta value of moving the
node in question from its current partition x to another partition y for all possible partitions.

The delta value can be calculated by creating a new clustering (C—> C”) where the node
Jj is moved from its old cluster X to a new cluster Y. The delta is then calculated as the
difference between these two clusterings:

Af(, X, Y) = f(C") = f(O) €]

However, in practice, this is very slow, since calculating the cost function for an entire
dataset requires looping through all edges of the graph. It is therefore better to directly
calculate the delta value. Since the cost functions are additive (see Figs. 1, 2), only changes
in cluster X, from which the node is removed, and cluster Y, to which it is added, affect the
delta:

Af(J, X, Y) = Af(Cx) + Af(Cy) (©))

@ Springer

S. Sieranoja, P. Franti

These can be further split into cost before change (Cx, Cy) and cost after change (Cx’,
CY'):

Af(j.X.Y)= f(Ck)+ f(C}y) — f(Cx) — f(Cy) A3)

These components of the delta are calculated differently for each cost function. In the case
of mean weight, they are calculated as follows:

Wy — Wy Wy + Wy; Wy W,
C/ = C/ = M C = — C = 7) 4
1€)== f(G) = 5= o= fCn =22 @)
The full delta function for mean weight (MIW) is therefore:
W, — Wy; Wy + Wy; Ww. w,
AMIW(],X,Y):(x x)+(y)/J)_i/r_iy (5)
ny — 1 ny+1 Ny ny
Applying a similar derivation in the case of IIW yields the following:
ATIW(G,X,Y) = + ! ! ! (6)
o (We = Wy) (Wy+Wy) We W,
For conductance (CND), where Tx — Wy = Ey, we get:
Ty — M) — (Wy — Wy;
ACND (. X. ¥y = (L= Mi) = (W — Wy)
T, — M;
+ (Ty + M;) — (Wy + Wyj) =W T, -Wy
Ty + M, Ty Ty !

4.3 Density based initialization

The initialization method (Algorithm 2) grows new clusters into dense parts of the graph.
The nodes are sorted based on density, and the densest (central) node is chosen as the seed
node for the first cluster. A new cluster is then grown to this position by expanding from the
seed node (line 10). The next cluster is grown from the second densest node that has not yet
been assigned to another cluster.

Algorithm 2: InitialPartition(graph, k)
1 FOR i=1:N
2 cluster[i] = NULL
3 graph=SORT (graph,density)
4 seed=cluld=1
5 WHILE clulId <= k AND seed <= N
6 // Grow a new cluster from the highest density node
7 // that is not already assigned to a cluster
8 WHILE cluster([seed] != NULL
9 seed += 1
10 cluster = GrowCluster (graph,cluster,cluld,seed,0.8* (N/k))
11 cluld += 1
12 FOR i=1:N
13 IF cluster[i] == NULL
14 cluster[i] = RAND(1, k)
15 RETURN cluster

@ Springer

Adapting k-means for graph clustering

Cluster growing (Algorithm 3) is used both in the density-based initialization and later in
the merge-and-split algorithm (Sect. 4.4). It starts by creating a new cluster C; that consists
of a single seed node. New nodes are then merged to it in a best-first search manner. That is,
the nodes are sequentially added so that the algorithm always picks the node j that has the
highest sum of edge weights (W;;) to the cluster i (variable nodeToCluWeight) and is not yet
assigned to another cluster. This continues until a specific cluster size is reached (line 3), or
there are no more nodes with W;; > 0 (line 6).

In density-based initialization, the size of the grown cluster is selected as 80% of the
average cluster size (0.8(N/k)). This means that 20% of the nodes are left without a cluster
label. For these, the labels are chosen randomly (Algorithm 2, lines 12—14). The Kalgorithm
later fine-tunes these to more suitable partitions.

It is sufficient to cover 80% of the dataset with the cluster growing and leave the rest for
the K-algorithm to optimize. If the cluster growing was to cover 100% of the dataset, the last
clusters would sometimes be too fragmented for the K-algorithm to optimize.

Algorithm 3: GrowCluster (graph,cluster,cluld, seedId,growSize)
1 nodeToCluWeight = [0,0...0]

2 nodeToCluWeight [seed]=1

3 FOR i=l:growSize

4 // External node with highest weight to current cluster
5 nodeToAdd = arg max (nodeToCluWeight[x])
) IF nodeToCluWeight [nodeToAdd] <= 0

7 RETURN cluster

8 cluster[nodeToAdd] = cluld

9 nodeToCluWeight [nodeId] = O
10 // Loop all connections
11 FOR j=1:SIZE (graph[nodeToAdd])
12 (nodeld,weight) = graph[nodeToAdd] []]
13 IF nodelId not already in cluster
14 nodeToCluWeight [nodeId] += weight

15 RETURN cluster

The initialization method depends on the estimation of node density. This is calculated
using Eq. (8) by looping all connected nodes and multiplying the neighbor node’s total weight
(M;) by the edge weight (w;;) connecting to that neighbor. The idea is that a node can be
considered central if it has strong ties to other nodes that are themselves central.

dens(i) =Yy wiM; (8)
JeG@)

Here, G(i) represents the set of nodes to which node 7 is connected (w;; >0). In our data, the
size of G(i) is only a small fraction of the size of the data, N. If G(i) were in the order of O(N)
(e.g., in case of complete graph), it would increase the time complexity of the initialization
to O(N?). In this case, it would make sense to limit G(i) to only the most significant edges.

4.4 M-algorithm
In most cases, the K-algorithm clusters the dataset fast and produces reasonable results.

However, it always converges to a local maximum wherein no single change in a node
partition can improve the cost function. This can sometimes be the correct clustering, but

@ Springer

S. Sieranoja, P. Franti

K-algorithm

Merge
and
Split

Fig. 3 The K-algorithm needs an initial clustering as a starting point. We use density-based initialization (part
1) which grows new clusters from dense parts of the graph (nodes A, B and C). The local optimization of
the K-algorithm (part 2) can then fine-tune this initial clustering. The mergeandsplit algorithm can further
improve the solution by first merging a random pair of clusters (part 3) and then splitting one cluster (part 4)
by growing a new cluster from random node D. The results are fine-tuned with the K-algorithm (part 5). The
algorithm usually needs to be repeated several times for successful clustering

often there is room for further improvement. For this reason, we will next introduce the
M-algorithm which is based on a merge-and-split strategy.

The M-algorithm (Algorithm 4) repeats the K-algorithm multiple times. It disrupts the
stable state produced by the K-algorithm by first merging two random clusters (line 5) and
then splitting one random cluster (lines 8—12). This effectively reallocates one cluster into
a different part of the data space. The solution is then fine-tuned to a new local optimum
using the K-algorithm. If this new solution improves on the previous local optimum (line
15), it is kept as the current solution; otherwise, it is discarded. The merge-and-split process
(Fig. 3) is repeated multiple times (line 2). The number of repeats is a user-given parameter
that enables a flexible tradeoff between clustering quality and processing time.

Itis usually good to merge clusters only if there are some links between them. Therefore, we
choose the two clusters according to a probability defined by the strength of the connections
between them. If the clusters have a strong connection, the merge probability is higher. If
there are no connections between them, the merge probability is zero. For a pair of clusters
(A, B), the merge probability is defined as:

_ Cas
P(A, B) = = ©)

Here, the variable E is the total sum of weights between all clusters (E = Y _E;), and Cap
is the total sum of weights between clusters A and B. Therefore, summing p(A,B) for all
possible pairs yields the value 1.0.

We perform the split by selecting a random cluster and then growing a new cluster from
a random node inside that cluster. The size of the new cluster is selected randomly between

@ Springer

Adapting k-means for graph clustering

5 and 95% of the size of the original cluster. This sometimes produces unequal splits and
therefore offers a better chance to also solve datasets that have clusters of unequal sizes.

Algorithm 4: MergeAndSplit(graph,k,R)
INPUT:

graph (with N nodes)

k = number of clusters

R = number of repeats

1 K-algorithm(graph, k,NULL)

2 FOR 1i=1:R

3 newClu = cluster

4 (A,B) = choose randomly, according to Equation 9

5 newClu = MERGE (newClu, A,B)

6

7 // Perform a split

8 cluld = RAND(1,k)

9 unbalanceFactor = RAND(0.05,0.95)
10 growSize = unbalanceFactor*SIZE (cluld)
11 seedId = random node from cluster cluid
12 newClu = GrowCluster (graph,newClu,cluld, seedId,growSize)
13
14 newClu = K-algorithm(graph, k,newClu)
15 IF cost (graph,newClu) > cost(graph,cluster) // improvement
16 cluster = newClu

17 RETURN cluster

The merge-and-split process (Fig. 3) is repeated multiple times (line 2). The number of
repeats R is a user-given parameter that enables a flexible tradeoff between clustering quality
and processing time.

4.5 Time complexity

The time complexity of the K-algorithm (Algorithm 1) can be calculated by analyzing the
number of times a line is executed. The first for-loop (line 5) processes all N points. Inside
this loop, the recalculation of Wy; loops all connections in O(IEI/N) steps and the calculation
of the delta value for all clusters takes k steps. This makes the first for loop have a total of
O(N(k +EI/N)) steps. Other variables needed by the delta calculation (Wj, Ej), also need to
be updated after changing the cluster of a node but these can be updated in O(1) time.

The entire process (lines 3—22) is repeated for / iterations, until the algorithm converges.
This makes the total time complexity of the K-algorithm O(IN (k +|EI/N)). I is a small number
that ranged from 4 to 78 in our experiments. It increases slightly with dataset size and other
properties (see Table 5).

The initialization of the K-algorithm (Algorithm 2) is not a bottleneck in the algorithm.
The time complexity of the initialization is k times (line 5) that of growing a new cluster.
The time complexity of cluster growing (Algorithm 3) depends on the size of the cluster (line
3), which is O(N/k), and on the average number of edges (line 11) which is O(IEI/N). This
makes the time complexity of growing one cluster O(IEl/k) and the initialization as a whole
O(E)).

The time complexity of the M-algorithm (Algorithm 4) is determined by the number of
times the K-algorithm is repeated (line 14) and is O(RIN (k +|EI/N)) in total where R is the

@ Springer

S. Sieranoja, P. Franti

number of repeats. Other parts of the algorithm, the merge and split operations are minor
compared to the O(IN (k +IEI/N)) complexity of the K-algorithm. The merge operation (line
5) is trivial and takes O(N/k) time. The splitting is done by cluster growing (line 12) which
is O(IEV/k).

The time complexity of both the K- and M-algorithms is therefore almost linear O(V)
with respect to the number of nodes. This can be verified in Fig. 5 in the experimental results.

5 Experimental setup
5.1 Datasets

We performed our experiments using three types of datasets (see Table 2):

e a k-nearest neighbors (kNN) graph of numerical datasets;
e artificial graphs; and
e disease comorbidity networks.

To enable visual inspection of clustering results, we generated kNN graphs with parameter
k = 30 from selected numerical 2D datasets taken from the clustering basic benchmark [42].
We used the datasets S1-S4 and Unbalance, which we converted to kNN graphs using the
method in [43]. The resulting graphs were used as input for the clustering algorithm.

The distances in the graph are converted to weights (similarities) as follows:

Wy = max(d) — d(x, y) (10)
max(d)

where max(d) is the maximum distance in the entire graph.

We also generated three additional 2D sets (G3A, G3B, UNI) to illustrate the properties of
the cost functions. The sets G3A and G3B contain three separate Gaussian clusters, each of
which contains both a very dense and very sparse (low- and high variance) area. The clusters

Table 2 Datasets

Dataset Graph type Nodes Avg. degree Clusters "t
sl kNN 5000 30 15 -

s2 kNN 5000 30 15 -

s3 kNN 5000 30 15 -

s4 kNN 5000 30 15 -
Unbalance kNN 6500 30 8 -
G3A kNN 900 30 3 -
G3B kNN 1800 30 3 -
UNI kNN 900 30 - -
icdA Disease comorbidity 644 53 19 -
icdB Disease comorbidity 188 50 19 -
varN Artifical 1k...1024 k 30 30 0.63
varDeg Artifical 5000 4...100 30 0.65
varMu Artifical 5000 30 30 0.60...0.80

@ Springer

Adapting k-means for graph clustering

in G3B are more overlapping (less separated) than in G3A. The UNI dataset contains random
noise uniformly distributed in the 2D plane.

The icdA and icdB datasets are disease comorbidity networks [27] where selected dis-
eases represent nodes in the graph. The diseases have been recorded using the International
Classification of Diseases (ICD10) [44]. In the ICD10, diagnoses are organized in a hier-
archy where the first letter of a code refers to the category of the diagnosis. For example,
in code F31, F indicates that the diagnosis relates to mental and behavioral disorders. F31
specifies a diagnosis of bipolar affective disorder. Codes are further grouped to form blocks
such as F30-F39 for mood [affective] disorders, and F20-F29 for schizophrenia, schizotypal
and delusional disorders. We constructed two variants of the network, each corresponding
to different abstraction levels. The first network, named icdA, consists of individual diseases
(e.g., F31) as the nodes. The second, named icdB, consists of the blocks (e.g., F20-F29).

Two diseases are linked if they co-occur in the same patients with sufficient frequency
that they are correlated. We use relative risk [27] to measure the strength of the connection
of the diseases. These networks were constructed using data for 51,909 patients. Data for
this study were obtained from a regional electronic patient database. We use the first letter
of the ICD10 coding scheme as the ground truth for the cluster labels. In the ICD data, most
relative risk values are between 0.5 and 5.0 but they can also be over 100. These outliers
would dominate the cost function optimization, and for this reason, we normalize them to
the range of [0,1] as follows:

r Wxy

an

Yy T 1% Wyy

We also generated three series of artificial graph datasets using the weighted network
benchmark generation tool proposed by Lancichinetti and Fortunato [10]. One key parameter
in this tool is the mixing parameter x;, which controls the proportion of links inside versus
between clusters. An w, value of O indicates that the clusters are completely separated; 0.5
means that 50% of the links are within the clusters; and 1 indicates that the clusters are
completely overlapping. We generated the varMu series by varying u; between 0.60 and
0.80. In the varDeg series, the average degree was varied, and in the varN series, the size of
the dataset was varied. For details, see Table 2.

5.2 Measuring clustering quality

To evaluate clustering quality with respect to the ground truth, we used two methods: nor-
malized mutual information (NMI) [45] and centroid index (CI) [46]. The NMI values are
within the range [0,1], where 1.0 indicates correct clustering. The CI value represents the
number of incorrectly detected clusters in the clustering results so that a value of 0 indicates
a correct clustering. The CI gives an intuitive cluster-level overview of the correctness of the
clustering, whereas NMI provides a more fine-grained, data-level measure.

5.3 Compared methods

Table 3 summarizes the algorithms used in our experiments (see Sect. 3). We compare
the proposed methods (K-algorithm and M-algorithm) against eight other algorithms. We
selected algorithms that (1) took the number of clusters k as a parameter, (2) could cluster
weighted networks, (3) were fast enough to run on a dataset of size 6500, and (4) had a
publicly available implementation. We found five algorithms (in Table 3) that matched these

@ Springer

S. Sieranoja, P. Franti

Table 3 Compared graph clustering methods

Algorithm Cost function Abbreviation Language References
Fluidc Density Fluide Python [41]
Gemsec SSE + embedding Gemsec Python [37]
KaffpaE Balance constrained total cut KaffpaE C++ [39]
Louvain Modularity Louvain C [9]
Normalized Cut Conductance ncut Matlab [4]
Sbm_dl Maximum likelihood sbmdl Python [36]
Vieclus Modularity Vieclus C++ [35]
Walktrap Sum of squared distances Walktrap C [22]
K-algorithm Inverse internal weight K-IW C Proposed
M-algorithm Conductance M-cnd C Proposed
M-algorithm Inverse internal weight M-IIW C Proposed
M-algorithm Mean internal weight M-MIW C Proposed

criteria. We also included the Vieclus and Louvain algorithms, which do not take the number
of clusters as a parameter but fit the other criteria. FluidC was targeted for unweighted graphs.
We also ran the standard k-means algorithm for datasets with numerical representations. We
used the implementations for the methods sbm_dl, gemsec, and fluidc from the CDlib package
[47] and Louvain and Walktrap from the iGraph library.!

We mainly used the default parameters for the algorithms. For KaffpaE, we set the balance
constraint ¢ = 20% to match that of the artificial graphs. The Vieclus algorithm required a
time limit (seconds) as a parameter which we set according to the formula N/100 (10 s for
dataset of size 1000).

Running time was measured as run on a single core. As the NCut implementation uses
parallel processing, its running times are not comparable to others. The experiments were run
ona Ubuntu 20.04 server with 20 processing cores (Intel® Xeon® W-2255 CPU @ 3.70 GHz).

6 Results

In this section, we examine the experimental results in five different parts. We first visually
compare the three cost functions using kNN graph datasets. We then show the numerical
evaluation results of the benchmark data with respect to the ground truth. We also study the
effect of the initialization on the K-algorithm’s performance. Next, we study how the dataset
parameters affect the number of iterations. Finally, we demonstrate the usefulness of the
method using disease comorbidity analysis as a case study.

6.1 Visual cost function comparison

We visually compared the cost functions to identify characteristics that simple clustering
validity functions like NMI may hide. The usefulness of the cost function also depends on
the clustering application. Therefore, the choice of a cost function should be left up to the

1 https://igraph.org/

@ Springer

https://igraph.org/

Adapting k-means for graph clustering

application specialist. Our goal is to provide information that will be useful in making such
decisions.

We performed the visual analysis based on kNN graphs of numerical 2D datasets. The
graph is first clustered using the proposed method. To ensure that the results were as close
to optimal as possible, we ran the M-algorithm for 100,000 splits and merges. The resulting
partitions are visualized using the original 2D dataset.

The results in Fig. 4 show that in the two extreme cases—that is, uniformly distributed
random data and three clearly separate clusters (with the correct k parameter)—there are no
notable differences between cost functions. The differences become visible in cases between
the extremes, when there exists (a) overlap between clusters, (b) random noise in the clusters,
or (c) a different parameter k compared with the ground truth.

The MIW cost function tends to form small compact clusters composed of nodes in the
dense area. These clusters contribute most to the cost function value. Optimizing the cost
function also forms one garbage cluster containing all the nodes in sparse areas. This can
be perceived either as an error or as a type of outlier detection that filters out less relevant
information. When k = 5, the other cost functions lead to splitting the denser areas instead
of the sparse areas.

Optimizing IITW leads to more balanced clustering. This can be seen especially in the case
of Gaussian clusters with k£ = 2, when conductance and MIW both split the three clusters
into one part consisting of two clusters and one part containing only one cluster. IIW, on the
other hand, splits the dataset into two equally sized parts containing 1.5 clusters. Otherwise,
the results are similar to those for conductance.

In the case of completely uniform data, we would expect clusters of equal size, since
the dataset does not have any visible clustering structure. However, MIW results in unbal-
anced cluster sizes, where the largest partition is double the size of the smallest partition.
Conductance also provides noticeably unbalanced results. IIW results in the most balanced
clustering.

In summary, we recommend that practitioners select their cost function depending on the
application:

e IIW is preferable when more balanced clustering is desired.

e MIW is preferable for detecting dense clusters and disregarding noise and outliers. It tends
to form one large garbage cluster from the noise points. Therefore, the number of clusters
should be set to k + 1 if k true clusters are required.

e Conductance generally worked well in many of the tested cases, but it may lead to very
unbalanced clustering if the data have isolated tiny clusters with external weight E; close
to 0.

6.2 Algorithm benchmark

In this section, we present a clustering quality comparison of the proposed method (K-
algorithm and M-algorithm) with eight other algorithms (Table 3). We ran the M-algorithm
for R = 100 merge-and-split iterations. We ran each of the tests 10 times and present the
mean values of the results.

The results are reported in Fig. 5 and Table 4. The prefixes K- and M- refer to the K- and
M-algorithms. Conductance, IIW, and MIW are referred to by the suffixes -CND, -INV, and
-MIW, respectively.

In the varN tests (Fig. 5), where data size is varied, the K-algorithm, M-algorithm, and
Gemsec clearly stood out from the rest. However, Gemsec’s running time was an order of

@ Springer

S. Sieranoja, P. Franti

Cost function
CND W MIW
------------------- Dataset: G3A ================--

.
b 2 X
R

--- Dataset: G3B --

M-algo parameter

Fig. 4 Comparison of the three cost functions: conductance (CND), inverse internal weight (IIW), and mean
internal weight (MIW). Three different datasets are used: three separate clusters (G3A), three sparse clusters
with a dense middle area (G3B), and uniformly distributed random noise (UNI). We vary the algorithm
parameter k (the number of clusters) to show how cost functions behave when the parameter is different from
ground truth. Colors are determined by the size of the cluster. Black indicates the largest cluster, followed by
red, blue, yellow, and green (in descending order)

@ Springer

Adapting k-means for graph clustering

NMI

NMI

NMI

m-alg
ncut,
vieclus

10000

100000

Number of nodes

R ¥
K - K - ok 4 e - D

70

Ue

75

ncut ——
sbmdl - =% -

fluide - -3 -
gemsec —=—

k-algo - -k - kaffpaE —o&— vieclus ——
m-algo —— louvain —@— walktrap = =£x -
> 100000

10000
1000

100

O
o 104
£
=1
0.14
0.014
0.001 ! !
1000 10000 100000 1x10°
Number of nodes
10000 g
e 1)
1000 3
100 E —
g
o
o
IS N
[3
[;’ o K K-k
F i Terar oS e b
0.1 W
].
0.01 Pl | n L L i T O 3
10 100
|El/N
10000 ¢ T T T
i e —
1000 E

T

"1005_-—6——-6——9/9/9—_9\9—‘9\9—4
»

Time (

Ty

F ko3
L "
10M

0.1

@
=]

Fig. 5 Results for varying number of nodes N (varN) are shown on top, average degree IEI/N (varDeg) in the
middle, and mixing parameter y; (varMu) on the bottom. Measurement of quality (NMI) is on the left, and
time (seconds) is on the right. In the case of the K- and M-algorithms, we used the IIW cost function. The
NCut runtimes are not comparable, as the implementation used parallel processing

@ Springer

S. Sieranoja, P. Franti

L1 00 00 00 99 'L 00 0¢ 00 00 00 00 Aut-o3[e-py
LT ! Tl oL 9L 4! 00 ¥l 01 00 00 00 puod-o3[e-jy
LT 00 €T 6 s L'L 00 oS €0 00 00 00 Aut-03[e-y
D
A8CI =N 0 = N/l %YL ="

LR A NIeA Soqrea NJATRA quur yu €D qun s I s Is
£9°0 0¥°0 YL'0 810 LT0 900 860 00T 690 8L°0 ¥6°0 660 denypem
19°0 0€°0 86°0 (344 Y20 €10 870 ¥9°0 Lo 080 S6'0 66°0 SN[OAA
LY'0 000 00 200 70 20 9%°0 L0 L0 8L°0 L8°0 68°0 [pwqs
SLO - 860 9L°0 LEO 20 €L’0 00'1 Lo 080 S6°0 66°0 nou
850 690 wo 870 870 LT°0 LY'0 S9°0 Lo 6L°0 60 66°0 ureAnof
99°0 L00 L0 80 S¥'0 LT0 1.0 L0 Lo 080 S6'0 66°0 gedjgey
290 £6°0 080 81°0 €€'0 870 o 6L°0 99°0 £9°0 96°0 66°0 REIE]
6¥°0 100 600 800 6%°0 (430 960 Lo ¥9°0 690 L8°0 68°0 oping
- - - - - - 860 080 1.0 LLO 160 ¥6°0 Sueaw-y
L9°0 0%°0 L60 290 0 0¢0 150 €L’0 €90 8L°0 260 96°0 MUBIW-OF[e- J/
8L°0 66'0 66'0 001 150 Se0 1.0 £9°0 1.0 080 S6°0 660 Aut-og[e- jy
LLO 860 660 18°0 870 8C0 0L0 98°0 89°0 8L°0 60 860 puod-o3[e-jy
L9°0 660 18°0 91°0 050 1€°0 ¥9°0 LSO 690 080 S6'0 860 Aut-03[e-y
INN

A8CI =N 0C =N/l %yL ="

BN NBA Sorea NJATRA quur yur €D qun s I zs s POWION

JyS1r oy uo sydeid [eroynIe pue ‘Q[ppIw Ay} UT JI0MIAU AJIPIGIOWOD)Jo] Ay} UO $JAseIep NN :SINsal jo Arewrwng § ajqe|

pringer

As

Adapting k-means for graph clustering

G 31 ur umoys sjuauILIddXa 9} WOIJ PJOJas dIe NIBA PUB ‘So(JIRA ‘NJALIRA 0] SINSY

Se (184 00 00 091 081 00 00 00 00 00 00 denyjem
L'8L VoL |4 S9l 091 061 08 el 01 00 00 00 SN[OAA
901 0'6C ¥'LT 00¢ 6 (4! 70 I'y 10 90 €'l 0 [puqs
LT - 00 00 (74! 0¢l 00 00 01 00 00 00 nou
¥'6 0'¢C SIl 0Ll 091 0¢l 16 el Sl 00 00 00 ureAnoj
(184 06l 8Y 0¢ 09 18 00 oY 00 00 00 00 gedjgey
(43 00 00 08 011 08 0C 01 01 (14 00 00 00swog
19 6°SI ¥'6 901] 1'6 10 Sy ST v'C 6'1 9C opmy

- - - - - - 90 (43 60 €1l ¥l 81 sugow-y
$9 06T 0c (! 8L 861 00 T ¥'C 80 00 00 Mueaw-o3[e- y

A8CI =N 0C = N/l %YL ="
L) AN NIeA Soqqrea NJATRA quur yur €D qun s I s Is

(panunuoo) ¢ 3|qe

pringer

Qs

S. Sieranoja, P. Franti

Table 5 Effect of dataset properties on number of K-algorithm iterations by varying the parameters N, 17, and
IEI/N (Table 1)

N Iterations Lt Iterations |IEV/N Iterations
1 6 50 4 4
2 6 52 4 5
4 9 54 5 6 10
8 8 56 5 8 12
16 8 58 8 11 14
32 9 60 8 15 20
64 13 62 8 20 53
128 21 64 8 26 13
256 22 66 10 34 11
512 42 68 16 44 4
1024 78 70 18 58 5
72 50 76 3
74 31 100 2
76 27
78 25
80 26

magnitude greater than the other methods, and it could not be run for the largest datasets. The
M-algorithm was the only algorithm that could solve the largest dataset (1,024,000 nodes).
The running times for most of the algorithms seem close to linear.

When varying the number of edges (varDeg; Fig. 5), the M-algorithm, NCut, and Vieclus
clearly perform better than the others. A smaller number of edges also decreases the number
of K-algorithm iterations (Table 5), which likely contributes to the K-algorithm’s poor per-
formance compared with the varN tests. In most algorithms, running times increase slightly
with larger [EI/N, but in the M- and K-algorithms, this increase is greater.

In the case of the disease co-occurrence network datasets (icdA and icdB), the M-algorithm
with IIW clearly performed better than the other methods. However, the ground truth here is
the existing human-made disease-level categorization. The algorithms might find different
(possibly better) clustering than the human categorization. A CI = 0 result is therefore not
expected with the imA and imB datasets.

No algorithm performed best on all datasets. However, the M-algorithm had the best
overall performance in terms of quality, as shown in Table 4 (CI = 1.7, NMI = 0.78). NCut
(CI = 2.7, NMI = 0.75) was second and the K-algorithm (CI = 2.7, NMI = 0.67) third.
KaffpaE (CI = 4.0, NMI = 0.66) and Walktrap (CI = 3.5, NMI = 0.63) performed well
on the kNN-based datasets (S1-G3) but had worse results for the Lancichinetti benchmark
(Fig. 5). Vieclus (CI = 78.7, NMI = 0.61), which also determined the number of clusters by
optimizing modularity, performed well on the Lancichinetti benchmark but not as well for
the kNN graphs. It obtained the right number of clusters for many datasets but failed in other
cases. It output 796 clusters (30 in the ground truth) for the dataset of size 1,024,000. This
result highlights the need to be able to control the number of clusters.

@ Springer

Adapting k-means for graph clustering

The main weakness of both the M-algorithm and the IIW cost function is data with large
cluster-size unbalance, as in unb, which has 20:1 unbalanced and well-separated clusters. For
this type of data, the hierarchical approach performs better, and NCut and Walktrap achieved
the best results. However, in additional tests, we were also able to solve this dataset with the
M-algorithm and the conductance cost function if the number of repeats was increased from
100 to 1000.

The running times in Fig. 5 show that the K-algorithm was the second fastest (after
the Louvain algorithm) in most cases. The quality of its results was also good. Table 4
shows that the K-algorithm was second best (tied with NCut) according to CI or third best
according to NMI. The M-algorithm also improved on the K-algorithm’s results for almost
all datasets except the easiest sets in the varN, varDeg, and varMu series and s1—s3, where
the K-algorithm’s results are also good (NMI within 0.01, CI close to 0.0).

6.3 Effect of initialization

In this section, we study the impact of the initialization method on the K-algorithm and
M-algorithm. We study two different initialization methods: density based initialization
described in Algorithm 2; and random partition initialization which assigns a random clus-
ter label to each node. For both these cases, we record the NMI value for (1) initialization,
(2) after K-algo convergence, and (3) after repeating M-algo for 100 times. The results are
summarized in Fig. 6.

The results show that the initialization method does not affect the results of the M-
algorithm nearly at all, as the corresponding results with both initializations are virtually

Initialization:
0.8 Random partition
— 0.6 1 M-algo
; 0.4 [K-algo
' B Init. only
0.2
0
S1 S4 unb G3B ich:ll 15 20 26 34 44 |
\Artificial graphs, varying |EI/N
1
Initialization:
0.8 Density
_ 06 [M-algo
; I K-algo
04 B Init. only
0.2
0

S1 S4 unb G3BicdA'11 15 20 26 34 44

I
_____________ 4

Fig. 6 Impact of initialization on algorithm result. The area of the M-algorithm signifies the improvement in
NMI over the K-algorithm (same with the K-algorithm and initialization)

@ Springer

S. Sieranoja, P. Franti

the same. However, in the case of the K-algorithm, the results are much worse for several
datasets (S1, S4, unb, 20) in the case of random partition initialization. The average degree
on the graph seems to be one affecting factor. The K-algorithm works better even with bad
initialization if the number of neighbors in the graph is large. This was the case with dataset
icdA (IEI/N = 53) and artificial graphs with |[EI/N > 26.

The above observations are in line with the previous results for k-means initialization for
numerical data, which indicates that k-means is highly sensitive to initialization [48]. There
are two ways to address this issue. The first is to use better initialization [48], and the second
is to change to a better algorithm—such as random swap [49]—that does not depend on the
initialization. In the case of graph data, we used density-based initialization to implement the
first approach and a split-and-merge strategy in the M-algorithm to implement the second.

6.4 K-algorithm iterations

The number of iterations / until convergence was the only part of the time complexity analysis
(in Sect. 4.5) that could not be directly calculated by analyzing the algorithm pseudocode.
In Table 5, we present experimental results for the number of iterations.

Both the size and difficulty of the dataset caused the K-algorithm to need more iterations
until convergence. As observed in Fig. 5, increasing N and j1; makes the dataset more difficult;
the same occurs when decreasing |EI/N. In all of these cases, the difficulty also increases the
number of iterations. However, when the dataset is too difficult to be solved by any of the
algorithms (IEI/N < 15 and u, > 74), the number of iterations starts to decrease. The dataset
size also has an effect. The highest number of iterations occurred for the dataset of size
1,024,000, where it was 47% higher than the highest value for the varDeg series (where N =
5000).

6.5 Disease co-occurrence network

In the previous chapter, the clustering of the disease network was evaluated by how closely
it matched the predefined categorization. However, this does not necessarily correspond to
the reality, as disease co-occurrences appear beyond category boundaries. In fact, the real
goal of clustering is to uncover new information, not to study how well the clustering models
existing predefined structures.

We next analyze what new information we found in the clustering results that might have
relevance in medical practice. We used the icdB dataset, which has 188 nodes, but removed
all symptom codes (starting with R), as these confused the analysis. This left 170 diagnoses.
We selected the M-algorithm with ITW cost function as this combination produced accurate
clustering for most datasets. Although the size of the dataset is seemingly small, the number
of possible connections between nodes is still very large (14,365), which would make manual
examination exhausting. Instead, using clustering (with k = 15) we can obtain groups that
are small enough for realistic human analysis. A proof of concept of such analysis is shown
in Fig. 7. A more extensive analysis will be found in a follow-up paper.

Most of the clustering results are as expected. For example, cluster 4 shows the connection
between mental health diagnoses and diagnoses related to alcohol and drug use. Furthermore,
alcohol use and minor injuries like limb fractures ended up in cluster 9. However, some results
are more unexpected. For example, cluster 1 consists of diseases of eye, ear and viral infections
wherein the clinical association of different conditions can be recognized but it would likely
not constitute a cluster of diseases if defined based only on clinical considerations.

@ Springer

Adapting k-means for graph clustering

Disease co-occurrence
network

Clustering result

14. Diabetes, obesity, migraine,

15. Diseases of the digestive system __ epilepsy. benign neoplasms.
and kidney. Heart disease. J30-H 60 1o 1. Diseases of eye, ear and viral
M7 DAL H/oo A infections
12. Severe disorders of the nervous _ 70 Nei G“F§5 G50 Msou OIS 2 Resultsof severe
K65 | A ‘ms T B :
system. Mental retardation. °.’°'m \ces £ B' | "H40 Hgo accidents in the areas of
; 03 head, stomach, chest, hi
8. Disorders related to pregnancy o) T29 E15 m{ T.{g : P
ol Q20 10 SPS20--s50 120 and thigh.

L
90/ N i
95" N J6o0 / $00.810 145 \ o0
0", s90 . 9. Minor injuries of hand, arm,
S80 " i slsb s-}“’ wrist and ankle. Toxic effects
_C15. |'"meo of substances (alcohol).
G90 G80 D50~ Keo T51 } ()

7. Inflammatory diseases of
female pelvic organs. Ao
: <160
Sexually transmitted He5 AB0 g5 N30
\ L40\ * koo G3g - N30 | E50_

izeases. L00. Fso Y D70 DR

oo / J4o F70 . N

. . J09 _K203, mes 2. Diseases of the digestive
11. Heart diseases and their Tss 8% 126 / | B0 98 / K7°7~—K90 K50 g
"7° c81 N/ =~ system and resultin,
X 00 Y 2
connection to diseases of the \ /" ~T33 1o 1S 1o 93 . o o .
respiratory system and arthritis? A50,/X60 / leo g A90 ﬂ .,cs1 A3Q - anemias. Intestinal infection
C76. “Noo €50 Moo—Doo
F -F80 e] narcen” S diseases.

4. Mental health, behavioral and

1185
M80 180"
10 S
substance abuse problems. \ g0 - Neoplasms and side effects of

o M86 15 their treatment. Effects of radiation.

: : F 2 E’ 0."' A
13. Malignant neoplasms. Bacterial and F20 / == 11 //H25-—pag 10. Disorders of eye and ear. Problems of
:]
glomerular diseases. S Samz0 N2 0 =—— nervous system and arteries causing the
6. Diseases of the 53 previous.

musculoskeletal system and skin

Fig. 7 Clustering result of the icdB dataset. For each cluster, we show a description based on medical expert
analysis. Visualization is performed using Gephi. Edges with RR > 1.75 are drawn with a thicker line. The
first diagnose code of a range represents the whole range (e.g., T36 represents range T36-T50)

7 Conclusions

We introduced two new cost functions for graph clustering: MIW and ITW. We also studied a
third one called conductance. The ITW resulted in the best overall results in the experimental
tests. It works especially well in the cases where somewhat balanced clustering is required.
Nevertheless, the choice of a cost function depends on the dataset and the purpose of
clustering. All of the studied cost functions are useful in some situations, and the choice of a
cost function should ultimately be left up to the analyst. In Sect. 6.1, we provided information

to aid in making this decision.

@ Springer

S. Sieranoja, P. Franti

We also introduced two new algorithms K -algorithm and M-algorithm that optimize these
cost functions. They are adaptations of the k-means algorithm for graph clustering context.
We compared the algorithms against eight previous methods. In the experimental tests, the
M-algorithm clearly outperformed existing state-of-the-art. Average clustering error was CI
= 1.7, whereas best existing (NCut) had CI = 2.7.

Acknowledgements This project was funded by the Strategic Research Council (SRC) at the Academy of
Finland (grant number 312760-1). We thank Tiina Laatikainen and Katja Wikstrom for providing the medical
expert analysis. More extensive analysis will be provided in a follow-up paper.

Funding Open access funding provided by University of Eastern Finland (UEF) including Kuopio University
Hospital. The project was funded by the Strategic Research Council (SRC) at the Academy of Finland (grant
number 312760-1).

Data availability The graph datasets documented in Table 2 are published in http://cs.uef.fi/ml/article/graphclu/

Code availability The algorithms’ C + + source code is available in: https://github.com/uef-machine-learning/
gclu.

Declarations
Conflict of interest The authors declared that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci
103(23):8577-8582
2. Newman ME (2004) Analysis of weighted networks. Phys Rev E 70(5):056131
3. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J
49(2):291-307
4. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell
22(8):888-905
5. Divo MJ, Casanova C, Marin JM et al (2015) Chronic obstructive pulmonary disease comorbidities
network. Eur Respir J 22:113-118
6. Hromic H, Prangnawarat N, Hulpus I, Karnstedt M, Hayes C (2015) Graph-based methods for clustering
topics of interest in twitter. In: International conference on web engineering, pp 701-704
7. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3-5):75-174
8. Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1-44
9. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large
networks. J Stat Mech Theory Exp 2008(10):10008
10. Lancichinetti A, Fortunato S (2009) Benchmarks for testing community detection algorithms on directed
and weighted graphs with overlapping communities. Phys Rev E 80(1):016118
11. Whang 1], Gleich DF, Dhillon IS (2016) Overlapping community detection using neighborhood-inflated
seed expansion. IEEE Trans Knowl Data Eng 28(5):1272-1284
12. LuZ, Wen Y, Cao G (2013) Community detection in weighted networks: Algorithms and applications. In:
2013 IEEE international conference on pervasive computing and communications (PerCom), pp 179-184

@ Springer

http://cs.uef.fi/ml/article/graphclu/
https://github.com/uef-machine-learning/gclu
http://creativecommons.org/licenses/by/4.0/

Adapting k-means for graph clustering

20.

21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
. Chakraborty T, Dalmia A, Mukherjee A, Ganguly N (2017) Metrics for community analysis: a survey.

34.

35.

36.

37.

38.
39.
40.

41.

Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev
E 80(5):056117

Zhang W, Wang X, Zhao D, Tang X (2012) Graph degree linkage: agglomerative clustering on a directed
graph. In: European conference on computer vision, pp 428-441

LaSalle D, Karypis G (2016) A parallel hill-climbing refinement algorithm for graph partitioning. In:
45th International conference on parallel processing (ICPP), pp 236-241

Tabatabaei SS, Coates M, Rabbat M (2012) Ganc: greedy agglomerative normalized cut for graph clus-
tering. Pattern Recogn 45(2):831-843

Schifer T, Mutzel P (2017) Struclus: scalable structural graph set clustering with representative sampling.
In: International conference on advanced data mining and applications, pp 343-359

Riesen K, Bunke H (2008) Kernel k-means clustering applied to vector space embeddings of graphs. In:
TAPR workshop on artificial neural networks in pattern recognition, pp 24-35

Ferrer M, Valveny E, Serratosa F, Bardaji I, Bunke H (2009) Graph-based k-means clustering: a com-
parison of the set median versus the generalized median graph. In: International conference on computer
analysis of images and patterns, pp 342-350

Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad
Sci 99(12):7821-7826

Kannan R, Vempala S, Vetta A (2004) On clusterings: good, bad and spectral.] ACM 51(3):497-515
Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: International
symposium on computer and information sciences, pp 284-293

Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev
E 70(6):066111

Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J Sci Comput 20(1):359-392

Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E
69(2):026113

Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci
104(1):36-41

Hidalgo CA, Blumm N, Barabdsi A, Christakis NA (2009) A dynamic network approach for the study of
human phenotypes. PLoS Comput Biol 5(4):e1000353

Okuda M, Satoh S, Sato Y, Kidawara Y (2019) Community detection using restrained random-walk
similarity. IEEE Trans Pattern Anal Mach Intell

Sinclair A, Jerrum M (1989) Approximate counting, uniform generation and rapidly mixing markov
chains. Inf Comput 82(1):93-133

Leskovec J, Lang KJ, Mahoney M (2010) Empirical comparison of algorithms for network community
detection. In: Proceedings of the 19th international conference on world wide web, pp 631-640

Yang J, Leskovec J (2015) Defining and evaluating network communities based on ground-truth. Knowl
Inf Syst 42(1):181-213

Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27-64

ACM Comput Surv 50(4):1-37

Javed MA, Younis MS, Latif S, Qadir J, Baig A (2018) Community detection in networks: a multidisci-
plinary review. J Netw Comput Appl 108:87-111

Biedermann S, Henzinger M, Schulz C, Schuster B (2018) Memetic graph clustering. In: Proceedings
of the 17th international symposium on experimental algorithms (SEA’18), LIPIcs. Dagstuhl. Technical
report arXiv: 1802.07034

Peixoto TP (2014) Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models.
Phys Rev E 89(1):012804

Rozemberczki B, Davies R, Sarkar R, Sutton C (2019) Gemsec: graph embedding with self clustering.
In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis
and mining, pp 65-72

Bulug A, Meyerhenke H, Safro I, Sanders P, Schulz C (2016) Recent advances in graph partitioning. In:
Algorithm engineering, pp 117-158

Sanders P, Schulz C (2012) Distributed evolutionary graph partitioning. In: 2012 Proceedings of the
fourteenth workshop on algorithm engineering and experiments (ALENEX), pp 16-29

Benlic U, Hao JK (2010) An effective multilevel memetic algorithm for balanced graph partitioning. In:
2010 22nd IEEE international conference on tools with artificial intelligence, vol 1, pp 121-128

Parés F, Gasulla DG, Vilalta A, Moreno J, Ayguadé E, Labarta J, Cortés U, Suzumura T (2017) Fluid com-
munities: a competitive, scalable and diverse community detection algorithm. In: International conference
on complex networks and their applications, pp 229-240

@ Springer

S. Sieranoja, P. Franti

42.

43.

44.

45.

46.

47.

48.

49.

Frinti P, Sieranoja S (2018) K-means properties on six clustering benchmark datasets. Appl Intell
48(12):4743-4759

Sieranoja S, Frinti P (2018) Fast random pair divisive construction of knn graph using generic distance
measures. In: Proceedings of the 2018 international conference on big data and computing, pp 95-98
WHO (2016) International statistical classification of diseases and related health problems, 10th revision.
World Health Organization, Geneva

Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat
Mech Theory Exp 2005(09):P09008

Frianti P, Rezaei M, Zhao Q (2014) Centroid index: cluster level similarity measure. Pattern Recogn
47(9):3034-3045

Rossetti G, Milli L, Cazabet R (2019) Cdlib: a python library to extract, compare and evaluate communities
from complex networks. Appl Netw Sci 4(1):1-26

Frénti P, Sieranoja S (2019) How much can k-means be improved by using better initialization and repeats?
Pattern Recogn 93:95-112

Franti P (2018) Efficiency of random swap clustering. J Big Data 5(1):13

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Sami Sieranoja received his M.Sc. and Ph.D. degrees from the Uni-
versity of Eastern Finland, 2015 and 2020. Currently he is a postdoc-
toral researcher at the University of Eastern Finland. His work focuses
on analyzing medical data using machine learning methods. His other
research interests include neighborhood graphs and data clustering.

Pasi Frinti received his M.Sc. and Ph.D. degrees from the Univer-
sity of Turku, 1991 and 1994 in Science. Since 2000, he has been a
professor of Computer Science at the University of Eastern Finland.
He has published 99 journals and 175 peer review conference papers.
Pasi Frinti is the head of the Machine Learning research group. His
current research interests include clustering algorithms, location-based
services, machine learning, web and text mining, and optimization of
health care services. He has supervised 30 Ph.D. graduates and is cur-
rently supervising nine more.

@ Springer

	Adapting k-means for graph clustering
	Abstract
	1 Introduction
	2 Clustering cost functions
	2.1 Conductance
	2.2 Mean internal weight
	2.3 Inverse internal weight

	3 Existing algorithms
	3.1 Hierarchical algorithms
	3.2 Iterative algorithms
	3.3 Balanced clustering
	3.4 Graph growing and seed expansion

	4 K-algorithm and M-algorithm
	4.1 K-algorithm: greedy local optimization
	4.2 Cost function delta calculation
	4.3 Density based initialization
	4.4 M-algorithm
	4.5 Time complexity

	5 Experimental setup
	5.1 Datasets
	5.2 Measuring clustering quality
	5.3 Compared methods

	6 Results
	6.1 Visual cost function comparison
	6.2 Algorithm benchmark
	6.3 Effect of initialization
	6.4 K-algorithm iterations
	6.5 Disease co-occurrence network

	7 Conclusions
	Acknowledgements
	References

